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Abstract

Let X be a completely regular Hausdorff space, F and F' be Banach
spaces. Let Cy(X, E) be the space of all E-valued bounded continuous func-
tions on X, equipped with the strict topology 5. We study weakly precom-
pact operators T : Cy(X,E) — F. In particular, we show that if X is a
paracompact k-space and E contains no isomorphic copy of I!, then every
strongly bounded operator T : C,(X, E) — F is weakly precompact.
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1. INTRODUCTION AND TERMINOLOGY

Throughout the paper let (E, || -||g) and (F, || - ||r) be (real or complex) Banach
spaces, and let E' and F’ denote the Banach duals of F and F, respectively. Let
ip : ' — F” denote the canonical embedding, i.e., ir(y)(y') = ¢/'(y) for y € F,
y' € F'. Moreover, let jp : ip(F) — F stand for the left inverse of ip, that is,
jroip = idp. By Bp we denote the closed unit ball in F’'. By L(E,F) we
denote the space of all bounded linear operators from E to F', equipped with the
norm || - || of the uniform operator topology. Given a locally convex Hausdorff
space (Z,§) by (Z,€)" or Z; we will denote its topological dual.

Assume that (X, 7) is a completely regular Hausdorff space. By K we will
denote the family of all compact sets in X. Let C,(X, F) stand for the Banach
space of all bounded continuous functions f : X — E. By 7, we will denote
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the topology on Cy(X, E) of the uniform norm | - ||. By Cy(X, E)" we denote
the Banach dual of Cy(X, E). Let Cp(X) ® E denote the linear space spanned
by the set of all functions of the form u ® x, where u € Cy(X), x € E, and
(u®x)(t) =u(t)r for t € X.

By Bo we denote the o-algebra of Borel sets in X. By S(Bo, E') we denote the
set, of all E-valued Bo-simple functions on X. Recall that a function g : X — F is
said to be totally Bo-measurable if there exists a sequence (sy,) in S(Bo, E) such
that sup,cy ||sn(t) — g(t)[|[z — 0. Let B(Bo, E) stand for the Banach space of
all totally Bo-measurable functions ¢ : X — FE, equipped with the uniform norm
| - || (see [9, 10]). Then one can show that Cy(X) ® F C B(Bo, E).

Recall that the strict topology B can be characterized as the finest locally
convex topology on Cy(X, FE) which coincides with the compact-open topology
7. on 7,-bounded subsets of Cp(X, E). This means that (Cy(X, E), 5) is a gen-
eralized DF-space (see [22, Corollary]) (equivalently, 5 coincides with the mixed
topology 7[7u, 7] in the sense of Wiweger (see [24] for more details). Then 3 is
weaker than 7,, and 8 and 7, have the same bounded sets (see [15, Theorem
3.4])). Note that 8 = 7, whenever X is compact and then we will write C(X, E)
instead of Cp(X, E).

Recall that a subset P of a Banach space F' is said to be weakly precompact if
every bounded sequence in P contains a weakly Cauchy subsequence. A bounded
linear operator T': E — F is said to be weakly precompact if T(A) is a weakly
precompact subset of a Banach space F' whenever A is a bounded subset of
a Banach space E (equivalently, if every bounded sequence (x,) in E has a
subsequence (zy,, ) such that (T'(xy,)) is weakly Cauchy in F). If X is a compact
Hausdorff space, weakly precompact operators T : C(X,E) — F have been
studied by many authors; see Abbott [1], Abbott, Bator, Bilyeu and Lewis [2],
Ghenciu and Lewis [13, 12], Song [21], E. Saab and P. Saab [20]. The aim
of the present paper is to extend these studies to the setting of operators T :
Cy(X,E) — F, where X is a completely regular Hausdorff space. In Section
2 we present the basic concepts and results concerning integral representation
of operators on Cy(X, E). In Sections 3 we study weakly precompact operators
T : Cy(X,FE) — F. In particular, we show that if X is a paracompact k-space
and F contains no isomorphic copy of I!, then every strongly bounded operator
T :Cy(X,E) — F is weakly precompact.

2. INTEGRAL REPRESENTATION FOR OPERATORS ON C(X,E)

Recall that a countably additive scalar measure v on Bo is said to be a Radon
measure if its variation |v| : Bo — Ry is regular, i.e., for each A € Bo,

|v[(A) =sup{|v|(K): K e K, K C A} =inf {|[v|(O): 0O €T, O D A}.
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By M(X) we denote the space of all Radon measures.

For A € M*(X) let L2(), E) stand for the vector space of all A-measurable
functions g : X — E such that [|g|leo := ess sup,ex |l9(t)||g < co. By LY\, E)
we denote the vector space of all Bochner A-integrable functions g : X — E,
equipped with the seminorm ||g||; := [ [l9(t)|| dX. One can show that (see [18,
Proposition 5.1])

Cy(X,E) C L2\ E) C LY\ E).

Let M (X, E’) denote the space of all countably additive measures p : Bo — E’
of bounded variation (|u|(X) < co) such that for each x € E, py € M(X), where
pz(A) == p(A)(z) for A € Bo. Then |u] € M(X) if p € M(X,E’) (see [16,
Lemma 2.3]).

It is known that for p € M (X, E'), every f € Cp(X, E) is p-integrable in the
Riemann-Stieltjes sense (see [18, Definition 2.2]).

The following characterization of -continuous linear functionals on Cy,(X, E)
will be of importance (see [18, § 2]).

Theorem 1. For a linear functional ® on Cy(X, E) the following statements are
equivalent:

(i) @ is B-continuous.
(ii) There exists a unique p € M (X, E") such that

(f) = Du(f) = /X fdu for feCy(X,E).

Moreover, ||®,|| = |p[(X).

Let Cy(X, E)j5 denote the bidual of (Cy(X, E),3). Since S-bounded subsets of
Cy(X, E) are 7,-bounded, the strong topology 5(Ch(X, E)j, Cp(X, E)) in Cy(X, E)j
coincides with the norm topology in Cy(X, E)’ restricted to Cp(X, E)j;. Hence
Ch(X, E)g = (Cp(X, E)5, | - [)’. Then one can embed B(Bo, E) into Cj(X, E)j
by the mapping 7 : B(Bo, E) — Cp(X, E)g, where for g € B(Bo, E),

7(0)(®,) = (1) [ gdn for e M(X. )
and (I) [y g dp denotes the immediate integral (see [9, §6], [10, §1]). Then

(o)(®)| = |(1) [ gdn] < ol 141X) = gl 19

and hence 7 is bounded and ||7(g)|| < ||g]l-



68 J. STOCHMAL

Assume that T': Cy(X, E) — Fisa (8, ||| r)-continuous operator. Let 77 : F/ —
Cp(X, E)y and T" : Cy(X, E)g — F” stand for the conjugate and the biconjugate
operators of T, respectively. Then one can define a bounded operator,

T:=T"on:B(Bo,E)— F".
Define a measure m : Bo — L(FE, F") (called the representing measure of T') by
m(A)(z) :=T(ly@z) for AeBo, z € E.

It is well known that T possesses a representation by the so-called immediate
integral (I) [ g dm, developed by Dinculeanu [9, §6], [10, §1], that is,

n

f(g):(l)/xgdm = lim(I)/Xsndm for g € B(Bo, E),

where (s,) is a sequence in S(Bo, E) such that ||s, — g — 0. Then ||| = m(X),
where m(A) stands for the semivariation of m on A € Bo. For each y' € F’, let
my (A)(z) := (m(A)(z))(y') for A€ Bo, z€E.

Then m,y € M (X, E’) for every y/ € F' and we have (see [9, § 4, Proposition 5]),
i(A) = sup {m [(4) : € By,

From the general properties of the operator f, we have
(1) T(Cy(X) ® E) C ip(F)

and
T(h) :jF((I)/thm> for h e Cy(X)® E.

Moreover, according to [18, Theorem 3.1] every f € Cp(X, E) is m-integrable in
the Riemann-Stieltjes sens (see [18, Definition 2.2]) with [y fdm € ip(F) and

7() = ir( [ fim).

For every x € F we can define:
Ty(u) :=T(u®zx) for ue Cy(X) and my(A) :=m(A)(x) for A € Bo.

Note that if Ty, : Cp(X) — F is weakly compact for every = € E, then according
to [18, Theorem 3.3] m,(A) € ip(F) for A € Bo, x € E and one can define a
measure mp : Bo — L(E, F') by setting

mp(A)(z) := jr(mg(A)) for A€ Bo,z € E.
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Then (mp)y =my € M(X,E') for y € F' and mp(A) = m(A) for A € Bo.

Recall that a completely regular Hausdorff space X is said to be a k-space if
each set which meets every compact subset in a closed set must be closed. X is
a k-space, for instance if X is locally compact or first countable (see [11, Chap.
3, §3.3]).

Let Bey(x)or: Bso,r) and Bpse gy denote the closed unit balls in
Cy(X) ® E, S(Bo, E) and B(Bo, E), respectively. Note that Bg(s,, g) is dense
in Bp(g,,r) With respect to the uniform norm || - ||.

The following lemma will be useful.

Lemma 2. Assume that X is a k-space. Let T : Co(X, E) — F be a (B, - ||F)-
continuous operator such that T, : Cy(X) — F is a weakly compact operator for
each x € E. Then the following statements hold:

(i) T(Be,x)or) s | - || pr-dense in T(Bpgo,m))-
(ii) T(B(Bo,E)) C ip(F). A
(ili) T(Co(X) ® E)) is || - ||p-dense in jrp(T(B(Bo, E))).

Proof. (i) Let ¢ € T(BB(BQE)), ie., ¢ = T(g) for some g € B(Bo, E) with
gl < 1. Let € > 0 be given. Then one can choose s = > " | (14, ®xz;) € S(Bo, E)

with [|s]] <1 and ||s —g| < 2||£€T||' Hence

(2) IT(s) = " lew = 1T (s = ) ler < IT| - |ls = g]l <

DN ™

Let m stand for the representing measure of T'. In view of [18, Theorem 2.3] for
each i = 1,...,n the family {my, ,» : ¥ € Bp/} is uniformly countably additive,
and hence by [18, Theorem 3.4] {mg, ,» : ¥ € By} is a uniformly regular set in
M(X). Hence for each ¢ = 1,...,n one can choose K; € K and O; € T with
K; C A; C O; such that

€
Sup My, 4| (05 N K;) < o
y'€Bpr n
Choose u; € Cp(X) with 0 < u; < 1x such that ui|K¢ =1 and ui]X\Oi = 0 for
i=1,...,n. Then } " (u; ® z;) € Be,(x)ep and for y' € Bpr we have,

(o) w) - T6)0)

i=1

n

S0 [ s w iy = Y (49

i=1 =1
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Z/ s — | d g, |
g
< Z/O K Ixd|mg, | < Z Mg,y | (Oi N Kj) < 9
i=1 Y OinK;

=1

) dmg, o

It follows that

n

7(Smen) -106)

i=1

and hence by (2) we get |T(30(u; ® x;)) — ¢”||p» < e. This means that (i)
holds.

(ii) Since T(h)AE ip(F) for each h € Cp(X) ® E (see (1)), in view of (i) we
conclude that T'(B(Bo, E)) C ip(F).

(iii) It follows from (i) and (ii). ]

3
S o
FI/ 2

Recall that a (8,] - ||F)-continuous linear operator T' : Cy(X,E) — F is said
to be strongly bounded if its representing measure m has the strongly bounded
semivariation, i.e., m(4,) — 0 whenever (A,) is a pairwise disjoint sequence in
Bo. Then m is strongly bounded if and only if {|m,/| : ¥ € Bps} is uniformly
countably additive, i.e., sup{|my|(A,) : ¥ € Bpr} — 0 whenever A, | 0, (A,) C
Bo (see [7, Theorem 10, pp. 88-89]), i.e., m is continuous at (). Note that for all
x € E we have, [[m;(A)||pr < m(A)||z||g for A € Bo. Hence, if T : Cp(X,E) — F
is strongly bounded, then for each z € E, m, : Bo — F” is strongly bounded. In
view of [18, Theorem 3.3], mz(A) € ip(F) for A € Bo and Ty, : Cp(X) — F'is a
weakly compact operator.

By M(X, L(E, F)) we denote the set of all measures m : Bo — L(E, F') such
that m(X) < oo and my € M(X,E’) for y' € F'.

We say that m € M (X, L(E, F)) has the regular semivariation, if for every
A € Bo and € > 0 there exist K € K and O € T such that K ¢ A C O and
m(ONK)<e

Assume that m € M (X, L(E, F)) has the regular semivariation and let A €
M*(X) be a control measure for {|m,/|:y’ € Bp/}. We can assume that A to be
complete (if necessary we can take the completion (X, Bo, ) of (X, Bo, ), and
for each y' € Bpr, we extend |my| to Bo). It is known that if g € £L>°()\, E), then
one can define the Radon-type integral of g with respect to m by the equation:

(R) /X gdm := lim (R) /X s dm,

where (sy,) is a sequence of E-valued Bo-simple functions on X such that ||s,(t) —
g(®)||le — 0 A-a.e. on X and ||s,(t)||g < ||g(t)||g A-a.e. on X (see [17, § 1]). Then
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the Radon integration operator T, : L2(\, E) — F defined by the equation:
Tlo) = () [ gdm

is A-o-smooth, i.e., T,,(9n) — 0 whenever (g,) is a sequence in L(\, E) such
that sup,, ||gn|lcc < 00 and ||gn(t)||z — 0 A-a.e. on X (see [17, Proposition 3.5]).
Note that for 4/ € F" and g € L>®(\, E), we have

J(Tnle) = () [ gdm, and \(R) [ aim,

< [ lgte)ls dimy|.
X

The following Riesz Representation Theorem will be of importance in the study
of strongly bounded operators on Cy(X, E) (see [18, Corollary 4.3 and Theorem
5.2]).

Theorem 3. Assume that X is a k-space. Let T : Cp(X, E) — F be a strongly
bounded operator with representing measure m. Then the following statements
hold:

(i) mp has the regular semivariation.

(ii) Ewvery f € Cp(X, E) is mp-integrable in the Riemann-Stieltjes sens and
T(f) —/ fdmgp for feCyX,E).
X

iii) If \ € MT(X) is a control measure for {|m,|: vy € B}, then T possesses
( ) Yy y i p
a A-o-smooth Radon extension Ty, : L2\, E) — F such that

T(f) = Ty () = (R) /X fdmp for | € Cy(X, E).

3. WEAKLY PRECOMPACT OPERATORS ON Cy(X,E)

Since B-bounded and 7,-bounded sets coincide, we can formulate the definition
of weakly precompact operators on Cy(X, E) in the following way:

Definition. We say that a (3, || - || r)-continuous linear operator T": Cy(X, E) —
F' is weakly precompact if T maps 7,-bounded sets in Cy(X, E') onto weakly pre-
compact sets in a Banach space F.

It is known that if X is compact, then the representing measure of a weakly
precompact operator on C'(X, F) need not have weakly precompact values (see [1,
Example 2]). We show that if a weakly precompact operator T : Cy(X, E) — F
satisfies an additional condition (in particular if T is strongly bounded), then
m(A) is a weakly precompact operator for A € Bo. Let us start with the following
result.
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Proposition 4. Assume that X is a k-space. Let T : Cy(X, E) — F be a weakly
precompact operator such that T, : Cy(X) — F is weakly compact for each x € E.
Then T(B(Bo, E)) C ip(F) and the operator jp o T : B(Bo,E) — F is weakly
precompact.

Proof. Note that T(B(Bo, E)) C ir(F) (see Lemma 2). Let (g,) be a uniformly
bounded sequence in B(Bo, E'). According to Lemma 2 and (1) we can choose a
uniformly bounded sequence (h,) in Cy(X) ® E such that

1

= | T(hn) = T(gn)|lr <

Since T is weakly precompact, we can choose a subsequence (hg, ) of (hy) such

that (T'(hg,)) is a o(F, F')-Cauchy sequence. We will show that (jp(T(gx,)))
is a o(F, F')-Cauchy sequence. Indeed, let 4/ € F' and € > 0 be given. Then
Y (T(hg,)) = ay for some a, € R. Choose n, € N such that n%”y’Hpr < 5 and
|y (T (ht,)) — ay| < § for n > n,. Then for n > n,,

Y (ir(T(gr.,))) — ay|
<Y (T(hi,)) — ay |+ 37T (gk,)) — (T (e )le - |V <5+ 5 =€

This means that jp o T is weakly precompact, as desired. [ |

Corollary 5. Assume that X is a k-space. Let T : Cy(X, E) — F be a weakly
precompact operator and m be its representing measure. If T, : Cyp(X) — F is
weakly compact for each x© € E, then for each A € Bo, mp(A) : E — F is a
weakly precompact operator.

Proof. Tt follows from Proposition 4 because mp(A)(z) = (jr o T)(14 ® ) for
AecBo,xe L. [ ]

It is known that Cy(X, E)} is equal to the closure of Cp(X, E)7, in the Banach
space (Cp(X, E)', ||-||) (see [6, Proposition 1]), and it follows that (Cy(X, E)j, ||-[)
is a Banach space. Hence the weak topology in Cy(X, E )’5 coincides with the weak
topology in Cy(X, E)’ restricted to Cy(X, E)j (see [14, Chap. 3, §3, Corollary 3]).

Corollary 6. Assume that X is a k-space. Let T : Cy(X, E) — F be a (B, |||F)-
continuous operator and m be its representing measure. If T' : F' — Cp(X, E)%
is weakly precompact, then the following statements hold:

(i) T is strongly bounded, i.e., m is continuous at ().

(ii) For each A € Bo, mp(A) : E — F is a weakly precompact operator.
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Proof. Since T'(Bp:) = {<I>my, :y' € B} is a weakly precompact subset of the
Banach space Cy(X, E)j, in view of Theorem 1 {m, : y’ € Bp/} is a weakly
precompact subset of the Banach space M (X, E’). Making use of [1, Lemma 9],
[12, Lemma 12], we obtain that the set {|m,/|:y € Bp} is uniformly countably
additive, i.e., (i) holds. Note that 77 : F/ — Cy(X, E)’ is weakly precompact, and
hence T is weakly precompact (see [1, Lemma 10]). According to Corollary 5 the
condition (ii) is satisfied. ]

Recall that a (f, || - | p)-continuous linear operator T': Cp(X, E) — F is said to
be completely continuous if T maps o(Cy(X, E), M (X, E'))-Cauchy sequences in
Cy(X, E) onto norm convergent sequences in F' (see [19]).

As a consequence of Corollary 6, using [19, Corollary 4.3], we obtain a related
result to [13, Corollary 11 (iv)].

Corollary 7. Assume that X is a k-space and E is a Schur space. If T :
Cy(X, E) = Fis a (B, | || F)-continuous operator such that T' : F' — Cj(X, E)j
is weakly precompact, then T is completely continuous.

Recall that a (3, || - ||#)-continuous linear operator T : Cy(X, E) — F is said to
be unconditionally converging if the series Y > | T'(f,,) converges unconditionally

in F' whenever Y7 | [\ fndu| < oo for all pe M(X,E’) (see [18, § 7]).

Corollary 8. Assume that X is a k-space. Let T : Co(X,E) — F be a
(B, || - ||l7)-continuous operator. If E' contains no isomorphic copy of I*, then
the following statements are equivalent:

(i) T is unconditionally converging.

(ii) T is strongly bounded.

(i) 7" is weakly precompact.

Proof. (i)=(ii) See [18, Theorem 7.3].

(ii)=(iii) Recall that 7" : F" — Cy(X, E)j5. Therefore T'(y') = m, € M(X, E')
for all y’ € F’. Since T" is bounded operator, the set {m,s : ¥/ € Bps} is bounded.
On the other hand, if T is strongly bounded, then {|m,/|:y" € Bp/} is uniformly
countable additive. Hence, using [12, Corollary 17] we get T"(Bp/) = {®m,, :
y' € B} is weakly precompact in Cp(X, E)j.

(iii)=-(ii) See Corollary 6.

(ii)=>(i) It is well known that if E’ contains no isomorphic copy of I!, then E”
contains no isomorphic copy of ¢y. Hence, F contains no isomorphic copy of ¢y
and using [18, Theorem 7.4] we get T' is unconditionally converging. ]

Remark 9. If X is a compact Hausdorff space, then related results to Corollary
5 can be found in [13, Corollary 9], [20, Corollary 5], [21, Theorem 7].
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We will need the following version of the Borsuk-Dugundji theorem (see [19,
Theorem 3.8]).

Theorem 10. Let K be a compact subset of a paracompact space X and let H
be a separable closed subspace of the Banach space C(K,E). Then there exists
a linear isometric operator S : H — Cy(X, E) such that S(h) is an extension of
heH.

Lemma 11. Assume that X is a paracompact k-space. Let m : Bo — L(E, F)
have the regular semivariation m and let A\ € M (X) be a control measure for
{lmy|:y € Bp}. Then the following statements hold:

(i) If (hy) is a sequence in L®(N\, E) such that sup,, ||hn|lcc < 00 and (h,(t))
is a o(E, E')-Cauchy sequence for each t € X, then ((R) [y hndm) is a
o(F, F")-Cauchy sequence.

(i) If (gn) is a sequence in a Banach space L*(\, E) such that sup,, ||gn|lco < 00
and gn — 0 weakly in L'(X\, E), then (R) [y gndm — 0 for o(F, F').

Proof. (i) Let € > 0 and y/, € F' be fixed. Denote M = sup,, ||n|lco- Then there
exists 6 > 0 such that

m(A) = sup{|my|(A) : v € Bp'} if ANA)<d for A€ Bo.

< £
~ 6M |yl
Using the Luzin Type Theorem (see [5, Theorem 1.2]) for every n € N there
exists K, € K such that h,|k, is continuous and A(X \ K,) < %. Define
the set K = (2, K,, and the functions g, = hy|x for n € N. Since we have
AMX\K) <4, then m(X \ K) < Wyé\\w' Let H = [gn] be the closed linear
span of (g,) in the Banach space C(K, F). By Theorem 10 we can define a linear
isometric extension operator S : H — Cy(X, E). Note that (g,(t)) is a o(E, E')-
Cauchy sequence for each t € K. Hence (g,) is weakly Cauchy in C(K, F) (see
[2, Lemma 3.2]). Since S is (|| - ||, #)-continuous, the sequence (S(gy,)) is weakly
Cauchy in (Cy(X, E), B). It follows that, there exists n, € N such that for every
n,m € N with n,m > n,, we get

i ((R) [ (S(a.) = Stgu))dm)| = [ (S(0.) = (g dmy,

Therefore,

<

£
5

yé((R)/thdm—(R)/Xhmdm)‘
yé((R)/thdm—(R)/XS(gn)dm)‘
vo((R) /X S(gm) dm — (R) /X o )|

~ g
< 4llyollrr sup [nloc (XN K) + 5 < e
n

<

+o4
3
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Hence ((R) [y hndm) is a o(F, F')-Cauchy sequence.
(ii) See [13, Theorem 1 (i)]. |

Now we can state our main result.

Theorem 12. Assume that X is a paracompact k-space. If E contains no iso-
morphic copy of I}, then every strongly bounded operator T : Cy(X, E) — F is
weakly precompact.

Proof. Since T is strongly bounded operator, in view of Theorem 3, for each
f € Cy(X, E) we have

T(f) = (R) /X fdmp = /X f dmp,

where mp has the regular semivariation. Let A € MT(X) be a control measure
for {|m,| : ¥ € Bps}. Assume that (f,) is a sequence in Cy(X, E) such that
sup,, || fall = M < co. Then f, € LX(\, E) C LY (), E) for each n € N. Moreover,
{fn : n € N} is a uniformly integrable subset of a Banach space L!(\, ) because

’/fndAH §sup/ fu(®)|zdX < MA(A) for A € Bo.
A E n JA

sup
n

Hence {f, : n € N} is a weakly precompact subset of L!()\, E) (see [4]). Without
loss of generality, we can suppose that (f,) is a weakly Cauchy sequence in
LY(\, E). Using [23, Theorem 11], for each n € N we get

fn:gn+hn )\_a.e.,
where g, — 0 weakly in L1()\, E) and (h,(t)) is a o(E, E')-Cauchy sequence for

each t € X. Moreover, from the proof of [23, Theorem 11] it follows that (g,)
and (hy,) are uniformly bounded. Then by Theorem 3,

T(f,) = (R) /X fudmp = (R) /X gndimp + (B) /X o dige

Hence, by Lemma 11, ((R) [y fndm) is a o(F, F')-Cauchy sequence and it fol-
lows that T' is weakly precompact. [ |

Remark 13. For X being a compact Hausdorff space, a related result to Theorem
12 can be found in [13, Corollary 2].

It is well known that if E has the separable dual E’, then E’ has the RNP and it
follows that E has no isomorphic copy of I
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Corollary 14. Assume that X is a paracompact k-space. If E' is separable, then
every strongly bounded operator T : Cy(X, E) — F is weakly precompact.

As a consequence of Theorem 12 and [18, Corollary 4.5], we get:

Corollary 15. Assume that X is a paracompact k-space. If E contains no iso-
morphic copy of I and F contains no isomorphic copy of co, then every (B, ||-||r)-
continuous operator T : Cy(X, E) — F is weakly precompact.
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