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Abstract

The aim of this paper is to present sufficient conditions for all
bounded solutions of the second order neutral differential equations
of the form

(

r(t)(x(t) − px(t − τ))′
)

′ − q(t)f(x(σ(t))) = 0

to be oscillatory and to compare some existing results.
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1. Introduction

We consider the second order neutral differential equation of the form

(1)
(

r(t)(x(t) − px(t − τ))′
)′ − q(t)f(x(σ(t))) = 0 , t ≥ t0

under the following assumptions:

(a) 0 ≤ p ≤ 1 and τ > 0 are constants;
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(b) r, q ∈ C([t0,∞); (0,∞)), R(t) =
∫ t

t0

ds
r(s) → ∞ , t → ∞;

(c) σ ∈ C([t0,∞);R), σ(t) ≤ t, σ is a nondecreasing and limt→∞ σ(t) = ∞;

(d) f ∈ C(R;R), uf(u) > 0 for u 6= 0, f is nondecreasing and

lim inf
u→0

f(u)

u
> 0.

By a solution of (1) we mean a continuous function x(t) defined on an
interval [Tx;∞), Tx ≥ t0 such that r(t)(x(t) − px(t − τ))′ is a continuously
differentiable and x(t) satisfies (1) for all sufficiently large t. We focus on
solutions of (1) which satisfy sup{|x(t)| : t ≥ T} > 0 for all T ≥ Tx. Such a
solution is said to be oscillatory if it has arbitrarily large zeros; otherwise it
said to be nonoscillatory.

The problem of oscillation of neutral differential equations has received
considerable attention in the last few years. One way to obtain conditions
for qualitative properties of solutions of neutral differential equations is to
transform known results of ordinary or delay differential equations. The pur-
pose of this paper is to present a generalization of one oscillation condition
for second order differential equations. G.S. Ladde, V. Lakshmikantham
and B.G. Zhang in [7] proved bounded oscillation criteria for second order
differential equations with a deviating argument

(2) (r(t)x′(t))′ − q(t)x(σ(t)) = 0.

Theorem A [7, Theorem 4.3.1]. Assume that (b), (c), and (d) hold. Fur-

ther assume that

(3) lim sup
t→∞

1

r(t)

∫ t

σ(t)
(s − σ(t))q(s) ds > 1.

Then bounded solutions of (2) are oscillatory.

The following example points out that assumptions of Theorem A do not
guarantee for all bounded solutions to be oscillatory. Some assumptions are
missing.
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Example 1. Consider the equation

( 1√
t
x′(t)

)′
− 1

8
√

t5
x
( t

64

)

= 0 , t ≥ 1.

It is easy to verify that the condition (3) holds but the equation has the
bounded nonoscillatory solution x(t) = 1√

t
on [1;∞).

2. Main results

Theorem 2.1. Assume that (a)–(d) hold and 0 < p < 1. Let there exist a

positive integer n such that

(4) lim sup
t→∞

∫ t

σ(t)
q(s)

(

R(s) − R(σ(t))
)

ds >
1 − p

1 − pn−1
lim sup

u→0

u

f(u)
.

Then every bounded solution of (1) is oscillatory.

Proof. Assume the converse and suppose that equation (1) possesses an
eventually positive bounded solution x(t). The case x(t) negative can by
treated similarly. Let us define

(5) z(t) = x(t) − px(t − τ).

We have (r(t)z′(t))′ > 0 for all large t, say t ≥ t0. If r(t)z′(t) > 0 eventually,
then according to (b) limt→∞ z(t) = ∞, which contradicts the boundedness
of x. Therefore, r(t)z ′(t) < 0 for t ≥ t1 ≥ t0, which implies that the function
z is decreasing. There are two possibilities for z:

(i) z(t) > 0 for t ≥ t2 ≥ t1,

(ii) z(t) < 0 for t ≥ t2.

Assume that (i) holds. The function rz ′ is increasing so that there exists
limt→∞ r(t)z′(t) = c ≤ 0. We shall show that c = 0. For the contradiction
let us assume that c < 0. Then r(t)z ′(t) ≤ c < 0 for t ≥ T , T sufficiently
large. Dividing the last inequality by r and integrating from T to ∞ we
have got, according to (b), a contradiction with the positivity of z. So
limt→∞ r(t)z′(t) = 0.
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Further, the function z is positive, decreasing. It follows that limt→∞ z(t)
= d ≥ 0. Again for the contradiction let us assume that d > 0. Then
z(t) ≥ d for t ≥ t2 and we have from (5)

x(t) = z(t) + px(t − τ) ≥ z(t) ≥ d.

Taking into account the monotonicity of the function f we obtain from
equation (1)

(r(t)z′(t))′ ≥ f(d)q(t), t ≥ t3 ≥ t2.

Multiplying this inequality by R(t)−R(t3) and integrating from t3 to t ≥ t3
we get

−(z(t) − z(t3)) ≥ r(t)z′(t)
(

R(t) − R(t3)
)

− (z(t) − z(t3))

≥ f(d)

∫ t

t3

q(s)
(

R(s) − R(t3)
)

ds.

From this inequality for t → ∞ we obtain that the integral on the right
hand side is convergent which implies

lim
t3→∞

∫ ∞

t3

q(s)
(

R(s) − R(t3)
)

ds = 0.

This is a contradiction to (4) for t3 = σ(t) and so lim
t→∞

z(t) = 0.

Using (5) we get

x(t) = z(t) + px(t − τ) = z(t) + pz(t − τ) + p2x(t − 2τ).

Repeating this procedure because of the monotonicity of z, the positivity of
x we obtain

x(t) ≥
(

n
∑

i=0

pi
)

z(t).

For simplicity let us denote k =
∑n

i=0 pi. Then in view of the monotonicity
of the function f one gets

(6) (r(t)z′(t))′ ≥ q(t)f(kz(σ(t))), t ≥ T, T -sufficiently large.
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Integration (6) from s to t ≥ s ≥ T yields

(7) −r(s)z′(s) ≥ r(t)z′(t) − r(s)z′(s) ≥
∫ t

s

q(s)f(kz(σ(s))) ds.

Dividing by r(s) and integrating it with respect to s from σ(t) to t we see
that

−z(t) + z(σ(t)) ≥
∫ t

σ(t)

1

r(s)

∫ t

s

q(u)f(kz(σ(u))) du ds

=

∫ t

σ(t)
q(u)f(kz(σ(u)))

(

R(u) − R(σ(t))
)

du.

Taking into account the monotonicity of the functions f , z, σ we obtain

(8) 0 ≥ f(kz(σ(t)))

[
∫ t

σ(t)
q(u)

(

R(u) − R(σ(t))
)

du − kz(σ(t))

f(kz(σ(t))
· 1

k

]

which contradicts the positiveness of z and (4).

In the case (ii) by (5) we have

x(t) < px(t − τ) < p2x(t − 2τ) < · · · < pnx(t − nτ)

for t ≥ t2 + nτ and we can conclude that limt→∞ x(t) = 0. It follows that
limt→∞ z(t) = 0. This is a contradiction.

Theorem 2.2. Assume that (a)–(d) hold and 0 < p < 1. Let

(9) lim sup
t→∞

∫ t

σ(t)
q(s)

(

R(s) − R(σ(t))
)

ds > (1 − p) lim sup
u→0

u

f(u)
.

Then every bounded solution of (1) is oscillatory.

Proof. Denote a = lim supt→∞

∫ t

σ(t) q(s)
(

R(s) − R(σ(t))
)

ds. Let an inte-

ger n be chosen so that a > 1−p
1−pn−1 lim supu→0

u
f(u) . Then the assertion of

Theorem 2.2 follows immediately from Theorem 2.1.

Remark 1. Theorems 2.1 and 2.2 are true also in the case p = 0.
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Remark 2. In the linear case, f(u) = u and p = 0, Theorem 2.2 gives the
sufficient condition for the oscillation of all bounded solutions of equation
(2) in the form

(10) lim sup
t→∞

∫ t

σ(t)
q(s)

(

R(s) − R(σ(t))
)

ds > 1.

It is easy to verify that for the equation from the Example 1 the condition
(10) does not hold.

Using the theory of Rieman-Stielties integral, Theorem 2.2 can be expressed
as a modification of Theorem A.

Theorem 2.3. Assume that (a)–(d) hold with 0 < p < 1 and r is an in-

creasing function. If there exists a positive integer n such that

(11) lim sup
t→∞

1

r(t)

∫ t

σ(t)
(s − σ(t))q(s) ds >

1 − p

1 − pn−1
lim sup

u→0

u

f(u)
,

then every bounded solution of (1) is oscillatory.

Proof. The proof is similar to the proof of Theorem 2.1 until (7). Inte-
grating this inequality from σ(t) to t we see that

0 ≥
∫ t

σ(t)
r(s) dz(s) +

∫ t

σ(t)
(u − σ(t))q(u)f(kz(σ(u))) du.

Using the monotonicity of the functions r, f , z, σ we obtain

0 ≥ r(t)z(t) − r(σ(t))z(σ(t))

−
∫ t

σ(t)
z(s) dr(s) +

∫ t

σ(t)
(u − σ(t))q(u)f(kz(σ(u))) du

≥ r(t)(z(t) − z(σ(t))) − z(σ(t))(r(t) − r(σ(t)))

+ f(kz(σ(t)))

∫ t

σ(t)
(u − σ(t))q(u)) du

≥ r(t)(z(t) − z(σ(t))) + f(kz(σ(t)))

∫ t

σ(t)
(u − σ(t))q(u)) du,
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or

0 ≥ z(t) − z(σ(t)) +
f(kz(σ(t)))

r(t)

∫ t

σ(t)
(u − σ(t))q(u)) du.

As it is customary, all functional inequalities are assumed to hold eventually,
that is they are satisfied for all sufficiently large t. Dividing the above
inequality by z(σ(t)) and using the monotonicity of z, σ we get

0 ≥ z(t)

z(σ(t))
+

f(kz(σ(t)))

kz(σ(t))

[

k

r(t)

∫ t

σ(t)
(u − σ(t))q(u)) du − kz(σ(t))

f(kz(σ(t)))

]

.

Because of (11) we have arrived at a contradiction.
In the case z(σ(t)) < 0 the proof of the theorem continues as the proof

of Theorem 2.1.

Analogously as Theorem 2.2 we can obtain the next theorem

Theorem 2.4. Assume that (a)–(d) hold with 0 < p < 1 and r is an in-

creasing function. Let

(12) lim sup
t→∞

1

r(t)

∫ t

σ(t)
(s − σ(t))q(s) ds > (1 − p) lim sup

u→0

u

f(u)
.

Then every bounded solution of (1) is oscillatory.

Remark 3. Theorems 2.3 and 2.4 hold for the case p = 0 also.

Remark 4. If p = 0, f(u) = u we have that equation (2) and condition
(12) are equivalent to (3) but only under an additional assumption on the
function r. So it means that Theorem 2.4 cannot be used on the equation
from the Example 1 because the function r(t) = 1√

t
is decreasing on the

interval [1;∞).

Example 2. Consider the equation

(
√

ty′(t))′ − 1

5
√

t
3 y(

√
t) = 0, t ≥ 1.

Theorem 2.4 cannot be used, because the assumption (12) fails, but by
Theorem 2.2 every bounded solution of this equation is oscillatory.
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Example 3. Consider the equation

(
√

ty′(t))′ − 1

4
√

t
y((

√
t − π)2) = 0, t ≥ π2

4
.

For this equation we can apply any of the Theorems 2.2 or 2.4. They say
that all bounded solutions are oscillatory. One such solution is y(t) = sin

√
t.

Remark 5. In the case f(u) = u and r(t) = 1 Theorem 2.4 (Theorem 2.2)
gives the result obtained in [2].

Theorem 2.5. Assume that (a)–(d) hold and p = 1. Let

(13) lim sup
t→∞

∫ t

σ(t)
q(s)

(

R(s) − R(σ(t))
)

ds > 0.

Then every bounded solution of (1) is oscillatory.

Proof. Assume that x is an eventually positive bonded solution of
equation (1). We can proceed exactly as in the proof of Theorem 2.1 to
see that there are two possibilities for z:

(i) z(t) > 0, z′(t) < 0 for t ≥ t2 ≥ t1,

(ii) z(t) < 0, z′(t) < 0 for t ≥ t2.

Assume that (i) holds. Denote a = lim supt→∞

∫ t

σ(t) q(s)
(

R(s)−R(σ(t))
)

ds.

Let an integer n be chosen so that

(14) a >
1

n
lim sup

u→0

u

f(u)
> 0.

Analogously as in the proof of Theorem 2.1 we are led to (8) with constant
k = n, which contradicts (14).

In the case (ii) we have limt→∞ z(t) = −α, where α > 0 is a finite
number. So there exists t3 ≥ t2 such that −α < z(t) < −α

2 , t ≥ t3. Thus

−α < x(t) − x(t − τ) < −α

2
, t ≥ t3.

Consequently,

x(t) < −α

2
+ x(t − τ) < 2

α

2
+ x(t − 2τ) < · · · < −n

α

2
+ x(t − nτ)
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for t ≥ t3 + nτ . Choose a sequence {tn} such that tn = t3 + nτ . Then

x(t3 + nτ) < −n
α

2
+ x(t3)

and therefore limt→∞ x(tn) = −∞. This is a contradiction to the bounded-
ness of x.

Combining our previous results we have

Corollary 2.1. Assume that (a)–(d) hold and 0 ≤ p ≤ 1. Further assume

that

lim sup
t→∞

∫ t

σ(t)
q(s)

(

R(s) − R(σ(t))
)

ds > (1 − p) lim sup
u→0

u

f(u)
.

Then every bounded solution of (1) is oscillatory.

Corollary 2.2. Assume that (a)–(d) hold with 0 ≤ p ≤ 1 and r is an

increasing function. Let

lim sup
t→∞

1

r(t)

∫ t

σ(t)
(s − σ(t))q(s) ds > (1 − p) lim sup

u→0

u

f(u)
.

Then every bounded solution of (1) is oscillatory.
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