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Abstract

Let X be a completely regular Hausdorff space, E and F be Banach
spaces. Let Cb(X,E) be the space of all E-valued bounded continuous func-
tions on X, equipped with the strict topology β. We study weakly precom-
pact operators T : Cb(X,E) → F . In particular, we show that if X is a
paracompact k-space and E contains no isomorphic copy of l1, then every
strongly bounded operator T : Cb(X,E)→ F is weakly precompact.
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1. Introduction and terminology

Throughout the paper let (E, ‖ · ‖E) and (F, ‖ · ‖F ) be (real or complex) Banach
spaces, and let E′ and F ′ denote the Banach duals of E and F, respectively. Let
iF : F → F ′′ denote the canonical embedding, i.e., iF (y)(y′) = y′(y) for y ∈ F ,
y′ ∈ F ′. Moreover, let jF : iF (F ) → F stand for the left inverse of iF , that is,
jF ◦ iF = idF . By BF ′ we denote the closed unit ball in F ′. By L(E,F ) we
denote the space of all bounded linear operators from E to F , equipped with the
norm ‖ · ‖ of the uniform operator topology. Given a locally convex Hausdorff
space (Z, ξ) by (Z, ξ)′ or Z ′ξ we will denote its topological dual.

Assume that (X, T ) is a completely regular Hausdorff space. By K we will
denote the family of all compact sets in X. Let Cb(X,E) stand for the Banach
space of all bounded continuous functions f : X → E. By τu we will denote
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the topology on Cb(X,E) of the uniform norm ‖ · ‖. By Cb(X,E)′ we denote
the Banach dual of Cb(X,E). Let Cb(X) ⊗ E denote the linear space spanned
by the set of all functions of the form u ⊗ x, where u ∈ Cb(X), x ∈ E, and
(u⊗ x)(t) = u(t)x for t ∈ X.

By Bo we denote the σ-algebra of Borel sets in X. By S(Bo,E) we denote the
set of all E-valued Bo-simple functions on X. Recall that a function g : X → E is
said to be totally Bo-measurable if there exists a sequence (sn) in S(Bo,E) such
that supt∈X ‖sn(t) − g(t)‖E → 0. Let B(Bo,E) stand for the Banach space of
all totally Bo-measurable functions g : X → E, equipped with the uniform norm
‖ · ‖ (see [9, 10]). Then one can show that Cb(X)⊗ E ⊂ B(Bo,E).

Recall that the strict topology β can be characterized as the finest locally
convex topology on Cb(X,E) which coincides with the compact-open topology
τc on τu-bounded subsets of Cb(X,E). This means that (Cb(X,E), β) is a gen-
eralized DF-space (see [22, Corollary]) (equivalently, β coincides with the mixed
topology γ[τu, τc] in the sense of Wiweger (see [24] for more details). Then β is
weaker than τu, and β and τu have the same bounded sets (see [15, Theorem
3.4])). Note that β = τu whenever X is compact and then we will write C(X,E)
instead of Cb(X,E).

Recall that a subset P of a Banach space F is said to be weakly precompact if
every bounded sequence in P contains a weakly Cauchy subsequence. A bounded
linear operator T : E → F is said to be weakly precompact if T (A) is a weakly
precompact subset of a Banach space F whenever A is a bounded subset of
a Banach space E (equivalently, if every bounded sequence (xn) in E has a
subsequence (xkn) such that (T (xkn)) is weakly Cauchy in F ). If X is a compact
Hausdorff space, weakly precompact operators T : C(X,E) → F have been
studied by many authors; see Abbott [1], Abbott, Bator, Bilyeu and Lewis [2],
Ghenciu and Lewis [13, 12], Song [21], E. Saab and P. Saab [20]. The aim
of the present paper is to extend these studies to the setting of operators T :
Cb(X,E) → F , where X is a completely regular Hausdorff space. In Section
2 we present the basic concepts and results concerning integral representation
of operators on Cb(X,E). In Sections 3 we study weakly precompact operators
T : Cb(X,E) → F . In particular, we show that if X is a paracompact k-space
and E contains no isomorphic copy of l1, then every strongly bounded operator
T : Cb(X,E)→ F is weakly precompact.

2. Integral representation for operators on Cb(X,E)

Recall that a countably additive scalar measure ν on Bo is said to be a Radon
measure if its variation |ν| : Bo→ R+ is regular, i.e., for each A ∈ Bo,

|ν|(A) = sup {|ν|(K) : K ∈ K,K ⊂ A} = inf {|ν|(O) : O ∈ T , O ⊃ A}.
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By M(X) we denote the space of all Radon measures.

For λ ∈M+(X) let L∞(λ,E) stand for the vector space of all λ-measurable
functions g : X → E such that ‖g‖∞ := ess supt∈X ‖g(t)‖E < ∞. By L1(λ,E)
we denote the vector space of all Bochner λ-integrable functions g : X → E,
equipped with the seminorm ‖g‖1 :=

∫
X ‖g(t)‖E dλ. One can show that (see [18,

Proposition 5.1])

Cb(X,E) ⊂ L∞(λ,E) ⊂ L1(λ,E).

Let M(X,E′) denote the space of all countably additive measures µ : Bo → E′

of bounded variation (|µ|(X) <∞) such that for each x ∈ E, µx ∈M(X), where
µx(A) := µ(A)(x) for A ∈ Bo. Then |µ| ∈ M(X) if µ ∈ M(X,E′) (see [16,
Lemma 2.3]).

It is known that for µ ∈M(X,E′), every f ∈ Cb(X,E) is µ-integrable in the
Riemann-Stieltjes sense (see [18, Definition 2.2]).

The following characterization of β-continuous linear functionals on Cb(X,E)
will be of importance (see [18, § 2]).

Theorem 1. For a linear functional Φ on Cb(X,E) the following statements are
equivalent:

(i) Φ is β-continuous.

(ii) There exists a unique µ ∈M(X,E′) such that

Φ(f) = Φµ(f) =

∫
X
fdµ for f ∈ Cb(X,E).

Moreover, ‖Φµ‖ = |µ|(X).

Let Cb(X,E)′′β denote the bidual of (Cb(X,E), β). Since β-bounded subsets of
Cb(X,E) are τu-bounded, the strong topology β(Cb(X,E)′β, Cb(X,E)) in Cb(X,E)′β
coincides with the norm topology in Cb(X,E)′ restricted to Cb(X,E)′β. Hence
Cb(X,E)′′β = (Cb(X,E)′β, ‖ · ‖)′. Then one can embed B(Bo,E) into Cb(X,E)′′β
by the mapping π : B(Bo,E)→ Cb(X,E)′′β, where for g ∈ B(Bo,E),

π(g)(Φµ) = (I)

∫
X
g dµ for µ ∈M(X,E′),

and (I)
∫
X g dµ denotes the immediate integral (see [9, §6], [10, §1]). Then

|π(g)(Φµ)| =
∣∣∣(I)

∫
X
g dµ

∣∣∣ ≤ ‖g‖ |µ|(X) = ‖g‖ ‖Φµ‖

and hence π is bounded and ‖π(g)‖ ≤ ‖g‖.
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Assume that T : Cb(X,E)→ F is a (β, ‖·‖F )-continuous operator. Let T ′ : F ′ →
Cb(X,E)′β and T ′′ : Cb(X,E)′′β → F ′′ stand for the conjugate and the biconjugate
operators of T , respectively. Then one can define a bounded operator,

T̂ := T ′′ ◦ π : B(Bo,E)→ F ′′.

Define a measure m : Bo→ L(E,F ′′) (called the representing measure of T ) by

m(A)(x) := T̂ (1lA ⊗ x) for A ∈ Bo, x ∈ E.

It is well known that T̂ possesses a representation by the so-called immediate
integral (I)

∫
X g dm, developed by Dinculeanu [9, §6], [10, §1], that is,

T̂ (g) = (I)

∫
X
g dm := lim

n
(I)

∫
X
sn dm for g ∈ B(Bo,E),

where (sn) is a sequence in S(Bo,E) such that ‖sn−g‖ → 0. Then ‖T̂‖ = m̃(X),
where m̃(A) stands for the semivariation of m on A ∈ Bo. For each y′ ∈ F ′, let

my′(A)(x) := (m(A)(x))(y′) for A ∈ Bo, x ∈ E.

Then my′ ∈M(X,E′) for every y′ ∈ F ′ and we have (see [9, § 4, Proposition 5]),

m̃(A) = sup {|my′ |(A) : y′ ∈ BF ′}.

From the general properties of the operator T̂ , we have

T̂ (Cb(X)⊗ E) ⊂ iF (F )(1)

and

T (h) = jF

(
(I)

∫
X
h dm

)
for h ∈ Cb(X)⊗ E.

Moreover, according to [18, Theorem 3.1] every f ∈ Cb(X,E) is m-integrable in
the Riemann-Stieltjes sens (see [18, Definition 2.2]) with

∫
X f dm ∈ iF (F ) and

T (f) = jF

(∫
X
f dm

)
.

For every x ∈ E we can define:

Tx(u) := T (u⊗ x) for u ∈ Cb(X) and mx(A) := m(A)(x) for A ∈ Bo.

Note that if Tx : Cb(X)→ F is weakly compact for every x ∈ E, then according
to [18, Theorem 3.3] mx(A) ∈ iF (F ) for A ∈ Bo, x ∈ E and one can define a
measure mF : Bo→ L(E,F ) by setting

mF (A)(x) := jF (mx(A)) for A ∈ Bo, x ∈ E.
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Then (mF )y′ = my′ ∈M(X,E′) for y′ ∈ F ′ and m̃F (A) = m̃(A) for A ∈ Bo.
Recall that a completely regular Hausdorff space X is said to be a k-space if

each set which meets every compact subset in a closed set must be closed. X is
a k-space, for instance if X is locally compact or first countable (see [11, Chap.
3, § 3.3]).

Let BCb(X)⊗E , BS(Bo,E) and BB(Bo,E) denote the closed unit balls in
Cb(X) ⊗ E, S(Bo,E) and B(Bo,E), respectively. Note that BS(Bo,E) is dense
in BB(Bo,E) with respect to the uniform norm ‖ · ‖.

The following lemma will be useful.

Lemma 2. Assume that X is a k-space. Let T : Cb(X,E)→ F be a (β, ‖ · ‖F )-
continuous operator such that Tx : Cb(X) → F is a weakly compact operator for
each x ∈ E. Then the following statements hold:

(i) T̂ (BCb(X)⊗E) is ‖ · ‖F ′′-dense in T̂ (BB(Bo,E)).

(ii) T̂ (B(Bo,E)) ⊂ iF (F ).

(iii) T (Cb(X)⊗ E)) is ‖ · ‖F -dense in jF (T̂ (B(Bo,E))).

Proof. (i) Let y′′ ∈ T̂ (BB(Bo,E)), i.e., y′′ = T̂ (g) for some g ∈ B(Bo,E) with
‖g‖ ≤ 1. Let ε > 0 be given. Then one can choose s =

∑n
i=1(1lAi⊗xi) ∈ S(Bo,E)

with ‖s‖ ≤ 1 and ‖s− g‖ ≤ ε
2‖T̂‖

. Hence

‖T̂ (s)− y′′‖F ′′ = ‖T̂ (s− g)‖F ′′ ≤ ‖T̂‖ · ‖s− g‖ ≤ ε

2
.(2)

Let m stand for the representing measure of T . In view of [18, Theorem 2.3] for
each i = 1, . . . , n the family {mxi,y′ : y′ ∈ BF ′} is uniformly countably additive,
and hence by [18, Theorem 3.4] {mxi,y′ : y′ ∈ BF ′} is a uniformly regular set in
M(X). Hence for each i = 1, . . . , n one can choose Ki ∈ K and Oi ∈ T with
Ki ⊂ Ai ⊂ Oi such that

sup
y′∈BF ′

|mxi,y′ | (Oi rKi) ≤
ε

2n
.

Choose ui ∈ Cb(X) with 0 ≤ ui ≤ 1lX such that ui|Ki
≡ 1 and ui|XrOi

≡ 0 for
i = 1, . . . , n. Then

∑n
i=1(ui ⊗ xi) ∈ BCb(X)⊗E and for y′ ∈ BF ′ we have,∣∣∣∣T̂( n∑
i=1

(ui ⊗ xi)
)

(y′)− T̂ (s)(y′)

∣∣∣∣
=

∣∣∣∣ n∑
i=1

(I)

∫
X

(ui ⊗ xi) dmy′ −
n∑
i=1

mxi,y′(Ai)

∣∣∣∣
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≤
n∑
i=1

∣∣∣∣ ∫
X

(ui − 1lAi) dmxi,y′

∣∣∣∣ ≤ n∑
i=1

∫
X
|ui − 1lAi | d |mxi,y′ |

≤
n∑
i=1

∫
OirKi

1lXd |mxi,y′ | ≤
n∑
i=1

|mxi,y′ | (Oi rKi) ≤
ε

2
.

It follows that ∥∥∥∥T̂( n∑
i=1

(ui ⊗ xi)
)
− T̂ (s)

∥∥∥∥
F ′′
≤ ε

2
,

and hence by (2) we get ‖T̂ (
∑n

i=1(ui ⊗ xi)) − y′′‖F ′′ ≤ ε. This means that (i)
holds.

(ii) Since T̂ (h) ∈ iF (F ) for each h ∈ Cb(X) ⊗ E (see (1)), in view of (i) we
conclude that T̂ (B(Bo,E)) ⊂ iF (F ).

(iii) It follows from (i) and (ii).

Recall that a (β, ‖ · ‖F )-continuous linear operator T : Cb(X,E) → F is said
to be strongly bounded if its representing measure m has the strongly bounded
semivariation, i.e., m̃(An) → 0 whenever (An) is a pairwise disjoint sequence in
Bo. Then m̃ is strongly bounded if and only if {|my′ | : y′ ∈ BF ′} is uniformly
countably additive, i.e., sup{|my′ |(An) : y′ ∈ BF ′} → 0 whenever An ↓ ∅, (An) ⊂
Bo (see [7, Theorem 10, pp. 88–89]), i.e., m̃ is continuous at ∅. Note that for all
x ∈ E we have, ‖mx(A)‖F ′′ ≤ m̃(A)‖x‖E for A ∈ Bo. Hence, if T : Cb(X,E)→ F
is strongly bounded, then for each x ∈ E, mx : Bo→ F ′′ is strongly bounded. In
view of [18, Theorem 3.3], mx(A) ∈ iF (F ) for A ∈ Bo and Tx : Cb(X) → F is a
weakly compact operator.

By M(X,L(E,F )) we denote the set of all measures m : Bo→ L(E,F ) such
that m̃(X) <∞ and my′ ∈M(X,E′) for y′ ∈ F ′.

We say that m ∈ M(X,L(E,F )) has the regular semivariation, if for every
A ∈ Bo and ε > 0 there exist K ∈ K and O ∈ T such that K ⊂ A ⊂ O and
m̃(O rK) ≤ ε.

Assume that m ∈ M(X,L(E,F )) has the regular semivariation and let λ ∈
M+(X) be a control measure for {|my′ | : y′ ∈ BF ′}. We can assume that λ to be
complete (if necessary we can take the completion (X,Bo, λ) of (X,Bo, λ), and
for each y′ ∈ BF ′ , we extend |my′ | to Bo). It is known that if g ∈ L∞(λ,E), then
one can define the Radon-type integral of g with respect to m by the equation:

(R)

∫
X
g dm := lim

n
(R)

∫
X
sn dm,

where (sn) is a sequence of E-valued Bo-simple functions on X such that ‖sn(t)−
g(t)‖E → 0 λ-a.e. on X and ‖sn(t)‖E ≤ ‖g(t)‖E λ-a.e. on X (see [17, § 1]). Then
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the Radon integration operator Tm : L∞(λ,E)→ F defined by the equation:

Tm(g) := (R)

∫
X
g dm

is λ-σ-smooth, i.e., Tm(gn) → 0 whenever (gn) is a sequence in L∞(λ,E) such
that supn ‖gn‖∞ <∞ and ‖gn(t)‖E → 0 λ-a.e. on X (see [17, Proposition 3.5]).
Note that for y′ ∈ F ′ and g ∈ L∞(λ,E), we have

y′(Tm(g)) = (R)

∫
X
g dmy′ and

∣∣∣∣(R)

∫
X
g dmy′

∣∣∣∣ ≤ ∫
X
‖g(t)‖E d|my′ |.

The following Riesz Representation Theorem will be of importance in the study
of strongly bounded operators on Cb(X,E) (see [18, Corollary 4.3 and Theorem
5.2]).

Theorem 3. Assume that X is a k-space. Let T : Cb(X,E) → F be a strongly
bounded operator with representing measure m. Then the following statements
hold:

(i) mF has the regular semivariation.

(ii) Every f ∈ Cb(X,E) is mF -integrable in the Riemann-Stieltjes sens and

T (f) =

∫
X
f dmF for f ∈ Cb(X,E).

(iii) If λ ∈M+(X) is a control measure for {|my′ | : y′ ∈ BF ′}, then T possesses
a λ-σ-smooth Radon extension TmF : L∞(λ,E)→ F such that

T (f) = TmF (f) = (R)

∫
X
f dmF for f ∈ Cb(X,E).

3. Weakly precompact operators on Cb(X,E)

Since β-bounded and τu-bounded sets coincide, we can formulate the definition
of weakly precompact operators on Cb(X,E) in the following way:

Definition. We say that a (β, ‖ · ‖F )-continuous linear operator T : Cb(X,E)→
F is weakly precompact if T maps τu-bounded sets in Cb(X,E) onto weakly pre-
compact sets in a Banach space F .

It is known that if X is compact, then the representing measure of a weakly
precompact operator on C(X,E) need not have weakly precompact values (see [1,
Example 2]). We show that if a weakly precompact operator T : Cb(X,E) → F
satisfies an additional condition (in particular if T is strongly bounded), then
m(A) is a weakly precompact operator for A ∈ Bo. Let us start with the following
result.
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Proposition 4. Assume that X is a k-space. Let T : Cb(X,E)→ F be a weakly
precompact operator such that Tx : Cb(X)→ F is weakly compact for each x ∈ E.
Then T̂ (B(Bo,E)) ⊂ iF (F ) and the operator jF ◦ T̂ : B(Bo,E) → F is weakly
precompact.

Proof. Note that T̂ (B(Bo,E)) ⊂ iF (F ) (see Lemma 2). Let (gn) be a uniformly
bounded sequence in B(Bo,E). According to Lemma 2 and (1) we can choose a
uniformly bounded sequence (hn) in Cb(X)⊗ E such that

‖T (hn)− jF (T̂ (gn))‖F = ‖jF (T̂ (hn))− jF (T̂ (gn))‖F

= ‖T̂ (hn)− T̂ (gn)‖F ′′ ≤ 1

n
.

Since T is weakly precompact, we can choose a subsequence (hkn) of (hn) such
that (T (hkn)) is a σ(F, F ′)-Cauchy sequence. We will show that (jF (T̂ (gkn)))
is a σ(F, F ′)-Cauchy sequence. Indeed, let y′ ∈ F ′ and ε > 0 be given. Then
y′(T (hkn)) → ay′ for some ay′ ∈ R. Choose no ∈ N such that 1

no
‖y′‖F ′ ≤ ε

2 and
|y′(T (hkn))− ay′ | ≤ ε

2 for n ≥ no. Then for n ≥ no,

|y′(jF (T̂ (gkn)))− ay′ |

≤ |y′(T (hkn))− ay′ |+ ‖jF (T̂ (gkn))− jF (T̂ (hkn))‖F · ‖y′‖F ′ ≤ ε
2 + ε

2 = ε.

This means that jF ◦ T̂ is weakly precompact, as desired.

Corollary 5. Assume that X is a k-space. Let T : Cb(X,E) → F be a weakly
precompact operator and m be its representing measure. If Tx : Cb(X) → F is
weakly compact for each x ∈ E, then for each A ∈ Bo, mF (A) : E → F is a
weakly precompact operator.

Proof. It follows from Proposition 4 because mF (A)(x) = (jF ◦ T̂ )(1lA ⊗ x) for
A ∈ Bo, x ∈ E.

It is known that Cb(X,E)′β is equal to the closure of Cb(X,E)′τc in the Banach
space (Cb(X,E)′, ‖·‖) (see [6, Proposition 1]), and it follows that (Cb(X,E)′β, ‖·‖)
is a Banach space. Hence the weak topology in Cb(X,E)′β coincides with the weak
topology in Cb(X,E)′ restricted to Cb(X,E)′β (see [14, Chap. 3, §3, Corollary 3]).

Corollary 6. Assume that X is a k-space. Let T : Cb(X,E)→ F be a (β, ‖·‖F )-
continuous operator and m be its representing measure. If T ′ : F ′ → Cb(X,E)′β
is weakly precompact, then the following statements hold:

(i) T is strongly bounded, i.e., m̃ is continuous at ∅.
(ii) For each A ∈ Bo, mF (A) : E → F is a weakly precompact operator.
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Proof. Since T ′(BF ′) = {Φmy′ : y′ ∈ BF ′} is a weakly precompact subset of the
Banach space Cb(X,E)′β, in view of Theorem 1 {my′ : y′ ∈ BF ′} is a weakly
precompact subset of the Banach space M(X,E′). Making use of [1, Lemma 9],
[12, Lemma 12], we obtain that the set {|my′ | : y′ ∈ BF ′} is uniformly countably
additive, i.e., (i) holds. Note that T ′ : F ′ → Cb(X,E)′ is weakly precompact, and
hence T is weakly precompact (see [1, Lemma 10]). According to Corollary 5 the
condition (ii) is satisfied.

Recall that a (β, ‖ · ‖F )-continuous linear operator T : Cb(X,E) → F is said to
be completely continuous if T maps σ(Cb(X,E),M(X,E′))-Cauchy sequences in
Cb(X,E) onto norm convergent sequences in F (see [19]).

As a consequence of Corollary 6, using [19, Corollary 4.3], we obtain a related
result to [13, Corollary 11 (iv)].

Corollary 7. Assume that X is a k-space and E is a Schur space. If T :
Cb(X,E)→ F is a (β, ‖ · ‖F )-continuous operator such that T ′ : F ′ → Cb(X,E)′β
is weakly precompact, then T is completely continuous.

Recall that a (β, ‖ · ‖F )-continuous linear operator T : Cb(X,E) → F is said to
be unconditionally converging if the series

∑∞
n=1 T (fn) converges unconditionally

in F whenever
∑∞

n=1 |
∫
X fn dµ| <∞ for all µ ∈M(X,E′) (see [18, § 7]).

Corollary 8. Assume that X is a k-space. Let T : Cb(X,E) → F be a
(β, ‖ · ‖F )-continuous operator. If E′ contains no isomorphic copy of l1, then
the following statements are equivalent:

(i) T is unconditionally converging.

(ii) T is strongly bounded.

(iii) T ′ is weakly precompact.

Proof. (i)⇒(ii) See [18, Theorem 7.3].

(ii)⇒(iii) Recall that T ′ : F ′ → Cb(X,E)′β. Therefore T ′(y′) = my′ ∈M(X,E′)
for all y′ ∈ F ′. Since T ′ is bounded operator, the set {my′ : y′ ∈ BF ′} is bounded.
On the other hand, if T is strongly bounded, then {|my′ | : y′ ∈ BF ′} is uniformly
countable additive. Hence, using [12, Corollary 17] we get T ′(BF ′) = {Φmy′ :
y′ ∈ BF ′} is weakly precompact in Cb(X,E)′β.

(iii)⇒(ii) See Corollary 6.

(ii)⇒(i) It is well known that if E′ contains no isomorphic copy of l1, then E′′

contains no isomorphic copy of c0. Hence, E contains no isomorphic copy of c0
and using [18, Theorem 7.4] we get T is unconditionally converging.

Remark 9. If X is a compact Hausdorff space, then related results to Corollary
5 can be found in [13, Corollary 9], [20, Corollary 5], [21, Theorem 7].
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We will need the following version of the Borsuk-Dugundji theorem (see [19,
Theorem 3.8]).

Theorem 10. Let K be a compact subset of a paracompact space X and let H
be a separable closed subspace of the Banach space C(K,E). Then there exists
a linear isometric operator S : H → Cb(X,E) such that S(h) is an extension of
h ∈ H.

Lemma 11. Assume that X is a paracompact k-space. Let m : Bo → L(E,F )
have the regular semivariation m̃ and let λ ∈ M+(X) be a control measure for
{|my′ | : y′ ∈ BF ′}. Then the following statements hold:

(i) If (hn) is a sequence in L∞(λ,E) such that supn ‖hn‖∞ < ∞ and (hn(t))
is a σ(E,E′)-Cauchy sequence for each t ∈ X, then ((R)

∫
X hn dm) is a

σ(F, F ′)-Cauchy sequence.

(ii) If (gn) is a sequence in a Banach space L1(λ,E) such that supn ‖gn‖∞ <∞
and gn → 0 weakly in L1(λ,E), then (R)

∫
X gn dm→ 0 for σ(F, F ′).

Proof. (i) Let ε > 0 and y′o ∈ F ′ be fixed. Denote M = supn ‖hn‖∞. Then there
exists δ > 0 such that

m̃(A) = sup{|my′ |(A) : y′ ∈ BF ′} ≤ ε

6M‖y′o‖F ′
if λ(A) ≤ δ for A ∈ Bo.

Using the Luzin Type Theorem (see [5, Theorem 1.2]) for every n ∈ N there
exists Kn ∈ K such that hn|Kn is continuous and λ(X \ Kn) ≤ δ

2n . Define
the set K =

⋂∞
n=1Kn and the functions gn = hn|K for n ∈ N. Since we have

λ(X \ K) ≤ δ, then m̃(X \ K) ≤ ε
6M‖y′o‖F ′

. Let H = [gn] be the closed linear

span of (gn) in the Banach space C(K,E). By Theorem 10 we can define a linear
isometric extension operator S : H → Cb(X,E). Note that (gn(t)) is a σ(E,E′)-
Cauchy sequence for each t ∈ K. Hence (gn) is weakly Cauchy in C(K,E) (see
[2, Lemma 3.2]). Since S is (‖ · ‖, β)-continuous, the sequence (S(gn)) is weakly
Cauchy in (Cb(X,E), β). It follows that, there exists no ∈ N such that for every
n,m ∈ N with n,m ≥ no, we get∣∣∣y′o((R)

∫
X

(S(gn)− S(gm)) dm
)∣∣∣ =

∣∣∣ ∫
X

(S(gn)− S(gm)) dmy′o

∣∣∣ ≤ ε

3
.

Therefore, ∣∣∣y′o((R)

∫
X
hn dm− (R)

∫
X
hm dm

)∣∣∣
≤
∣∣∣y′o((R)

∫
X
hn dm− (R)

∫
X
S(gn) dm

)∣∣∣
+
ε

3
+
∣∣∣y′o((R)

∫
X
S(gm) dm− (R)

∫
X
hm dm

)∣∣∣
≤ 4‖y′o‖F ′ sup

n
‖hn‖∞m̃(X \K) +

ε

3
≤ ε.
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Hence ((R)
∫
X hn dm) is a σ(F, F ′)-Cauchy sequence.

(ii) See [13, Theorem 1 (i)].

Now we can state our main result.

Theorem 12. Assume that X is a paracompact k-space. If E contains no iso-
morphic copy of l1, then every strongly bounded operator T : Cb(X,E) → F is
weakly precompact.

Proof. Since T is strongly bounded operator, in view of Theorem 3, for each
f ∈ Cb(X,E) we have

T (f) = (R)

∫
X
f dmF =

∫
X
f dmF ,

where mF has the regular semivariation. Let λ ∈ M+(X) be a control measure
for {|my′ | : y′ ∈ BF ′}. Assume that (fn) is a sequence in Cb(X,E) such that
supn ‖fn‖ = M <∞. Then fn ∈ L∞(λ,E) ⊂ L1(λ,E) for each n ∈ N. Moreover,
{fn : n ∈ N} is a uniformly integrable subset of a Banach space L1(λ,E) because

sup
n

∥∥∥∫
A
fn dλ

∥∥∥
E
≤ sup

n

∫
A
‖fn(t)‖E dλ ≤Mλ(A) for A ∈ Bo.

Hence {fn : n ∈ N} is a weakly precompact subset of L1(λ,E) (see [4]). Without
loss of generality, we can suppose that (fn) is a weakly Cauchy sequence in
L1(λ,E). Using [23, Theorem 11], for each n ∈ N we get

fn = gn + hn λ− a.e.,

where gn → 0 weakly in L1(λ,E) and (hn(t)) is a σ(E,E′)-Cauchy sequence for
each t ∈ X. Moreover, from the proof of [23, Theorem 11] it follows that (gn)
and (hn) are uniformly bounded. Then by Theorem 3,

T (fn) = (R)

∫
X
fn dmF = (R)

∫
X
gn dmF + (R)

∫
X
hn dmF .

Hence, by Lemma 11, ( (R)
∫
X fn dm ) is a σ(F, F ′)-Cauchy sequence and it fol-

lows that T is weakly precompact.

Remark 13. ForX being a compact Hausdorff space, a related result to Theorem
12 can be found in [13, Corollary 2].

It is well known that if E has the separable dual E′, then E′ has the RNP and it
follows that E has no isomorphic copy of l1.
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Corollary 14. Assume that X is a paracompact k-space. If E′ is separable, then
every strongly bounded operator T : Cb(X,E)→ F is weakly precompact.

As a consequence of Theorem 12 and [18, Corollary 4.5], we get:

Corollary 15. Assume that X is a paracompact k-space. If E contains no iso-
morphic copy of l1 and F contains no isomorphic copy of c0, then every (β, ‖·‖F )-
continuous operator T : Cb(X,E)→ F is weakly precompact.
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