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Abstract

Let X be a completely regular Hausdorff space, E and F be Banach
spaces. Let Cb(X,E) be the space of all E-valued bounded continuous func-
tions on X, equipped with the strict topology β. We study topological
properties of the space Lβ(Cb(X,E), F ) of all (β, ‖ · ‖F )-continuous linear
operators from Cb(X,E) to F , equipped with the topology τs of simple con-
vergence. If X is a locally compact paracompact space (resp. a P-space), we
characterize τs-compact subsets of Lβ(Cb(X,E), F ) in terms of properties of
the corresponding sets of the representing operator-valued Borel measures.
It is shown that the space (Lβ(Cb(X,E), F ), τs) is sequentially complete if
X is a locally compact paracompact space.
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1. Introduction and terminology

Throughout the paper let (E, ‖ · ‖E) and (F, ‖ · ‖F ) be (real or complex) Banach
spaces, and let E′ and F ′ denote the Banach duals of E and F, respectively. By
BF ′ and BE we denote the closed unit ball in F ′ and E, respectively. By L(E,F )
we denote the space of all bounded linear operators E to F . Given a locally
convex space (Z, ξ) by (Z, ξ)′ or Z ′

ξ we denote its topological dual. We denote by
σ(Z,Z ′

ξ) the weak topology on Z with respect to a dual pair 〈Z,Z ′
ξ〉.

Assume that (X, T ) is a completely regular Hausdorff space. Let Bo stand
for the σ-algebra of Borel sets in X. By K (resp. F) we denote the family of all
compact (resp. finite) sets in X.
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Let Cb(X,E) stand for the space of all bounded continuous functions f :
X→ E. By τu we will denote the topology on Cb(X,E) of the uniform norm ‖ ·‖.

The strict topology β (denoted also by βo and βt) can be characterized as the
finest locally convex topology on Cb(X,E) which coincides with the compact-open
topology τc on τu-bounded subsets of Cb(X,E) (see [6, 9, 11, 12]). This means
that (Cb(X,E), β) is a generalized DF-space (see [15], [17, Corollary]) (equiva-
lently, β coincides with the mixed topology γ[τu, τc] in the sense of Wiweger (see
[4, 19] for more details)). Then β is weaker than τu, and β coincides with τu if
and only if X is compact (see [3, Theorem 2.3]).

By Lβ(Cb(X,E), F ) we will denote the family of all (β, ‖ · ‖F )-continuous
linear operators T : Cb(X,E) → F . The topology τs of simple convergence in
Lβ(Cb(X,E), F ) is defined by the family of seminorms {pf : f ∈ Cb(X,E)},
where pf (T ) = ‖T (f)‖F for T ∈ Lβ(Cb(X,E), F ).

In this paper we study topological properties of the space (Lβ(Cb(X,E), F ), τs).
We characterize τs-compact sets in Lβ(Cb(X,E), F ) in terms of the properties of
the corresponding sets of the representing operator-valued Borel measures when-
ever X is a locally compact paracompact space (resp. X is a P-space) (see
Theorem 3.4 below). It is shown that the space (Lβ(Cb(X,E), F ), τs) is sequen-
tially complete if X is a locally compact paracompact space (see Theorem 4.2
below).

2. Integral representation of operators on Cb(X,E)

Recall that a countably additive measure scalar measure ν on Bo is said to be a
Radon measure if its variation |ν| : Bo→ R+ is regular, i.e., for each A ∈ Bo,

|ν|(A) = sup {|ν|(K) : K ∈ K,K ⊂ A}, |ν|(A) = inf {|ν|(O) : O ∈ T , O ⊃ A}.

By M(X) we denote the space of all Radon measures.

Let M(X,E′) denote the space of all countably additive measures µ : Bo→
E′ of bounded variation (|µ|(X) < ∞) such that for each x ∈ E, µx ∈ M(X),
where µx(A) := µ(A)(x) for A ∈ Bo. Then |µ| ∈M(X) (see [10, Lemma 2.3]).

It is known that for µ ∈M(X,E′), every f ∈ Cb(X,E) is µ-integrable in the
Riemann-Stjeltjes sense (see [7, Definition 2], [14, Definition 2.2]).

The following characterization of β-continuous linear functionals on Cb(X,E)
will be of importance (see [14, § 2]).

Theorem 2.1. For a linear functional Φ on Cb(X,E) the following statements
are equivalent:

(i) Φ is β-continuous.
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(ii) There exists a unique µ ∈M(X,E′) such that

Φ(f) = Φµ(f) =

∫
X
fdµ for f ∈ Cb(X,E).

Moreover, ‖Φµ‖ = |µ|(X).

The following result will be useful (see [12, Lemma 2]).

Lemma 2.2. For a subset M of M(X,E′) the following statements are equiva-
lent:

(i) supµ∈M |µ|(X) <∞ and M is uniformly tight, that is, for each ε > 0 there
exists K ∈ K such that supµ∈M |µ|(X rK) ≤ ε.

(ii) The family {Φµ : µ ∈M} in Cb(X,E)′β is β-equicontinuous.

Let iF : F → F ′′ denote the canonical embedding, i.e., iF (y)(y′) = y′(y) for
y ∈ F , y′ ∈ F ′. Moreover, let jF : iF (F ) → F stand for the left inverse of iF ,
that is, jF ◦ iF = idF .

Assume that T : Cb(X,E) → F is a (β, ‖ · ‖F )-continuous linear operator.
Then according to [14, Theorem 3.1] there exists a unique measure mT : Bo →
L(E,F ′′) (called the representing measure of T ) such that the following state-
ments hold:

(2.1) For every y′ ∈ F ′, (mT )y′ ∈M(X,E′), where

(mT )y′(A)(x) := (mT (A)(x))(y′) for A ∈ Bo, x ∈ E.

(2.2) The mapping F ′ 3 y′ 7→ (mT )y′ ∈M(X,E′) is (σ(F ′, F ), σ(M,E′), Cb(X,E))-
continuous.

(2.3) m̃T (X) <∞ and for every ε > 0 there exists K ∈ K such that m̃T (XrK)
≤ ε (here m̃T (A) stands for the semivariation of mT on A ∈ Bo).

(2.4) ‖T‖ = m̃T (X).

(2.5) Every f ∈ Cb(X,E) is m-integrable in the Riemann-Stjeltjes sense and∫
X f dm ∈ iF (F ) (here

∫
X f dm denotes the Riemann-Stjeltjes integral)

and T (f) = jF (
∫
X f dm).

(2.6) For every y′ ∈ F ′,

y′(T (f)) =

(∫
X
f dmT

)
(y′) =

∫
X
f d(mT )y′ for f ∈ Cb(X,E).

Note that (see [5, §4, Proposition 5]),

(2.7) m̃T (A) = sup{|(mT )y′ |(A) : y′ ∈ BF ′} for A ∈ Bo.
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Let BCb(X,E) := {f ∈ Cb(X,E) : ‖f‖ ≤ 1}.

We will need the following result.

Lemma 2.3. Assume that T : Cb(X,E) → F be (β, ‖ · ‖F )-continuous linear
operator and mT is its representing measure. Then for y′ ∈ F ′ and K ∈ K, we
have:

(i) |(mT )y′ |(X rK) = sup

{∣∣∣ ∫
X
f d(mT )y′

∣∣∣ : f ∈ BCb(X,E) with f ≡ 0 on K

}
= sup {|y′(T (f))| : f ∈ BCb(X,E) with f ≡ 0 on K}

(ii) m̃T (X rK) = sup

{∥∥∥∫
X
f dmT

∥∥∥
F ′′

: f ∈ BCb(X,E) with f ≡ 0 on K

}
= sup {‖T (f)‖F : f ∈ BCb(X,E) with f ≡ 0 on K}.

Proof. (i) It follows from [14, Lemma 2.3] and (2.6).
(ii) Using (i), (2.7), (2.6) and (2.5), we get

m̃T (X rK) = sup

{∣∣∣( ∫
X
f dmT

)
(y′)
∣∣∣ : y′ ∈ BF ′ , f ∈ BCb(X,E) with f ≡ 0 on K

}
= sup

{∥∥∥∫
X
f dmT

∥∥∥
F ′′

: f ∈ BCb(X,E) with f ≡ 0 on K

}
= sup {‖T (f)‖F : f ∈ BCb(X,E) with f ≡ 0 on K}.

3. Relative compactness in (Lβ(Cb(X,E), F ), τs)

We start with the following characterization of (β, ‖ · ‖F )-equicontinuous subsets
of Lβ(Cb(X,E), F ).

Proposition 3.1. For a subset A of Lβ(Cb(X,E), F ) the following statements
are equivalent:

(i) A is (β, ‖ · ‖F )-equicontinuous.

(ii) supT∈A m̃T (X) < ∞ and for every ε > 0 there exists K ∈ K such that
supT∈A m̃T (X rK) ≤ ε.

(iii) supT∈A ‖T‖ < ∞ and for every ε > 0 there exists K ∈ K such that
supT∈A ‖

∫
X f dmT ‖F ′′ ≤ ε whenever f ∈ Cb(X,E), ‖f‖ ≤ 1 with f ≡ 0

on K.
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Proof. (i)⇒(ii) Assume that A is (β, ‖ · ‖F )-equicontinuous. This means that
the set {y′ ◦ T : T ∈ A, y′ ∈ BF ′} is β-equicontinuous in Cb(X,E)′β. Hence by
(2.6), (2.7) and Lemma 2.2, we get

sup
T∈A

m̃T (X) = sup{|(mT )y′ |(X) : T ∈ A, y′ ∈ BF ′} <∞,

and for every ε > 0 there exists K ∈ K such that

sup
T∈A

m̃T (X rK) = sup{|(mT )y′ |(X rK) : T ∈ A, y′ ∈ BF ′} ≤ ε.

(ii)⇒(i) Assume that (ii) holds. Then by Lemma 2.2 and (2.6), (2.7), we obtain
that the family {y′ ◦ T : T ∈ A, y′ ∈ BF ′} is β-equicontinuous in Cb(X,E)′β, and
it follows that A is (β, ‖ · ‖F )-equicontinuous.

(ii)⇔(iii) It follows from Lemma 2.3.

In view of [16, Theorem 2] we have the following useful result.

Theorem 3.2. Let A be a τs-compact subset of Lβ(Cb(X,E), F ). Then the
set {y′ ◦ T : T ∈ A, y′ ∈ BF ′} is a σ(Cb(X,E)′β, Cb(X,E))-compact subset of
Cb(X,E)′β.

Assume that X is a locally compact space. Then β = βτ and β is the topology
defined by Buck [2] (see [6, p. 844]).

Recall that X is a P-space if every Gδ set in X is open (see [8]). Then every
compact set in X is finite and β = βτ on Cb(X) (see [18, Theorem 2.2]) and it
follows that β = βτ on Cb(X,E).

Note that if X is a locally compact paracompact space (resp. a P-space), then
(Cb(X,E), β) is a strongly Mackey space, that is, every relatively σ(Cb(X,E)′β,
Cb(X,E))-countably compact subset of Cb(X,E)′β is β-equicontinuous (see [11,
Theorem 6.1], [12, theorem 5]).

Corollary 3.3. Assume that X is a locally compact paracompact space (resp. a
P-space). Let A be a τs-compact subset of Lβ(Cb(X,E), F ). Then A is (β, ‖·‖F )-
equicontinuous.

Proof. Since (Cb(X,E), β) is a strongly Mackey space, by Theorem 3.2 {y′ ◦ T :
T ∈ A, y′ ∈ BF ′} is a β-equicontinuous subset of Cb(X,E)′β, and it follows that
A is (β, ‖ · ‖F )-equicontinuous.



84 M. Nowak

Now we can state a characterization of τs-compact sets in Lβ(Cb(X,E), F ) in
terms of the properties of the corresponding sets of representing operator-valued
Borel measures.

Theorem 3.4. Assume that X is a locally compact paracompact space (resp. a
P-space). Then for a subset A of Lβ(Cb(X,E), F ), the following statements are
equivalent:

(i) A is relatively τs-compact.

(ii) A is (β, ‖ · ‖F )-equicontinuous and for every f ∈ Cb(X,E), the set {T (f) :
T ∈ A} is relatively compact in F .

(iii) The following statements hold:

(a) supT∈A m̃T (X) <∞ and for every ε > 0 there exists K ∈ K (resp. M ∈
F) such that supT∈A m̃T (X rK) ≤ ε (resp. supT∈A m̃T (X rM) ≤ ε).

(b) For every f ∈ Cb(X,E), the set {
∫
X f dmT : T ∈ A} is relatively

compact in F ′′.

(iv) The following statements hold:

(a) supT∈A ‖T‖ <∞ and for every ε > 0 there exists K ∈ K (resp. M ∈ F)
such that supT∈A ‖

∫
X f dmT ‖F ′′ ≤ ε whenever f ∈ Cb(X,E), ‖f‖ ≤ 1

and f ≡ 0 on K (resp. M).

(b) For every f ∈ Cb(X,E), the set {
∫
X f dmT : T ∈ A} is relatively

compact in F ′′.

Proof. (i)⇒(ii) Assume that (i) holds. Then by Corollary 3.3 the set A is (β,
‖ · ‖F )-equicontinuous. Clearly for each f ∈ Cb(X,E), the set {T (f) : T ∈ A} is
relatively compact in F .

(ii)⇒(ii) It follows from [1, Chap. 3, §3.4, Corollary 1].

(ii)⇔(iii)⇔(iv) It follows from Proposition 3.1.

4. Sequential completeness of (Lβ(Cb(X,E), F ), τs)

It is known that if X is a paracompact space, then X is metacompact and nor-
mal. It follows that if X is a locally compact paracompact space, then β = βτ
on Cb(X,E) and the space (Cb(X,E)′β, σ(Cb(X,E)′β, Cb(X,E))) is sequentially
complete (see [13, Theorem 3]).

Now we can state a Banach-Steinhaus type theorem for (β, ‖ ·‖F )-continuous
operators T : Cb(X,E)→ F .
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Theorem 4.1. Assume that X is a locally compact paracompact space. Let
Tk : Cb(X,E)→ F be a (β, ‖ · ‖F )-continuous linear operator for k ∈ N. Assume
that T (f) := limk Tk(f) exists in F for every f ∈ Cb(X,E). Then T is a (β, ‖·‖F )-
continuous linear operator and the set {Tk : k ∈ N} is (β, ‖ · ‖F )-equicontinuous.

Proof. In view of the Banach-Steinhaus theorem T : Cb(X,E)→ F is a bounded
linear operator. Then for each y′ ∈ F ′ (y′ ◦ T )(f) = lim(y′ ◦ Tk)(f) for all f ∈
Cb(X,E), where y′ ◦ Tk ∈ Cb(X,E)′β for k ∈ N and y′ ◦ T ∈ Cb(X,E)′. It follows
that (y′ ◦ Tk) is a σ(Cb(X,E)′β, Cb(X,E))-Cauchy sequence in Cb(X,E)′β. Note
that under the assumptions on X, we have that β = βτ on Cb(X,E) and hence
by [13, Theorem 3] the space (Cb(X,E)′β, σ(Cb(X,E)′β, Cb(X,E))) is sequentially
complete. Hence for each y′ ∈ F ′ there exists Φy′ ∈ Cb(X,E)′β such that Φy′(f) =
lim(y′ ◦ Tk)(f) for all f ∈ Cb(X,E). Then y′ ◦ T = Φy′ ∈ Cb(X,E)′β. Since β is a
Mackey topology, we derive that T is (β, ‖·‖F )-continuous. Thus Tk → T for Ts in
Lβ(Cb(X,E), F ), so {Tk : k ∈ N}∪{T} is a Ts-compact subset of Lβ(Cb(X,E), F ).
Hence by Corollary 3.3 the set {Tk : k ∈ N} is (β, ‖ · ‖F )-equicontinuous.

As a consequence of theorem 4.1 we get:

Corollary 4.2. Assume that X is a locally compact paracompact space. Then
the space (Lβ(Cb(X,E), F ), τs) is sequentially complete.

Proof. Let (Tk) be a τs-Cauchy sequence in Lβ(Cb(X,E), F ). Then for each
f ∈ Cb(X,E), (Tk(f)) is a Cauchy sequence in F , so T (f) := limk Tk(f) exists in
F . By Theorem 4.1 T is (β, ‖ · ‖F )-continuous and Tk → T for τs.
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