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1. INTRODUCTION

We shall denote by X a separable Banach space and by €, := C([—0,0], X),
with o > 0, the Banach space of continuous functions from [—, 0] into X,
endowed with the norm |||, := sup{||¢(s)|;s € [~o,0]}. For any function
u:[r—o0,T] - X and any ¢ € [r,T]| we shall denote by u; the function
defined as follows:

U [—0,0] = X, u(s) = u(t + s),

for every s € [—0,0]. Clearly, if u is continuous, then u; € €, for every
te[r,T].

Let K be a given locally closed subset in X and let Xy be the following
subset of C,:

Ko :={p € Csr;¢(0) € K}.

We recall that a subset K C X is locally closed if for each £ € K there exists
r > 0 such that K N B(,r) is closed in X, where, as usual, B(,r) denotes
the closed ball with center £ and radius r.

We consider the following functional differential inclusion

(1.1) u'(t) € Au(t) + F(t,uy), t€ [a,b),

where F : [a,b) x C, — 2% is a multifunction with nonempty and closed
values and A : D(A) € X — X is the infinitesimal generator of the Cp-
semigroup S(t) : X — X, t > 0, and we are interested in finding sufficient
conditions in order that K be a viable domain for (1.1), i.e. for each (7,¢) €
[a,b) x Ko there exists at least one solution u : [t — 0,T] — K of (1.1)
satisfying the initial condition

(1.2) Ur = Q.
By a solution to the problem (1.1) and (1.2) we mean a continuous function

u : [r—0,T] — X for which there exists f € L!([r,T], X) with f(t) € F (¢, u;)
a.e. on [7,T] and such that

p(t—r7) fort € [t —o,71),

1.3 ult) =
(1.3) (t) S(t — 1) /St—S (s)ds for t € [, T].
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The existence of solutions for functional differential equations governed or
not by linear and nonlinear operators in Banach spaces has been studied
extensively in many papers (see, for example, [4, 9, 10, 15, 22, 23, 26, 28)]).

The first viability results for (1.1) in the case A = 0 and F' single
valued have been proved in the papers [20] and [19]. The case when A = 0,
X is a finite dimensional space and F is upper semicontinuous and with
convex compact values has been studied by Haddad ([13, 14]). Haddad’s
result has been extended by Syam [25] and Gavioli and Malaguti [11] to the
infinite dimensional setting. For results, references and applications in this
framework we refer to the monographs: [1, 8, 12, 17, 18] and [24]. The case
when A is the infinitesimal generator of Cy-semigroup and F' is a continuous
single-valued function has been studied by Iacob and Pavel [16].

There are many methods and techniques in the viability theory, but,
generally speaking, the viability criteria fall into two classes: those in which
the conditions are given in terms of a classical tangent cone (or Bouligand
or Dini or contingent cone) and those in which a proximal normal cone is
used. We shall use a tangency condition of the same kind as in [16], accord-
ingly adapted. Also, the construction method for a sequence of approximate
solutions to (1.1), defined on an apriori given interval, is closed to the one
used by Carja and Vrabie [7] and the convergence method is the same that
we have used [21].

2. PRELIMINARIES AND THE MAIN RESULT

We assume that the reader is familiar with the basic concepts and results
concerning Cp-semigroups, we refer to Vrabie [27] for details.

Let the Banach space X be endowed, with the o-field B(X) of Borel
subsets and let J = [a,b) be endowed with the Lebesgue measure and the
o-field L£(J) of Lebesgue measurable subsets.

For nonempty subsets A, B of X and a € A, we denote

d(a, B) = inf{lla — bll;b € B}, d(A, B) = sup{d(a, B);a € A},

and by
dpp(A, B) = max{d(A, B),d(B, A)}

we denote the Hausdorff-Pompeiu distance between A and B.
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Let us introduce the following hypotheses which we shall use throughout
this paper.

(Hp) X is a separable Banach space, A : D(A) C X — X is the infinitesimal
generator of the Cp-semigroup {S(t);t > 0}, K is a locally closed
subset in X and F : J x Ky — 2% is a multifunction with nonempty
and closed values;

(Hy) For each (7,¢) € J x Kq there exist p > 0, r > 0 and an integrable
function y € LY([r, 7 + p],Ry) such that

(2.1) sup{|F'(t,¥); ¢ € Ko x By (¢,7)} < x(t)

a.e on [1, T + p|, where |F(t, )| := sup{||y||;y € F(t,¢)} and

BU((Pvr) = {¢ € ea; ||¢ - (10”0 < 7”};

(H3) For each (7, ) € Jx Kq there exist p > 0, r > 0, u € L*([r,7+p], Ry)
and a negligible subset Z C [, 7 4 p|] such that

(2.2) dup(F(t,¢1), F(t, ¢2)) < p(t)lle1 = @2lo

for every t € [1,7 4+ p]\Z and every ¢1, p2 € Ko X By(p,1);
(H3) For each ¢ € Ko the multifunction F(-, ) : J — 2% is measurable;
(Hy) For every (7,¢) € J x Ky the following tangential condition holds:

T+h
lirlrlll%nf;d(S(h)tp(O) + / S(t+h—3)F(s,¢)ds, K) = 0.

Here the integral is in the sense of Aumann [2].

We are now ready to state the main result of this paper.

Theorem 2.1. If the assumptions (Hy)—(Hy4) are satisfied, then K is a
viable domain for (1.1).

In order to prove our theorem we need the following technical result, con-
cerning a measurable multifunction in Banach spaces, established by
Q.I. Zhu [29)].
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Theorem 2.2. Let X be a separable Banach space, ¥ : [a,b) — X a mea-
surable function and G(-) : [a,b) — 2% a measurable multifunction with
nonempty and closed values. Then for any positive measurable function
v:la,b) — Ry there exists a measurable selection g(-) € G(-) such that

lg(t) = (@)l < d((t), G(t) + (1)
a.e. on [a,b).

In what follows, we recall a general principle on ordered sets due to Brézis
and Browder [3]. It will be used in the next section in order to obtain some
"maximal” elements in an ordered set.

Theorem 2.3. Let < be a given preorder on the nonempty set M and let
S§: M — RU{+00} be an increasing function. Suppose that each increasing
sequence in M is majorated in M. Then, for each & € M, there exists
&€ M with & < € such that € < € implies 8§(£) = 8(§).

In the paper by Brézis and Browder [3], the function § is supposed to be
finite and bounded from above, but, as remarked in [6], this restriction can
be removed by replacing the function 8§ by £ — arctan §(§).

Finally, let u be a function defined on the interval J of R with values
into X. For some ¢ > 0, we denote by w(u, Jo,0) the modulus of continuity
of u on the subinterval Jg C J, defined by

w(u, Jo,0) = sup{|ju(t) — u(s)|;t,s € do, |t — s| < d}.

It is easy to see that w(u,-,d) and w(u,do,-) are increasing functions and
that u is uniformly continuous on Jo if and only if lims | w(u, Jo,d) = 0.

3. PROOF OF THE MAIN RESULT

We shall show that the tangential condition (Hy4) along with Brézis-Browder
Ordering Principle, i.e. Theorem 2.3 above, imply that for each initial point
(1,¢) € I x Ky, there exist T' € (7,b) and one sequence u" : [7 —0,T] — X
of "approximate solutions” of (1.1) such that (u"), converges uniformly to
a solution u : [T — 0,T] — K of (1.1) satisfying (1.2).

We assume that the hypotheses (Hy)—(Hy) are satisfied and we begin
by fixing an arbitrary initial data (7, p) € Jx Ky. Since the hypotheses (H)
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and (Hs) have a locall character and K is locally closed we can choose r > 0,
p € (0,b—7), x and p in L' ([r, 7+ p], Ry ) such that K N B(p(0),r) is closed
in X and the relations (2.1) and (2.2) are satisfied on [, 7 + p| X B (p,r).
We emphasize that this choice of 7, p, x and p will be kept unmodified until
the end of this proof.

Remark 3.1. The following statements hold:

(i) If o € Ko N By(, 1) then a(0) € K N B(p(0),r),
(ii) If KN B(¢(0),r) is closed in X then Ko N By (e, ) is closed in Cj.

Indeed, the first statement is obvious. For the second, let us assume that
KNB((0),r) is closed and let us consider a sequence (o, )y, in KoN By (¢, r)
that is convergent (in the norm || - ||,) to o € C,. It readily follows that
a € By(p,r), an(0) — a(0) and a,(0) € K N B(p(0),r), therefore, since
KnNB(¢(0),r) is closed, we obtain that «(0) € K and thus a € KXoNBs(p,r).

Since {S(t);t > 0} is a Cp-semigroup, there exist My > 1 and wy > 0
such that ||S(#)¢| < Moewot|[]| for every ¢ > 0 and for every £ € X. We
define

(3.1) M = Moe*or

and we have ||S(t — 7)&|| < M ||| for every ¢ € [7, T + p] and every £ € X.
We shall define the ”approximate solution” concept.

Definition 3.1. Let ¢ € (0,1), v € (1,7 + p] and v € LY([r,7 + p], X) be
arbitrarily fixed.

We shall denote by (0,3, g, f,u) a 5-tuple composed of the measurable
functions 0 : [r,v] — [r,v], B: A, = {(t,s);7 < s <t <v} — [0,v—T],
g € L>([r,v], X), f € L([r,v], X) and by the function u : [t — o,v] — X
defined by

(3.2)
p(t—r7)forte[r—o,1),

u(t) =
St—71)p /St—s ds—l—/S B(t,s))g(s)ds, t € [r,v].

The 5-tuple (0,3,9, f,u) will de called an (eg,)-approximate solution of
(1.1) and (1.2) on [T — o, v] if the following conditions are satisfied:
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(A1) wow) € Ko N Bo(p,r) for every t € [1,v);
(A2) 0<t—0(t) for every t € [T, v];

(As) B(t,s) <t—71for7<s<t<vandt— f((ts) is nonexpansive on

(s, v];
(A4) [lg@®)]| <€ ae. on [r,v];
(A5) f(t) € F(t,ugq)) ae. on [1,v];
(Ag) [If(t) = w0 < d((t), F(t, upy)) + ep(t) a.e. on [1,v];
(A7) |lug — ugp)llo < € for every t € [r,v];
(As) uy € Ko N Bo(p, 7).

Remark 3.2. We emphasize that although the function u is uniquely de-
termined by 3, g and f, for the sake of simplicity, we preferred to consider
it as a component of (6, 3,g, f,u).

Remark 3.3. Let v € (1,7 +p|, 8 : A, — [0,v — 7], g € L>=([r,v],X),
f € LY([r,v], X) be given and u : [T — o,v] — X be defined by (3.2). If 3
satisfies (As) then, using Lebesgue’s Theorem, we deduce that the function
u is continuous on the whole interval [ — o,v] and so u; € Cy, for every
telrv].

In the sequel we define the operator solution to the problem (1.1) and (1.2),
Qf : Ll([’erLX) - C([T - U’V]’X)7 by

p(t—r7) forte[r—o,1),

3.3 =
(33 (@NE 0+ [ st

S(t—71)p s)ds for t € [1,v].

We notice that u is a solution of (1.1) and (1.2) on [r — ¢, T if there exists
f € LY([r,T],X) such that w = Qf and f(t) € F(t,u;) a.e. on [r,T].

Remark 3.4. Let v € (17,7 +p|, 8 : A, — [0,v — 7], g € L>=([r,v],X),
f € LY([r,v],X) be given and u : [T — o,v] — X be defined by (3.2). If
IO < x(t) and [|g(t)|| <1 a.e. on [7,v], then we have
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Huu - UTHJ < w(@? [_07 0]7 V= T) + MO<§LI<1137THS(h)SD(O) - 90(0>H
(3.4) o

+2M /V x(s)ds +2M (v — ).

Indeed, for every t,s € [r,v] we have

[ue — uslle = sup [lug(e) — us(a)||
a€l—0o,0]

= swp [t + ) — u(s + @) < wlu[r — 0,0, ]t — 8]
a€[—o,0]

< w(u, [T -0, T]) |t - S|) +W(U, [Ta V]’ |t - SD
Since u; = ¢ we get w(u, [T — 0, 7], [t — s|) = w(e, [-0,0],|t — s|) and so

||Ut - U’SHU < w(cp, [—O’, 0]7 |t - S|> + w(u, [T7 ’/]7 ‘t - S|)

From the definition of u on |7, ] we obtain
w(u, [1,0],6) < w(@F, [1,v],0) + 2M (v — 7) |9l
and therefore we have

(3.5) llur—uslloe <wlp,[=0,0], [t=s)+w(QF, [7, V], [t=s])+2M (v=7) |g]loo,
for every t, s € [r,v]. Consequently, using the estimate

W(QF.[r. 1), 8) < M sup |S(h)p(0) — p(0)]| +2M / " (s)ds,
0<h<é T

we get (3.4).

Remark 3.5. Let us consider f € L([r,7],X), v € (r,7) and f = f|; .
Since (Qf)(t) depends only on the values of f on the interval [r,v], we
deduce that Qf = (Qf)|};,, and therefore

w(Qf,[r,v],0) = w(QFf,[r,v],8) <w(QFf,[r,7],6), for every § > 0.
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In the next lemma we show how to choose T' € (7, 7+ p| and how to construct,
for every € € (0,1) and every ¢ € L>®([r,7 + p], X), an (g, )-approximate
solution on [ — o, T.

Lemma 3.1. Assume that the hypotheses (Ho)—(Hy4) are satisfied. Then
there exists T € (7,74 p| with fTT wu(s)ds < 1/2 such that for every e € (0, 1)
and every ¢ € L*™([r,7 + p|, X) the problem (1.1) and (1.2) have at least
one (g,1)-approzimate solution on [T — o, T].

Proof. We fix T € (1,7 + p] such that

w(p, [=0,0L, T =7)+ M sup [|S(h)p(0) = ¢(0)]|

0<h<T—r
(3.6) T
+2M/ x(s)ds +2M(T — 1) <r
and
T
(3.7) / j(s)ds < 1/2.

We denote by My the set of all (g, 1)-approximate solutions (0, 3, g, f,u) on
[T —o,v] C [t — 0,T] and we begin by proving that My is a nonempty set.
Applying Theorem 2.2 to G(-) = F(-,¢) on [1,T] we obtain that there exists
a measurable selection f : [7,T] — X such that f(t) € F(t, ) a.e. on [,T]
and

1F() =@l < d(w(t), F(t, ¢)) +en(t) ae. on [7,T].

Moreover, from (H;) we obtain that ||f(¢)|| < x(t) a.e. on [r,T] and there-
fore f € L'([r,T], X). Using the tangential condition (Hy) for (7, ¢) € Ix Ko
we obtain that there exist (hy), in Ry with h, | 0 and (¢,), in X with
qn — 0 such that

T+hn
(3.8) S(hn)p(0) + / S(T+ hy — 8)f(s)ds + hngn € K,

for every n € N. We can fix ng € N such that hy,, € (0,7 —7] and ||g,, || < e.
This choice is possible because

lalﬁ)lw(% [_07 O]a 5) =0 and I(Slﬁ)lw(Qf’ [Tv T]a 5) = 0.
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For ng fixed as above, we define: vy := 7+ hy,, 0(t) := 7 for every t € [r, 1],
B(t,s) = 0 for every (t,5) € Ay, g(t) = qn, and f(t) := f(t) a.e. on
[7,1p] and we show that (0,3, g, f,u), with u defined by (3.2), is an (g,%)-
approximate solution on [1 — o, 9] C [ — 0, T.

It is easy to see that the conditions (A;)—(As) are fulfilled.

Let us verify the conditions (A7) and (Ag). Using (3.5), Remark 3.5
and our choice for h,,, we obtain that

|ur — ugpylle = llut — urlle < w(p,[~0,0],t —7)
+w(@Qf, [T, vo],t —7) +2M (g — 7)||9llc < w(ep, [—0,0], hy,)

+w(QF, [, T], hng) + 2M(T — 7)llglls < &

for every t € [r,1p9) and so (A7) is fulfilled. Furthermore, from (A4;), (A4)
and (As) we get ||f(¢)]| < x(¢) and [|g(t)|| < e < 1 ae. on [r,1] and
therefore, using (3.4) and (3.6), we have

|, — ¢lle = Hulj() —Urle <,

hence u,, € By(p,r). Since by (3.3) and (3.8) we have

T+hng _
g (0) = () = S(hng)p(0) + / ST+ hng — $)F()d5 + hgtng € K,

it follows that u,, € Ko N By(p, 7). Hence (Ag) is also satisfied and conse-

gently (0,03, g, f,u) € Mr.

Next, we shall prove that there exists at least one (e, )-approximate
solution of (1.1) and (1.2), defined on the whole interval [ — o, T]. To this
end, we shall apply Theorem 2.3 to the set My endowed with the following
preorder:

If (0%, 8%, g%, fHul) and (02,32, 92, f2,u?) are two (e,%)-approximate
solution on [T — o, '] and respectively on [t — o,1?], then we say that

(917/817917f17u1) < (927/62792af21u2)

if only if v! < Vza 0! = 02|[T,l/1]7 ﬁl = ﬁ2|[7_l,1]7 gl = 92|[T,V1}7 and fl =
f2|[7',1/1}'
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It is obvious that < is a preorder on M. Moreover, let us notice that
01, 84, g4, fLut) < (62, 82, g%, £2,u?) implies, by (3.2), that U2|[T—a,u1} =l
We define the function 8§ : My — R by

S((976797f7u)) =V,

if (6,08,9, f,u) is an (e,)-approximate solution defined on [t — o,v]. It
is clear that 8 is increasing on My. Further on, we shall show that each
increasing sequence ((6°, 3%, ¢, f*,u%))ien in Mr is majorated in Mp. We
construct a majorant as follows. We define

v* = lim v/’

1

and we have v* € (,T)]. For each i € N, we define 0*(t) = 0(t) if t € [r, /]
and 0*(v*) = v*, B*(t,s) = Bi(t,s) for every (t,s) € A,i, g*(t) = ¢'(t)
and f*(t) = fi(t) if t € [r,v%]. Since ((¢, 3%, ¢*, f*,u?))ien is an increasing
sequence in My, the functions 6%, 8%, g*, and f* are well defined. Moreover,
for every i € N we have that || fi(t)|| < x(t) and ||g(t)| < € a.e. on [r,v],
which yields

(3.9) 1F* ()] < x(t) and [lg"(#®)]| < € ae. on [r,v']

and therefore g* € L>([r,v*], X) and f* € L!([r,v*], X). It is obvious that
0* : [1,v*] — [r,v*] and thus we can consider the 5-tuple (6%, 5%, g*, f*, u*)
with the function u* defined by (3.2) . Since t — 3*(t, s) is nonexpansive on
(s,v*), in view of Remark 3.3 we infer that u* is continuous on [t — 7, v*].

Now, we show that (0%, 5% ¢*, f*,u*) € Mp. To this end, we fix an
arbitrary 7 € N and we observe that for every t € [T — o, 7] we have u*(t) =
o(t — 7) = u'(t) and for every t € [, 1] we have

t

u*(t) = S(t — 7)e(0) —i—/ S(t—s)f*(s)ds —i—/ S(B*(t,s))g*(s)ds

T

=S(t —71)p(0) + / S(t —s)fi(s)ds + / S(Bi(t,s))g (s)ds = u'(t).

Consequently, u*(t) = u'(t) for every t € [T — o,v]. Moreover, for every
t € [1,v"] and every s € [—o, 0] we have

T—0<O0t)+s5s=0(t)+s<t+s<t <,
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and

uz*(t)(s) = u* (0% (t) + 5) = u*(0'(t) + s) = ' (0'(t) + 5) = Uigi(t)(S).
Therefore
(310) UZ*(t) = Uéi(t),

for every t € [r,v!]. Taking into account the above relations, it readily
follows that (6%, 5%, g*, f*, u*) satisfies (A2)—(A7).

Let us verify the conditions (A1) and (Ag). For any ¢ € |7, v*) there exists
i € N such that t € [7,2] so, by (3.10) we get Ugs (1) = u'gi(yy € KoNBs (7).
For t = v* we have 6*(v*) = v* and Ugs () = U+ Then, by (3.9), we can
use the relation (3.4) which, together with (3.6), yields ||u}« — ¢||s < r and
thus u;*(y*) = u’. € By(p,r). By the continuity of u* we have

Uy (0) = u*(v*) = lilm u* (V') = lign u' (V).

Since u’, € Ko N By (p,r) we have that v’ (') = u',(0) € KN B(p(0),r), for
every i € N. The set K N B(¢(0),r) is closed, hence u}.(0) € K N B(p(0),r)
and therefore u;*(y*) = ul. € Ko. It follows that (6%, *, ¢*, f*,u*) € Mp. In
addition, (6%, 3%, ¢°, f*,u’) < (0%, B3*,g*, f*,u*) for each i € N and thus the
sequence ((0°, 3%, ¢°, f,u))ien is majorated in Myp. Therefore, the set Mr,
endowed with the preorder < and the function 8, satisfies the hypotheses of
Theorem 2.3.

Before using the conclusion of Theorem 2.3, we shall show that any
element (0,03, g, f,u) € My with 8§((0, 0,9, f,u)) < T is majorated in Mrp
by an element (0, 3,9, f,u) € Mp with 8((0, 05,9, f,u)) < 8((0, 5,9, f,u)).
To this aim let us consider that (0,3, g, f,u) is an (e, )-approximate so-
lution defined [ — o,v] with v € (7,T). Since u, € Ko N By(p,r) we can
apply Theorem 2.2 on [v,T] for G(-) = F(-,u,). It follows that there exists
a measurable function f : [, T] — X such that f(t) € F(t,u,) a.e. on [v,T]
and

1F () = (@)l < d(w(8), F(t, w)) +en(t) ae. on [v,T].

By (Hp) we have || f(t)|| < x(t) a.e. on [v,T] and hence f € L'([v,T], X).
Since (v, u,) € I x Ko we can apply the tangency condition (Hy) at (v, u,).
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Therefore, there exist (hy,), in Ry with h, | 0 and (g,), in X with ¢, — 0
such that

v+hn B
B1) S0+ [ 8@ b= ) F (s + it € K,
for every n € N.
We define
) f@) iftelrnv,
1) = { Ft) ifte (T
Since

limw (e, [~0,0],0) = 0 and lgfgw((,gf, [7,T],6) =0
we can fix 7 € N such that hy € (0,7 — v], ||gz|| < € and
w(p, [0, 0], i) + w(QF, [7,T), hy) + 2M(T = 7) g | < e.
Further on, we define v := v + hs, f(t) = f(t) for t € [r,v] and
= { 0(t) ifte[rv],

v if t € (v,v];

3 = { g(t) ifte[rv]

ny iftE(l/,ﬂ

B(t, s) ifr<s<t<v,
B(t,s) =< 7—v+ps) fr<s<v<t<y,
0 fr<s<t<w.

We show that (5, B, g, f,ﬁ), with @ given by (3.2), is an (g, )-approximate
solution defined on [ — o,v] C [T — 0, T]. First, we notice that 3 satisfies
(A3), g € L=([r,7],X) and f € L'([r,7], X) so, in view of Remark 3.3, it
follows that uw € C([t — o,7], X). Moreover,

u(t) = u(t) for every t € [T — o,V]
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a(t) =St —71)p /St—s )ds+/ S(B(t,s))g(s)ds

S(t—v)u /St—s ds—i—/S B(t,s))

=St —v)u,(0 /St—s (s)ds + (t — v)qz,

for every ¢ € [v,7]. Also, it is obvious that (5, B, g, J?, u) satisfies (Az)—(Ag).
Since for every t € [1,v]| we have 0(t) = 0(t) and

ﬂ’é(t) = ng(t) = Ug(y) € Ko N By (e, 1)
and for every t € (v, 7] we have
Uy = U =y € Ko N By (p,7),

we deduce that (A4;) is fulfilled.
Let us verify the conditions (A7) and (Asg). For every ¢ € [1,v] we have

[t — ugpllo = 1t — to)lle = llue — ugello < &
and for t € (v, 7], using (3.5), Remark 3.5 and our choice of h;, we obtain

||ﬁt - ag(t)HU = ||at - ’ZZVHU < w(‘ﬁa [_Uv 0]7t - 1/)
+w(@QF, 1, 7]t = v) +2M (@ = 7)llglle < w(e, [0, 0], hz)

+w(QF, [, T, hit) + 2M(T — 7)||gz|| < e

and so (Ay) is fulfilled.
By (A1), (A4) and (As) we have that ||f(¢)|| < x(¢) and [|g(¢)]| <e <1
a.e. on [7, V] and therefore we can use (3.4) which, together with (3.6), yields

5 = ¢llo = a5 — Urllo <7

and thus @5 € B, (g, ). Since, by (3.2) and (3.11), we have
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v+hy N
u5(0) = S(hy)u,(0) + / S(v+ hz —s)f(s)ds + hzq; € K,

it follows that ay; € Ko N By(p,r). Therefore, (67, 3, §,J?,ﬂ) is an (e,)-
approximate solution defined on [ — o,7]. Moreover, by construction,

we have (6, 3, g, f. w) < (6, 3. g, . @) and $((0, B, g, f, ) = v < ¥ =
$((6. 5.5, 1.1)).

Now, from Theorem 2.3 we infer that there exists (0,4, g, f,u) € Mr
such that 8((0, 8,9, f,u)) = 8((0,8,9, f,u)), for each (0,83,9, f,u) € Mr
with (eaﬁaguﬂu) < (%@757 ffv?a) It S((G,B,g,f,u)) <T thgni by~the
last step, there exists (6, 3,9, f,u) € Mg with (0,08,9, f,u) < (6,5,9, f,u)
and such that 8((0, 8, g, f, u)) < 8((0, 8,9, f, u)). We conclude that
8((0,8,9g, f,u)) =T and this completes the proof of Lemma 3.1. [

We are now prepared to complete the proof of Theorem 2.1.

Proof. Let T' € (7,7 + p] be given by Lemma 3.1 and let (g,), be a
decreasing sequence of positive real numbers such that 7 | &, < +oo and
en € (0,1) for every n € N.

Starting with one measurable selection fy(-) € F(-, ), in view of Lemma
3.1 we can define inductively the sequence ((6™, 5", g", f™, u"))nen such that
0™, 8", g", f*,u") is an (ey,, f™)-approximate solution on [r — o, T for every
n € N.

Thus, for every n € N we have

0, fort € [t —o,7],
(312) WO = @)+ / CS(87(t,))g" (5)ds, for t € (. T]
and
(B1) ugn(yy € Ko N By(p,r) for every ¢ € [1,T);
(By) 0 <t—07(t) for every t € [r,T;
(B3) 0<B"(t,s)<t—TforT<s<t<T;

(Ba) [lg" ()] < en ae. on [r,T];

(Bs) f™(t) € F(t,ugn(t)) a.e. on [1,T];
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(Bs) f(t) = O < d(f* (), F(t, ugnpy) + np(t) ae. on [7,T];
(Br) [luf — u;?n(t)lla < g, for every t € [1,T];
(Bg) ur € Ko N By(p,1).

We shall prove that (u"), converges uniformly to a function u : [t —o,T] —
X that is a solution of (1.1) and (1.2).
For this, we first show that for every n € N we have

(C1) [[f* @D < x(t) a.e. on [1,TT;

(C2) [Ju™(t) = ()@ < M(T — 7)ep, for everyt € [r,T7;

(Cs) ||ugj+11(t) — ugn(t)H(7 < 2ep, + ™t — |7, for every t € [r,T],
where || - ||z is the norm in C([r — 0, T]; X);

(Ca) 41 = ol < p@)([u™ = w7 + 3en) ae. on [r,T].

Indeed, (C1) follows from (H;) and (Bs), (C2) follows from (3.3), (3.12) and
(B4). In order to prove (C3) we observe that

™t = e = sup [l (E+5) = u(t + 5)]
—0<s<0
< sup (W) —ut ()] = W =l
T—o<v<T

and thus by (B7) we obtain that

IA

gt gy = 3 o+ 1 =l + s = gyl

1
lgisgy = uinplle < gl

Ent1 + ||U?Jrl — |y 4 £n < 28, + Ju"TE — w7

IN

for every ¢t € [1,T]. Finally, by (Ha2), (Bs) and (C3) we have
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1@ = Ol < d (10, F (gt ) ) + enn)
<dyp (F (t,ugn(t)> F (t,ugjfl(t)» +engrpu(t)

< plt) (I — S g llr + )
< pu(t) ([l = g+ 3e)

a.e. on [1,T] and hence (Cy) is also checked. Further on, for every ¢ € [, T,
by (3.6), (3.11), (C3) and (C5) we have

[u" () —ut @) < " @) = Q@)+ Q@) — (QF)(®)]

T
+1@QF) () —u" O] < M(T = 7)(ent1 + &n) +/ 1F7H(s) = 7 (s)lds

T

T
< OM(T — 7)en + M(320 + [+ — u”HT)/ u(s) ds
T

3 1
<M (2(T —7)+ 2> €n + §Hu"+1 —u"|p.

Therefore, since [|[u™T!(t) — u™(t)|| = 0 for every t € [T — o, 7], we obtain

3 1
o1 0) =@l < 0 (A7 =74 ) et =l

for every t € [T — 0, T, and thus

3 1
ot e < 0 (AT 1)+ 5 ) et Gl = i,
for every n € N. It follows that
(3.13) |u™ — ™| < M (4T —7) +3) en

for every n € N* with > "> | &, < 400 and so we deduce that (u™),, converge
uniformly to a function v : [t — 0, T] — X.
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From (Cy) and (3.13) we deduce that, for almost all ¢ € [, T], we have

LFEHE) = POl < p@) (™ = ullr + 3en)

< u(t)AM(T — 7) + 3M + 3)e,,

for every n € N*. This implies that (f™),, converge pointwise almost every-
where to a measurable function f. For any fixed t € [t — 0,T], by (Cy)
and Lebesgue’s Theorem, we obtain that lim (Qf™)(t) = (Qf)(t). Conse-
n—oo
quently, by (C3), we conclude that u(t) = (Qf)(t) for every t € [T — 0,T].
For every t € [r,T] and every n € N*, by (B7) and (C3), we have

[wn (1) = willoe < l[ugn@y = uillo + lut’ = utlle < en + lJuf — willr

and thus ug, ;) — u; in |- |lo as n — oo. In view of (B;1) and Remark 3.1 it

follows that u; € Ko N By (¢, r) and hence u(t) € K N B(¢(0),r), for every
te[r,T].
Now, let us observe that, a.e. on [, T], we have

d(f(t), F'(t, ur))

IA

1F@) = Ol +d (F (8155 ) - F(E )

IN

1) = SO + p) ugny — wello,

for every n € N*. It follows, by letting n — oo, that d(f(t), F(t,u;)) = 0
and thus, since F' has closed values, f(t) € F(t,ut) a.e on [1,T].

We have proved that u : [T — 0,T] — X is a solution of (1.1) and (1.2),
with u(t) € K for every t € [,T], and so, (7,¢) being arbitrarily fixed in
J x Ko, we have shown that K is a viable domain for (1.1). |
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