Discussiones Mathematicae Differential Inclusions, Control and Optimization 36 (2016) 65–77 doi:10.7151/dmdico.1182

WEAKLY PRECOMPACT OPERATORS ON $C_b(X, E)$ WITH THE STRICT TOPOLOGY

JULIUSZ STOCHMAL

Faculty of Mathematics, Computer Science and Econometrics University of Zielona Góra ul. Szafrana 4A, 65–516 Zielona Góra, Poland

e-mail: juliusz.stochmal@gmail.com

Abstract

Let X be a completely regular Hausdorff space, E and F be Banach spaces. Let $C_b(X, E)$ be the space of all E-valued bounded continuous functions on X, equipped with the strict topology β . We study weakly precompact operators $T: C_b(X, E) \to F$. In particular, we show that if X is a paracompact k-space and E contains no isomorphic copy of l^1 , then every strongly bounded operator $T: C_b(X, E) \to F$ is weakly precompact.

Keywords: spaces of vector-valued continuous functions, strict topologies, operator measures, strongly bounded operators, weakly precompact operators.

2010 Mathematics Subject Classification: 46G10, 46E40, 46A70, 47B07.

1. INTRODUCTION AND TERMINOLOGY

Throughout the paper let $(E, \|\cdot\|_E)$ and $(F, \|\cdot\|_F)$ be (real or complex) Banach spaces, and let E' and F' denote the Banach duals of E and F, respectively. Let $i_F : F \to F''$ denote the canonical embedding, i.e., $i_F(y)(y') = y'(y)$ for $y \in F$, $y' \in F'$. Moreover, let $j_F : i_F(F) \to F$ stand for the left inverse of i_F , that is, $j_F \circ i_F = id_F$. By $B_{F'}$ we denote the closed unit ball in F'. By $\mathcal{L}(E, F)$ we denote the space of all bounded linear operators from E to F, equipped with the norm $\|\cdot\|$ of the uniform operator topology. Given a locally convex Hausdorff space (Z,ξ) by $(Z,\xi)'$ or Z'_{ξ} we will denote its topological dual.

Assume that (X, \mathcal{T}) is a completely regular Hausdorff space. By \mathcal{K} we will denote the family of all compact sets in X. Let $C_b(X, E)$ stand for the Banach space of all bounded continuous functions $f : X \to E$. By τ_u we will denote the topology on $C_b(X, E)$ of the uniform norm $\|\cdot\|$. By $C_b(X, E)'$ we denote the Banach dual of $C_b(X, E)$. Let $C_b(X) \otimes E$ denote the linear space spanned by the set of all functions of the form $u \otimes x$, where $u \in C_b(X)$, $x \in E$, and $(u \otimes x)(t) = u(t)x$ for $t \in X$.

By $\mathcal{B}o$ we denote the σ -algebra of Borel sets in X. By $\mathcal{S}(\mathcal{B}o, E)$ we denote the set of all E-valued $\mathcal{B}o$ -simple functions on X. Recall that a function $g: X \to E$ is said to be totally $\mathcal{B}o$ -measurable if there exists a sequence (s_n) in $\mathcal{S}(\mathcal{B}o, E)$ such that $\sup_{t \in X} ||s_n(t) - g(t)||_E \to 0$. Let $\mathcal{B}(\mathcal{B}o, E)$ stand for the Banach space of all totally $\mathcal{B}o$ -measurable functions $g: X \to E$, equipped with the uniform norm $||\cdot||$ (see [9, 10]). Then one can show that $C_b(X) \otimes E \subset \mathcal{B}(\mathcal{B}o, E)$.

Recall that the strict topology β can be characterized as the finest locally convex topology on $C_b(X, E)$ which coincides with the compact-open topology τ_c on τ_u -bounded subsets of $C_b(X, E)$. This means that $(C_b(X, E), \beta)$ is a generalized DF-space (see [22, Corollary]) (equivalently, β coincides with the mixed topology $\gamma[\tau_u, \tau_c]$ in the sense of Wiweger (see [24] for more details). Then β is weaker than τ_u , and β and τ_u have the same bounded sets (see [15, Theorem 3.4])). Note that $\beta = \tau_u$ whenever X is compact and then we will write C(X, E)instead of $C_b(X, E)$.

Recall that a subset P of a Banach space F is said to be *weakly precompact* if every bounded sequence in P contains a weakly Cauchy subsequence. A bounded linear operator $T: E \to F$ is said to be *weakly precompact* if T(A) is a weakly precompact subset of a Banach space F whenever A is a bounded subset of a Banach space E (equivalently, if every bounded sequence (x_n) in E has a subsequence (x_{k_n}) such that $(T(x_{k_n}))$ is weakly Cauchy in F). If X is a compact Hausdorff space, weakly precompact operators $T: C(X, E) \to F$ have been studied by many authors; see Abbott [1], Abbott, Bator, Bilyeu and Lewis [2], Ghenciu and Lewis [13, 12], Song [21], E. Saab and P. Saab [20]. The aim of the present paper is to extend these studies to the setting of operators T: $C_b(X,E) \to F$, where X is a completely regular Hausdorff space. In Section 2 we present the basic concepts and results concerning integral representation of operators on $C_b(X, E)$. In Sections 3 we study weakly precompact operators $T: C_b(X, E) \to F$. In particular, we show that if X is a paracompact k-space and E contains no isomorphic copy of l^1 , then every strongly bounded operator $T: C_b(X, E) \to F$ is weakly precompact.

2. Integral representation for operators on $C_b(X,E)$

Recall that a countably additive scalar measure ν on $\mathcal{B}o$ is said to be a Radon measure if its variation $|\nu| : \mathcal{B}o \to \mathbb{R}_+$ is regular, i.e., for each $A \in \mathcal{B}o$,

$$|\nu|(A) = \sup\{|\nu|(K) : K \in \mathcal{K}, K \subset A\} = \inf\{|\nu|(O) : O \in \mathcal{T}, O \supset A\}.$$

By M(X) we denote the space of all Radon measures.

For $\lambda \in M^+(X)$ let $\mathcal{L}^{\infty}(\lambda, E)$ stand for the vector space of all λ -measurable functions $g: X \to E$ such that $\|g\|_{\infty} := \operatorname{ess\,sup}_{t \in X} \|g(t)\|_E < \infty$. By $\mathcal{L}^1(\lambda, E)$ we denote the vector space of all Bochner λ -integrable functions $g: X \to E$, equipped with the seminorm $\|g\|_1 := \int_X \|g(t)\|_E d\lambda$. One can show that (see [18, Proposition 5.1])

$$C_b(X, E) \subset \mathcal{L}^{\infty}(\lambda, E) \subset \mathcal{L}^1(\lambda, E).$$

Let M(X, E') denote the space of all countably additive measures $\mu : \mathcal{B}o \to E'$ of bounded variation $(|\mu|(X) < \infty)$ such that for each $x \in E$, $\mu_x \in M(X)$, where $\mu_x(A) := \mu(A)(x)$ for $A \in \mathcal{B}o$. Then $|\mu| \in M(X)$ if $\mu \in M(X, E')$ (see [16, Lemma 2.3]).

It is known that for $\mu \in M(X, E')$, every $f \in C_b(X, E)$ is μ -integrable in the Riemann-Stieltjes sense (see [18, Definition 2.2]).

The following characterization of β -continuous linear functionals on $C_b(X, E)$ will be of importance (see [18, § 2]).

Theorem 1. For a linear functional Φ on $C_b(X, E)$ the following statements are equivalent:

- (i) Φ is β -continuous.
- (ii) There exists a unique $\mu \in M(X, E')$ such that

$$\Phi(f) = \Phi_{\mu}(f) = \int_X f d\mu \quad for \quad f \in C_b(X, E).$$

Moreover, $\|\Phi_{\mu}\| = |\mu|(X)$.

Let $C_b(X, E)''_{\beta}$ denote the bidual of $(C_b(X, E), \beta)$. Since β -bounded subsets of $C_b(X, E)$ are τ_u -bounded, the strong topology $\beta(C_b(X, E)'_{\beta}, C_b(X, E))$ in $C_b(X, E)'_{\beta}$ coincides with the norm topology in $C_b(X, E)'$ restricted to $C_b(X, E)'_{\beta}$. Hence $C_b(X, E)'_{\beta} = (C_b(X, E)'_{\beta}, \|\cdot\|)'$. Then one can embed $B(\mathcal{B}o, E)$ into $C_b(X, E)''_{\beta}$ by the mapping $\pi : B(\mathcal{B}o, E) \to C_b(X, E)''_{\beta}$, where for $g \in B(\mathcal{B}o, E)$,

$$\pi(g)(\Phi_{\mu}) = (I) \int_X g \, d\mu \quad \text{for} \quad \mu \in M(X, E'),$$

and $(I) \int_X g \, d\mu$ denotes the immediate integral (see [9, §6], [10, §1]). Then

$$|\pi(g)(\Phi_{\mu})| = \left| (I) \int_{X} g \, d\mu \right| \le ||g|| \ |\mu|(X) = ||g|| \ ||\Phi_{\mu}||$$

and hence π is bounded and $\|\pi(g)\| \leq \|g\|$.

Assume that $T: C_b(X, E) \to F$ is a $(\beta, \|\cdot\|_F)$ -continuous operator. Let $T': F' \to C_b(X, E)'_{\beta}$ and $T'': C_b(X, E)''_{\beta} \to F''$ stand for the conjugate and the biconjugate operators of T, respectively. Then one can define a bounded operator,

$$\hat{T} := T'' \circ \pi : B(\mathcal{B}o, E) \to F''.$$

Define a measure $m: \mathcal{B}o \to \mathcal{L}(E, F'')$ (called the *representing measure* of T) by

$$m(A)(x) := \hat{T}(\mathbb{1}_A \otimes x) \text{ for } A \in \mathcal{B}o, x \in E.$$

It is well known that \widehat{T} possesses a representation by the so-called immediate integral $(I) \int_X g \, dm$, developed by Dinculeanu [9, §6], [10, §1], that is,

$$\widehat{T}(g) = (I) \int_X g \, dm := \lim_n (I) \int_X s_n \, dm \quad \text{for} \quad g \in B(\mathcal{B}o, E),$$

where (s_n) is a sequence in $S(\mathcal{B}o, E)$ such that $||s_n - g|| \to 0$. Then $||\widehat{T}|| = \widetilde{m}(X)$, where $\widetilde{m}(A)$ stands for the semivariation of m on $A \in \mathcal{B}o$. For each $y' \in F'$, let

$$m_{y'}(A)(x) := (m(A)(x))(y')$$
 for $A \in \mathcal{B}o, x \in E$.

Then $m_{y'} \in M(X, E')$ for every $y' \in F'$ and we have (see [9, § 4, Proposition 5]),

$$\widetilde{m}(A) = \sup\left\{|m_{y'}|(A) : y' \in B_{F'}\right\}.$$

From the general properties of the operator \hat{T} , we have

(1)
$$\widehat{T}(C_b(X) \otimes E) \subset i_F(F)$$

and

$$T(h) = j_F \Big((I) \int_X h \, dm \Big) \text{ for } h \in C_b(X) \otimes E.$$

Moreover, according to [18, Theorem 3.1] every $f \in C_b(X, E)$ is *m*-integrable in the Riemann-Stieltjes sens (see [18, Definition 2.2]) with $\int_X f \, dm \in i_F(F)$ and

$$T(f) = j_F \Big(\int_X f \, dm \Big).$$

For every $x \in E$ we can define:

$$T_x(u) := T(u \otimes x)$$
 for $u \in C_b(X)$ and $m_x(A) := m(A)(x)$ for $A \in \mathcal{B}o$.

Note that if $T_x : C_b(X) \to F$ is weakly compact for every $x \in E$, then according to [18, Theorem 3.3] $m_x(A) \in i_F(F)$ for $A \in \mathcal{B}o$, $x \in E$ and one can define a measure $m_F : \mathcal{B}o \to \mathcal{L}(E, F)$ by setting

$$m_F(A)(x) := j_F(m_x(A))$$
 for $A \in \mathcal{B}o, x \in E$.

Then $(m_F)_{y'} = m_{y'} \in M(X, E')$ for $y' \in F'$ and $\widetilde{m_F}(A) = \widetilde{m}(A)$ for $A \in \mathcal{B}o$.

Recall that a completely regular Hausdorff space X is said to be a *k*-space if each set which meets every compact subset in a closed set must be closed. X is a *k*-space, for instance if X is locally compact or first countable (see [11, Chap. 3, \S 3.3]).

Let $B_{C_b(X)\otimes E}$, $B_{S(\mathcal{B}o,E)}$ and $B_{B(\mathcal{B}o,E)}$ denote the closed unit balls in $C_b(X) \otimes E$, $S(\mathcal{B}o, E)$ and $B(\mathcal{B}o, E)$, respectively. Note that $B_{S(\mathcal{B}o,E)}$ is dense in $B_{B(\mathcal{B}o,E)}$ with respect to the uniform norm $\|\cdot\|$.

The following lemma will be useful.

Lemma 2. Assume that X is a k-space. Let $T : C_b(X, E) \to F$ be a $(\beta, \|\cdot\|_F)$ continuous operator such that $T_x : C_b(X) \to F$ is a weakly compact operator for each $x \in E$. Then the following statements hold:

- (i) $\hat{T}(B_{C_b(X)\otimes E})$ is $\|\cdot\|_{F''}$ -dense in $\hat{T}(B_{B(\mathcal{B}o,E)})$.
- (ii) $\hat{T}(B(\mathcal{B}o, E)) \subset i_F(F).$
- (iii) $T(C_b(X) \otimes E)$ is $\|\cdot\|_F$ -dense in $j_F(\hat{T}(B(\mathcal{B}o, E)))$.

Proof. (i) Let $y'' \in \hat{T}(B_{B(\mathcal{B}o,E)})$, i.e., $y'' = \hat{T}(g)$ for some $g \in B(\mathcal{B}o,E)$ with $||g|| \leq 1$. Let $\varepsilon > 0$ be given. Then one can choose $s = \sum_{i=1}^{n} (\mathbb{1}_{A_i} \otimes x_i) \in \mathcal{S}(\mathcal{B}o,E)$ with $||s|| \leq 1$ and $||s - g|| \leq \frac{\varepsilon}{2||\hat{T}||}$. Hence

(2)
$$\|\hat{T}(s) - y''\|_{F''} = \|\hat{T}(s-g)\|_{F''} \le \|\hat{T}\| \cdot \|s-g\| \le \frac{\varepsilon}{2}.$$

Let *m* stand for the representing measure of *T*. In view of [18, Theorem 2.3] for each i = 1, ..., n the family $\{m_{x_i,y'} : y' \in B_{F'}\}$ is uniformly countably additive, and hence by [18, Theorem 3.4] $\{m_{x_i,y'} : y' \in B_{F'}\}$ is a uniformly regular set in M(X). Hence for each i = 1, ..., n one can choose $K_i \in \mathcal{K}$ and $O_i \in \mathcal{T}$ with $K_i \subset A_i \subset O_i$ such that

$$\sup_{y'\in B_{F'}}|m_{x_i,y'}|\left(O_i\smallsetminus K_i\right)\leq \frac{\varepsilon}{2n}.$$

Choose $u_i \in C_b(X)$ with $0 \le u_i \le \mathbb{1}_X$ such that $u_i|_{K_i} \equiv 1$ and $u_i|_{X < O_i} \equiv 0$ for $i = 1, \ldots, n$. Then $\sum_{i=1}^n (u_i \otimes x_i) \in B_{C_b(X) \otimes E}$ and for $y' \in B_{F'}$ we have,

$$\left| \hat{T} \left(\sum_{i=1}^{n} (u_i \otimes x_i) \right) (y') - \hat{T}(s)(y') \right|$$

= $\left| \sum_{i=1}^{n} (I) \int_X (u_i \otimes x_i) dm_{y'} - \sum_{i=1}^{n} m_{x_i,y'}(A_i) \right|$

$$\leq \sum_{i=1}^{n} \left| \int_{X} (u_{i} - \mathbb{1}_{A_{i}}) dm_{x_{i},y'} \right| \leq \sum_{i=1}^{n} \int_{X} |u_{i} - \mathbb{1}_{A_{i}}| d |m_{x_{i},y'}|$$

$$\leq \sum_{i=1}^{n} \int_{O_{i} \smallsetminus K_{i}} \mathbb{1}_{X} d |m_{x_{i},y'}| \leq \sum_{i=1}^{n} |m_{x_{i},y'}| (O_{i} \smallsetminus K_{i}) \leq \frac{\varepsilon}{2}.$$

It follows that

$$\left\| \hat{T}\left(\sum_{i=1}^{n} (u_i \otimes x_i) \right) - \hat{T}(s) \right\|_{F''} \le \frac{\varepsilon}{2},$$

and hence by (2) we get $\|\hat{T}(\sum_{i=1}^{n}(u_i \otimes x_i)) - y''\|_{F''} \leq \varepsilon$. This means that (i) holds.

(ii) Since $\hat{T}(h) \in i_F(F)$ for each $h \in C_b(X) \otimes E$ (see (1)), in view of (i) we conclude that $\hat{T}(B(\mathcal{B}o, E)) \subset i_F(F)$.

(iii) It follows from (i) and (ii).

Recall that a $(\beta, \|\cdot\|_F)$ -continuous linear operator $T : C_b(X, E) \to F$ is said to be strongly bounded if its representing measure m has the strongly bounded semivariation, i.e., $\widetilde{m}(A_n) \to 0$ whenever (A_n) is a pairwise disjoint sequence in $\mathcal{B}o$. Then \widetilde{m} is strongly bounded if and only if $\{|m_{y'}| : y' \in B_{F'}\}$ is uniformly countably additive, i.e., $\sup\{|m_{y'}|(A_n): y' \in B_{F'}\} \to 0$ whenever $A_n \downarrow \emptyset$, $(A_n) \subset$ $\mathcal{B}o$ (see [7, Theorem 10, pp. 88–89]), i.e., \widetilde{m} is continuous at \emptyset . Note that for all $x \in E$ we have, $||m_x(A)||_{F''} \leq \widetilde{m}(A)||x||_E$ for $A \in \mathcal{B}o$. Hence, if $T : C_b(X, E) \to F$ is strongly bounded, then for each $x \in E$, $m_x : \mathcal{B}o \to F''$ is strongly bounded. In view of [18, Theorem 3.3], $m_x(A) \in i_F(F)$ for $A \in \mathcal{B}o$ and $T_x : C_b(X) \to F$ is a weakly compact operator.

By $M(X, \mathcal{L}(E, F))$ we denote the set of all measures $m : \mathcal{B}o \to \mathcal{L}(E, F)$ such that $\widetilde{m}(X) < \infty$ and $m_{y'} \in M(X, E')$ for $y' \in F'$.

We say that $m \in M(X, \mathcal{L}(E, F))$ has the regular semivariation, if for every $A \in \mathcal{B}o$ and $\varepsilon > 0$ there exist $K \in \mathcal{K}$ and $O \in \mathcal{T}$ such that $K \subset A \subset O$ and $\widetilde{m}(O \smallsetminus K) \leq \varepsilon$.

Assume that $m \in M(X, \mathcal{L}(E, F))$ has the regular semivariation and let $\lambda \in M^+(X)$ be a control measure for $\{|m_{y'}| : y' \in B_{F'}\}$. We can assume that λ to be complete (if necessary we can take the completion $(X, \overline{\mathcal{Bo}}, \overline{\lambda})$ of $(X, \mathcal{Bo}, \lambda)$, and for each $y' \in B_{F'}$, we extend $|m_{y'}|$ to $\overline{\mathcal{Bo}}$). It is known that if $g \in \mathcal{L}^{\infty}(\lambda, E)$, then one can define the Radon-type integral of g with respect to m by the equation:

$$(R)\int_X g\,dm := \lim_n (R)\int_X s_n\,dm,$$

where (s_n) is a sequence of *E*-valued \mathcal{B} o-simple functions on *X* such that $||s_n(t) - g(t)||_E \to 0$ λ -a.e. on *X* and $||s_n(t)||_E \leq ||g(t)||_E \lambda$ -a.e. on *X* (see [17, § 1]). Then

70

the Radon integration operator $T_m: \mathcal{L}^{\infty}(\lambda, E) \to F$ defined by the equation:

$$T_m(g) := (R) \int_X g \, dm$$

is λ - σ -smooth, i.e., $T_m(g_n) \to 0$ whenever (g_n) is a sequence in $\mathcal{L}^{\infty}(\lambda, E)$ such that $\sup_n \|g_n\|_{\infty} < \infty$ and $\|g_n(t)\|_E \to 0$ λ -a.e. on X (see [17, Proposition 3.5]). Note that for $y' \in F'$ and $g \in \mathcal{L}^{\infty}(\lambda, E)$, we have

$$y'(T_m(g)) = (R) \int_X g \, dm_{y'}$$
 and $|(R) \int_X g \, dm_{y'}| \le \int_X ||g(t)||_E \, d|m_{y'}|.$

The following Riesz Representation Theorem will be of importance in the study of strongly bounded operators on $C_b(X, E)$ (see [18, Corollary 4.3 and Theorem 5.2]).

Theorem 3. Assume that X is a k-space. Let $T : C_b(X, E) \to F$ be a strongly bounded operator with representing measure m. Then the following statements hold:

- (i) m_F has the regular semivariation.
- (ii) Every $f \in C_b(X, E)$ is m_F -integrable in the Riemann-Stieltjes sens and

$$T(f) = \int_X f \, dm_F \quad for \quad f \in C_b(X, E).$$

(iii) If $\lambda \in M^+(X)$ is a control measure for $\{|m_{y'}| : y' \in B_{F'}\}$, then T possesses a λ - σ -smooth Radon extension $T_{m_F} : \mathcal{L}^{\infty}(\lambda, E) \to F$ such that

$$T(f) = T_{m_F}(f) = (R) \int_X f \, dm_F \quad \text{for } f \in C_b(X, E).$$

3. Weakly precompact operators on $C_b(X,E)$

Since β -bounded and τ_u -bounded sets coincide, we can formulate the definition of weakly precompact operators on $C_b(X, E)$ in the following way:

Definition. We say that a $(\beta, \|\cdot\|_F)$ -continuous linear operator $T: C_b(X, E) \to F$ is weakly precompact if T maps τ_u -bounded sets in $C_b(X, E)$ onto weakly precompact sets in a Banach space F.

It is known that if X is compact, then the representing measure of a weakly precompact operator on C(X, E) need not have weakly precompact values (see [1, Example 2]). We show that if a weakly precompact operator $T: C_b(X, E) \to F$ satisfies an additional condition (in particular if T is strongly bounded), then m(A) is a weakly precompact operator for $A \in \mathcal{B}o$. Let us start with the following result.

Proposition 4. Assume that X is a k-space. Let $T : C_b(X, E) \to F$ be a weakly precompact operator such that $T_x : C_b(X) \to F$ is weakly compact for each $x \in E$. Then $\hat{T}(B(\mathcal{B}o, E)) \subset i_F(F)$ and the operator $j_F \circ \hat{T} : B(\mathcal{B}o, E) \to F$ is weakly precompact.

Proof. Note that $\hat{T}(B(\mathcal{B}o, E)) \subset i_F(F)$ (see Lemma 2). Let (g_n) be a uniformly bounded sequence in $B(\mathcal{B}o, E)$. According to Lemma 2 and (1) we can choose a uniformly bounded sequence (h_n) in $C_b(X) \otimes E$ such that

$$\begin{aligned} \|T(h_n) - j_F(\hat{T}(g_n))\|_F &= \|j_F(\hat{T}(h_n)) - j_F(\hat{T}(g_n))\|_F \\ &= \|\hat{T}(h_n) - \hat{T}(g_n)\|_{F''} \le \frac{1}{n}. \end{aligned}$$

Since T is weakly precompact, we can choose a subsequence (h_{k_n}) of (h_n) such that $(T(h_{k_n}))$ is a $\sigma(F, F')$ -Cauchy sequence. We will show that $(j_F(\hat{T}(g_{k_n})))$ is a $\sigma(F, F')$ -Cauchy sequence. Indeed, let $y' \in F'$ and $\varepsilon > 0$ be given. Then $y'(T(h_{k_n})) \to a_{y'}$ for some $a_{y'} \in \mathbb{R}$. Choose $n_o \in \mathbb{N}$ such that $\frac{1}{n_o} ||y'||_{F'} \leq \frac{\varepsilon}{2}$ and $|y'(T(h_{k_n})) - a_{y'}| \leq \frac{\varepsilon}{2}$ for $n \geq n_o$. Then for $n \geq n_o$,

$$\begin{aligned} &|y'(j_F(\hat{T}(g_{k_n}))) - a_{y'}| \\ &\leq |y'(T(h_{k_n})) - a_{y'}| + \|j_F(\hat{T}(g_{k_n})) - j_F(\hat{T}(h_{k_n}))\|_F \cdot \|y'\|_{F'} \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{aligned}$$

This means that $j_F \circ \hat{T}$ is weakly precompact, as desired.

Corollary 5. Assume that X is a k-space. Let $T : C_b(X, E) \to F$ be a weakly precompact operator and m be its representing measure. If $T_x : C_b(X) \to F$ is weakly compact for each $x \in E$, then for each $A \in \mathcal{B}o$, $m_F(A) : E \to F$ is a weakly precompact operator.

Proof. It follows from Proposition 4 because $m_F(A)(x) = (j_F \circ \hat{T})(\mathbb{1}_A \otimes x)$ for $A \in \mathcal{B}o, x \in E$.

It is known that $C_b(X, E)'_{\beta}$ is equal to the closure of $C_b(X, E)'_{\tau_c}$ in the Banach space $(C_b(X, E)', \|\cdot\|)$ (see [6, Proposition 1]), and it follows that $(C_b(X, E)'_{\beta}, \|\cdot\|)$ is a Banach space. Hence the weak topology in $C_b(X, E)'_{\beta}$ coincides with the weak topology in $C_b(X, E)'$ restricted to $C_b(X, E)'_{\beta}$ (see [14, Chap. 3, §3, Corollary 3]).

Corollary 6. Assume that X is a k-space. Let $T : C_b(X, E) \to F$ be a $(\beta, \|\cdot\|_F)$ continuous operator and m be its representing measure. If $T' : F' \to C_b(X, E)'_\beta$ is weakly precompact, then the following statements hold:

- (i) T is strongly bounded, i.e., \widetilde{m} is continuous at \emptyset .
- (ii) For each $A \in \mathcal{B}o$, $m_F(A) : E \to F$ is a weakly precompact operator.

Proof. Since $T'(B_{F'}) = \{\Phi_{m_{y'}} : y' \in B_{F'}\}$ is a weakly precompact subset of the Banach space $C_b(X, E)'_{\beta}$, in view of Theorem 1 $\{m_{y'} : y' \in B_{F'}\}$ is a weakly precompact subset of the Banach space M(X, E'). Making use of [1, Lemma 9], [12, Lemma 12], we obtain that the set $\{|m_{y'}| : y' \in B_{F'}\}$ is uniformly countably additive, i.e., (i) holds. Note that $T' : F' \to C_b(X, E)'$ is weakly precompact, and hence T is weakly precompact (see [1, Lemma 10]). According to Corollary 5 the condition (ii) is satisfied.

Recall that a $(\beta, \|\cdot\|_F)$ -continuous linear operator $T : C_b(X, E) \to F$ is said to be *completely continuous* if T maps $\sigma(C_b(X, E), M(X, E'))$ -Cauchy sequences in $C_b(X, E)$ onto norm convergent sequences in F (see [19]).

As a consequence of Corollary 6, using [19, Corollary 4.3], we obtain a related result to [13, Corollary 11 (iv)].

Corollary 7. Assume that X is a k-space and E is a Schur space. If $T : C_b(X, E) \to F$ is a $(\beta, \|\cdot\|_F)$ -continuous operator such that $T' : F' \to C_b(X, E)'_\beta$ is weakly precompact, then T is completely continuous.

Recall that a $(\beta, \|\cdot\|_F)$ -continuous linear operator $T: C_b(X, E) \to F$ is said to be *unconditionally converging* if the series $\sum_{n=1}^{\infty} T(f_n)$ converges unconditionally in F whenever $\sum_{n=1}^{\infty} |\int_X f_n d\mu| < \infty$ for all $\mu \in M(X, E')$ (see [18, § 7]).

Corollary 8. Assume that X is a k-space. Let $T : C_b(X, E) \to F$ be a $(\beta, \|\cdot\|_F)$ -continuous operator. If E' contains no isomorphic copy of l^1 , then the following statements are equivalent:

(i) T is unconditionally converging.

- (ii) T is strongly bounded.
- (iii) T' is weakly precompact.

Proof. (i) \Rightarrow (ii) See [18, Theorem 7.3].

(ii) \Rightarrow (iii) Recall that $T': F' \to C_b(X, E)'_{\beta}$. Therefore $T'(y') = m_{y'} \in M(X, E')$ for all $y' \in F'$. Since T' is bounded operator, the set $\{m_{y'}: y' \in B_{F'}\}$ is bounded. On the other hand, if T is strongly bounded, then $\{|m_{y'}|: y' \in B_{F'}\}$ is uniformly countable additive. Hence, using [12, Corollary 17] we get $T'(B_{F'}) = \{\Phi_{m_{y'}}: y' \in B_{F'}\}$ is weakly precompact in $C_b(X, E)'_{\beta}$.

 $(iii) \Rightarrow (ii)$ See Corollary 6.

(ii) \Rightarrow (i) It is well known that if E' contains no isomorphic copy of l^1 , then E'' contains no isomorphic copy of c_0 . Hence, E contains no isomorphic copy of c_0 and using [18, Theorem 7.4] we get T is unconditionally converging.

Remark 9. If X is a compact Hausdorff space, then related results to Corollary 5 can be found in [13, Corollary 9], [20, Corollary 5], [21, Theorem 7].

We will need the following version of the Borsuk-Dugundji theorem (see [19, Theorem 3.8]).

Theorem 10. Let K be a compact subset of a paracompact space X and let H be a separable closed subspace of the Banach space C(K, E). Then there exists a linear isometric operator $S : H \to C_b(X, E)$ such that S(h) is an extension of $h \in H$.

Lemma 11. Assume that X is a paracompact k-space. Let $m : \mathcal{B}o \to \mathcal{L}(E, F)$ have the regular semivariation \widetilde{m} and let $\lambda \in M^+(X)$ be a control measure for $\{|m_{y'}|: y' \in B_{F'}\}$. Then the following statements hold:

- (i) If (h_n) is a sequence in $\mathcal{L}^{\infty}(\lambda, E)$ such that $\sup_n \|h_n\|_{\infty} < \infty$ and $(h_n(t))$ is a $\sigma(E, E')$ -Cauchy sequence for each $t \in X$, then $((R) \int_X h_n dm)$ is a $\sigma(F, F')$ -Cauchy sequence.
- (ii) If (g_n) is a sequence in a Banach space $L^1(\lambda, E)$ such that $\sup_n ||g_n||_{\infty} < \infty$ and $g_n \to 0$ weakly in $L^1(\lambda, E)$, then $(R) \int_X g_n \, dm \to 0$ for $\sigma(F, F')$.

Proof. (i) Let $\varepsilon > 0$ and $y'_o \in F'$ be fixed. Denote $M = \sup_n \|h_n\|_{\infty}$. Then there exists $\delta > 0$ such that

$$\widetilde{m}(A) = \sup\{|m_{y'}|(A) : y' \in B_{F'}\} \le \frac{\varepsilon}{6M \|y'_o\|_{F'}} \quad \text{if} \quad \lambda(A) \le \delta \quad \text{for} \quad A \in \mathcal{B}o.$$

Using the Luzin Type Theorem (see [5, Theorem 1.2]) for every $n \in \mathbb{N}$ there exists $K_n \in \mathcal{K}$ such that $h_n|_{K_n}$ is continuous and $\lambda(X \setminus K_n) \leq \frac{\delta}{2^n}$. Define the set $K = \bigcap_{n=1}^{\infty} K_n$ and the functions $g_n = h_n|_K$ for $n \in \mathbb{N}$. Since we have $\lambda(X \setminus K) \leq \delta$, then $\widetilde{m}(X \setminus K) \leq \frac{\varepsilon}{6M||y'_o||_{F'}}$. Let $H = [g_n]$ be the closed linear span of (g_n) in the Banach space C(K, E). By Theorem 10 we can define a linear isometric extension operator $S : H \to C_b(X, E)$. Note that $(g_n(t))$ is a $\sigma(E, E')$ -Cauchy sequence for each $t \in K$. Hence (g_n) is weakly Cauchy in C(K, E) (see [2, Lemma 3.2]). Since S is $(\|\cdot\|, \beta)$ -continuous, the sequence $(S(g_n))$ is weakly Cauchy in $(C_b(X, E), \beta)$. It follows that, there exists $n_o \in \mathbb{N}$ such that for every $n, m \in \mathbb{N}$ with $n, m \geq n_o$, we get

$$\left|y_o'\Big((R)\int_X (S(g_n) - S(g_m))\,dm\Big)\right| = \left|\int_X (S(g_n) - S(g_m))\,dm_{y_o'}\right| \le \frac{\varepsilon}{3}$$

Therefore,

$$\begin{aligned} \left| y'_o\Big((R) \int_X h_n \, dm - (R) \int_X h_m \, dm \Big) \right| \\ &\leq \left| y'_o\Big((R) \int_X h_n \, dm - (R) \int_X S(g_n) \, dm \Big) \right| \\ &+ \frac{\varepsilon}{3} + \left| y'_o\Big((R) \int_X S(g_m) \, dm - (R) \int_X h_m \, dm \Big) \right| \\ &\leq 4 \|y'_o\|_{F'} \sup_n \|h_n\|_{\infty} \widetilde{m}(X \setminus K) + \frac{\varepsilon}{3} \leq \varepsilon. \end{aligned}$$

Hence $((R) \int_X h_n dm)$ is a $\sigma(F, F')$ -Cauchy sequence. (ii) See [13, Theorem 1 (i)].

Now we can state our main result.

Theorem 12. Assume that X is a paracompact k-space. If E contains no isomorphic copy of l^1 , then every strongly bounded operator $T : C_b(X, E) \to F$ is weakly precompact.

Proof. Since T is strongly bounded operator, in view of Theorem 3, for each $f \in C_b(X, E)$ we have

$$T(f) = (R) \int_X f \, dm_F = \int_X f \, dm_F,$$

where m_F has the regular semivariation. Let $\lambda \in M^+(X)$ be a control measure for $\{|m_{y'}| : y' \in B_{F'}\}$. Assume that (f_n) is a sequence in $C_b(X, E)$ such that $\sup_n ||f_n|| = M < \infty$. Then $f_n \in \mathcal{L}^{\infty}(\lambda, E) \subset \mathcal{L}^1(\lambda, E)$ for each $n \in \mathbb{N}$. Moreover, $\{f_n : n \in \mathbb{N}\}$ is a uniformly integrable subset of a Banach space $L^1(\lambda, E)$ because

$$\sup_{n} \left\| \int_{A} f_{n} d\lambda \right\|_{E} \leq \sup_{n} \int_{A} \|f_{n}(t)\|_{E} d\lambda \leq M\lambda(A) \quad \text{for} \quad A \in \mathcal{B}o.$$

Hence $\{f_n : n \in \mathbb{N}\}$ is a weakly precompact subset of $L^1(\lambda, E)$ (see [4]). Without loss of generality, we can suppose that (f_n) is a weakly Cauchy sequence in $L^1(\lambda, E)$. Using [23, Theorem 11], for each $n \in \mathbb{N}$ we get

$$f_n = g_n + h_n \quad \lambda - \text{a.e.},$$

where $g_n \to 0$ weakly in $L^1(\lambda, E)$ and $(h_n(t))$ is a $\sigma(E, E')$ -Cauchy sequence for each $t \in X$. Moreover, from the proof of [23, Theorem 11] it follows that (g_n) and (h_n) are uniformly bounded. Then by Theorem 3,

$$T(f_n) = (R) \int_X f_n \, dm_F = (R) \int_X g_n \, dm_F + (R) \int_X h_n \, dm_F.$$

Hence, by Lemma 11, $(R) \int_X f_n dm$ is a $\sigma(F, F')$ -Cauchy sequence and it follows that T is weakly precompact.

Remark 13. For X being a compact Hausdorff space, a related result to Theorem 12 can be found in [13, Corollary 2].

It is well known that if E has the separable dual E', then E' has the RNP and it follows that E has no isomorphic copy of l^1 .

Corollary 14. Assume that X is a paracompact k-space. If E' is separable, then every strongly bounded operator $T: C_b(X, E) \to F$ is weakly precompact.

As a consequence of Theorem 12 and [18, Corollary 4.5], we get:

Corollary 15. Assume that X is a paracompact k-space. If E contains no isomorphic copy of l^1 and F contains no isomorphic copy of c_0 , then every $(\beta, \|\cdot\|_F)$ -continuous operator $T: C_b(X, E) \to F$ is weakly precompact.

Acknowledgement

The author wish to thank Professor M. Nowak for remarks and suggestions on a preliminary version of this paper.

References

- C. Abbott, Weakly precompact and GSP operators on continuous function spaces, Bull. Polish Acad. Sci. Math. 37 (1989) 467–476.
- [2] C. Abbott, A. Bator, R. Bilyeu and P. Lewis, Weak precompactness, strong boundedness, and weak complete continuity, Math. Proc. Camb. Phil. Soc. 108 (1990) 325–335. doi:10.1017/S030500410006919X
- [3] E. Bator and P. Lewis, Operators having weakly precompact adjoints, Math. Nachr. 157 (1992) 99–103. doi:10.1002/mana.19921570109
- [4] J. Bourgain, An averaging result for l¹-sequences and application to weakly conditionally compact sets in L¹_X, Israel J. Math. **32** (1979) 289–298. doi:10.1007/BF02760458
- [5] A. Bouziad, Luzin measurability of Carathéodory type mappings, Topology Appl. 154 (2007) 287–301. doi:10.1016/j.topol.2006.04.013
- [6] J.B. Cooper, The strict topology and spaces with mixed topology, Proc. Amer. Math. Soc. 30 (1971) 583–592. doi:10.1090/S0002-9939-1971-0284789-2
- [7] J. Diestel, Sequences and Series in Banach Spaces (Graduate Texts in Math., vol. 92, Springer-Verlag, 1984).
- [8] J. Diestel and J.J. Uhl, Vector Measures (Amer. Math. Soc. Surveys 15, 1977).
- [9] N. Dinculeanu, Vector Measures (Pergamon Press, New York, 1967). doi:10.1016/b978-1-4831-9762-3.50004-4
- [10] N. Dinculeanu, Vector Integration and Stochastic Integration in Banach Spaces (John Wiley and Sons Inc., 2000). doi:10.1002/9781118033012
- [11] R. Engelking, General Topology (Heldermann Verlag, Berlin, 1989).
- [12] I. Ghenciu, Weak precompactness in the space of vector-valued measures of bounded variation, J. Function Spaces 2015 (2015) ID 213679.
- [13] I. Ghenciu and P. Lewis, Strongly bounded representing measures and converging theorems, Glasgow Math. J. 52 (2010) 435–445. doi:10.1017/S0017089510000133

- [14] L.V. Kantorovitch and G.P. Akilov, Functional Analysis (Pergamon Press, Oxford-Elmsford, New York, 1982).
- [15] L.A. Khan, The strict topology on a space of vector-valued functions, Proc. Edinburgh Math. Soc. 22 (1979) 35–41. doi:10.1017/S0013091500027784
- [16] L.A. Khan and K. Rowlands, On the representation of strictly continuous linear functionals, Proc. Edinburgh Math. Soc. 24 (1981) 123–130. doi:10.1017/S0013091500006428
- M. Nowak, Operator measures and integration operators, Indag. Math. 24 (2013) 279–290. doi:10.1016/j.indag.2012.10.002
- [18] M. Nowak, A Riesz representation theory for completely regular Hausdorff spaces and its applications, Open Math., (in press).
- [19] M. Nowak, Completely continuous operators and the strict topology, (submitted).
- [20] E. Saab and P. Saab, On unconditionally converging and weakly precompact operators, Illinois J. Math. 35 (1991) 522–531.
- [21] H.J. Song, Characterizations of weakly precompactness of operators acting between Banach spaces, Kangweon-Kyungki Math. Jour. 12 (2004) 127–146.
- [22] J. Schmets and J. Zafarani, Strict topologies and (gDF)-spaces, Arch. Math. 49 (1987) 227–231. doi:10.1007/BF01271662
- [23] M. Talagrand, Weak Cauchy sequences in $L^1(E)$, Amer. J. Math. **106** (1984) 703–724. doi:10.2307/2374292
- [24] A. Wiweger, *Linear spaces with mixed topology*, Studia Math. **20** (1961) 47–68.

Received 14 February 2016 Revised 21 March 2016