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Abstract

We investigate velocity hodograph inclusions for the case of right-
hand sides satisfying upper Carathéodory conditions. As an applica-
tion we obtain an existence theorem for a boundary value problem for
second-order differential inclusions on complete Riemannian manifolds
with Carathéodory right-hand sides.
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The velocity hodograph equation is a special integral equation in a tangent
space Tm0M to a Riemannian manifold M that can be constructed from a
second order differential equation on M so that the solutions of the equations
on M , starting at m0, are simply represented via the solutions of the velocity
hodograph equation. Thus the velocity hodograph is a powerful tool for
reducing equations on manifolds to equations in a single linear space.
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This sort of equations was suggested in [4] and applied to the investiga-
tion of a boundary-value problem for second order differential equations
on Riemannian manifolds. In [3] the construction was generalized to the
case of second order differential inclusions with bounded upper semicontin-
uous right-hand sides on complete Riemannian manifolds and applied to a
boundary value problem for mechanical systems with discontinuous forces
on nonlinear configuration spaces. There the hodograph equation was re-
placed by the corresponding inclusion that we call the velocity hodograph
inclusion. A detailed description can be found in [5].

Independently the same sort of inclusion was considered in [7] for a
particular case of the Euclidean space but with a more general sort of right-
hand sides that might not be jointly upper semicontinuous but satisfied
upper Carathéodory conditions.

In this paper we present a generalization of both [3] and [7]: we deal with
the velocity hodograph inclusions on complete Riemannian manifolds and
with right-hand sides satisfying upper Carathéodory conditions. We describe
all constructions within the proof of an existence theorem for solutions of the
boundary value problem for second order differential inclusions with upper
Carathéodory conditions on complete Reimennian manifolds. They have the
physical meaning of equations of motion for complicated mechanical systems
on nonlinear configuration spaces. Notice that for such spaces the boundary
value problem may not be solvable even in the case of single-valued smooth
bounded right-hand sides if the points are conjugate along all geodesic curves
that join them. For non-conjugate points the solution may not exist on large
time intervals (see details in [5]).

Basic facts from the theory of set-valued maps can be found in [2] and
[6] and from geometry of manifolds – in [1].

Let I ⊂ R be an interval and M be a complete Riemannian manifold.
Denote by TM the tangent bundle of M and by TmM the tangent space at
m ∈ M . Consider m0 ∈ M and let v : I → Tm0M be a continuous curve.

Theorem 1 (see, e.g., [5]). There exists a unique C1-curve γ : I → M
such that γ(0) = m0 and the vector γ̇(t) is parallel along γ(·) to the vector
v(t) ∈ Tm0M for every t ∈ I.

Indeed, the curve γ is represented as γ(t) = δ−1(
∫ t
0 v(τ)dτ), where δ is

Cartan’s development (see, e.g., [1]) and δ−1 is its inverse map developing
C1-curves from Tm0M to M .
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In what follows we denote by Sv(·) the curve γ(·) as above constructed
from v(·).

Remark 2. Notice that if M is an Euclidian space, Sv(t) =
∫ t
0 v(τ)dτ +m0.

Consider the Banach space C0(I, Tm0M) of continuous maps from I to
Tm0M and the Banach manifold C1(I, M) of C1-smooth maps from I to M .
It follows from Theorem 1 that the operator

S : C0(I, Tm0M) → C1(I, M)

is well posed.
It is shown, e.g., in [5] that S is a homeomorphism between C0(I, Tm0M)

and its image C1
m0

(I, M) in C1(I, M), where the manifold C1
m0

(I, M) con-
sists of all C1-curves γ with γ(0) = m0.

Lemma 3 (see, e.g., [5]). Let a point m1 ∈ M be not conjugate to m0 along
some geodesic of the Levi-Civitá connection on M. Then for any geodesic
a(t), (a(0) = m0, a(1) = m1), along which m0 and m1 are not conju-
gate, and for any number k > 0 there exists a number L̄(m0,m1, k, a) > 0
such that for 0 < t1 < L̄(m0, m1, k, a) and for any curve u(t) ∈ Uk ⊂
C0([0, t1], Tm0M) (where Uk is the ball of radius k centered at the origin), in
a certain bounded neighbourhood of the vector t−1

1 ȧ(0) ∈ Tm0M there exists
a unique vector Cu ∈ Tm0M , continuously depending on u, for which the
equality S(u + Cu)(t1) = m1 holds.

Consider a single-valued force field α(t,m,X) on M , i.e., a vector field such
that at any m ∈ M the tangent vector α(t,m, X) depends on parameters
t ∈ I and X ∈ TmM . For a differentiable curve m(t) on M the vector
α(t,m(t), ṁ(t)) has the mechanical sense of force acting on the test particle
at the time instant t, point m(t) of configuration space M and velocity
value ṁ(t).

Let m(t), where t ∈ I and m(0) = m0, be a C1-curve in M . Denote
by Γα(t,m(t), ṁ(t)) the curve in Tm0M obtained by parallel translation of
vectors α(t,m(t), ṁ(t)) along m(·) to the point m0 for all t ∈ I.

Remark 4. Note that the parallel translation operator Γ turns into the
identity mapping in an Euclidian space, i.e., if M is an Euclidian space,
then Γα(t,m(t), ṁ(t)) = α(t,m(t), ṁ(t)).
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Specify a vector C in Tm0M and consider the integral equation

m(t) = S

(∫ t

0
Γα(τ,m(τ), ṁ(τ)))dτ + C

)
(1)

on I = [0, l]. It is shown, e.g., in [5] that (1) is the integral form of the
second Newton’s law, that is, its solution is a solution of the equation
D
dtṁ(t) = α(t,m(t), ṁ(t) (where D

dt is the covariant derivative of Levi-Civitá
connection) having the initial condition m(0) = m0 and ṁ(0) = C.

Let m(t), t ∈ I, satisfy the above Newton’s law, i.e., it is a solution
of (1).

Definition 5. The velocity hodograph of the trajectory m(t) is the curve
v : I → Tm0M such that v(t) is parallel to ṁ(t) along m(·) at any t ∈ I.

It is not hard to see that the velocity hodograph of a solution of (1) satisfies
the equation

v(t) =
∫ t

0
Γα

(
τ, Sv(τ),

d

dτ
Sv(τ)

)
dτ + C.(2)

It is obvious that if v is a solution of (2), then Sv is a solution of (1), i.e., it
satisfies the Newton’s law (see [5] for details).

Suppose that for all m ∈ M we have a set-valued mapping F (m) :
I × TmM → 2TmM with closed, convex and bounded images, i.e., for all
t ∈ I and X ∈ TmM a certain set F (m)(t,X) ⊂ TmM is given. This family
of maps for all t ∈ I, m ∈ M and X ∈ TmM forms the set-valued map
F : I × TM → TM that is denoted by F (t,m, X) (the pair (m,X) is a
point of the tangent bundle TM , i.e., X ∈ TmM). This map is a set-valued
vector field of special type on M that is called set-valued force field.

Consider the second order differential inclusion

D

dt
ṁ(t) ∈ F (t,m(t), ṁ(t)),(3)

where D
dt is the covariant derivative of Levi-Civitá connection on M . In-

clusion (3) is a geometrically invariant form of the second Newton’s law for
mechanical system with a set-valued force F .

Definition 6. A C1-curve m(t), such that its derivative is absolutely con-
tinuous and inclusion (3) holds for m(t) almost everywhere (a.e.), is called
a solution of inclusion (3).
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Definition 7. A set-valued force field F (t,m, X) satisfies upper Carathéodo-
ry conditions if:

(1) for every (m,X) ∈ TM the map F (·, m,X) : I → TmM is measurable,

(2) for almost all t ∈ I the map F (t, ·, ·) : TM → TM is upper semicontin-
uous.

Theorem 8. Let a point m1 ∈ M be not conjugate with the point m0 ∈
M along some geodesic a(t) of the Levi-Civitá connection and let the field
F (t,m,X) satisfy upper Carathéodory conditions and be uniformly bounded
for all t,m, X. There exists a number L(m0,m1, a) such that for any t0,
0 < t < L(m0,m1, a) inclusion (3) has a solution m(t) such that m(0) = m0

and m(t0) = m1.

Proof. We shall construct a set-valued analog of velocity hodograph and
apply it to prove the theorem.

Let the set-valued vector field F (t, m,X) be bounded by a number
C > 0. Evidently for a sufficiently small t1 > 0 the inequality t1 <
L̄(m0,m1, Ct1, a) holds, where L̄(m0, m1, Ct1, a) is the number from
Lemma 3. Define the number L(m0,m1, a) as the supremum of above t1.
Let t0 < L(m0,m1, a). Without loss of generality one can assume that
I = [0, t0].

Consider the set-valued vector field F (t, m(t), ṁ(t)) defined along the
C1-curve m(t) = S(v(t)), v ∈ C0(I, Tm0M), and apply the parallel trans-
lation along m(·) at the point m0 = m(0) to all the sets F (t,m(t), ṁ(t)).
Then for any given v(·) ∈ C0(I, Tm0M), we obtain the set-valued mapping
ΓF (t, S(v(·)), d

dtS(v(·))) : I → Tm0M

Lemma 9. The set-valued mapping

ΓF

(
t, S(v(·)), d

dt
S(v(·))

)
: C0(I, Tm0M)× I → Tm0M(4)

satisfies upper Carathéodory conditions.

Proof. The first condition – measurability on t at any v(·) specified –
follows from the fact, that the composition of measurable F and continuous
S and Γ is a measurable map.

Since F (t,m, X) is upper semicontinuous in (m,X) and the operator
S : C0(I, Tm0M) → C1(I, M) is a homeomorphism, for any t the composi-
tion F (t, S(v(t)), d

dtS(v(t))) is upper semicontinuous in v. Now the required
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statement follows from the fact that the operator Γ of parallel translation
continuously depends on a C1-curve Sv(·).
Denote by

PΓF

(
t, S(v(t)),

d

dt
S(v(t))

)
=

{
y : y(t) ∈ ΓF

(
t, S(v(t)),

d

dt
S(v(t))

)}

the set of all measurable selections of the set-valued map

ΓF

(
t, S(v(·)), d

dt
S(v(·))

)
: I → Tm0M

and consider the set of integrals with a variable upper limit of those selec-
tions, denoted by

∫
PΓF (t, S(v(t)), d

dtS(v(t)))dt. Thus we have constructed
the mapping

∫
PΓF

(
t, S(v(t)),

d

dt
S(v(t))

)
dt : C0(I, Tm0M) → C0(I, Tm0M).

Lemma 10. The mapping
∫

PΓF (t, S(v(t)), d
dtS(v(t)))dt sends bounded sets

of the space C0(I, Tm0M) into compact sets.

Proof. From lemma 3.1 of [5] and from completeness of the manifold it
follows that for any ball UK ⊂ C0(I, Tm0M) with radius K and center
at the origin the set of curves {(m(·), ṁ(·))|m ∈ SUK} lays in a compact
set of the manifold TM . Then from boundedness of F (t,m, X) it follows
that all sets F (t, m(·), ṁ(·)), m(·) ∈ SUK , are uniformly bounded. Since
the parallel translation preserves the norm of a vector, all sets of curves
ΓF (t, S(v(t)), d

dtS(v(t))) are also uniformly bounded as well as the sets of
their measurable selections PΓF (t, S(v(t)), d

dtS(v(t))). Hence, all continuous
curves

u(·) ∈ ∪v∈UK

(∫
PΓF

(
t, S(v(t)),

d

dt
S(v(t))

)
dt

)

are uniformly bounded and equicontinuous.

Lemma 11. The mapping
∫

PΓF (t, S(v(t)), d
dtS(v(t)))dt is upper semicon-

tinuous.
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Proof. Since the mapping

∫
PΓF

(
t, S(v(t)),

d

dt
S(v(t))

)
dt : C0(I, Tm0M) → C0(I, Tm0M)

satisfies upper Carathéodory conditions and is uniformly bounded and since
(by Lemma 9) it sends all bounded sets into compact ones, by statement
1.5.23 of [2] it is closed. Then by theorem 1.2.15 of [2] this mapping is upper
semicontinuous.

By the construction the following set-valued operator

Bu =
∫

PΓF

(
t, S(u(t) + Cu),

d

dt
S(u(t) + Cu)

)
dt,

where Cu is the vector from Lemma 3, is well-posed on the ball UCt0 ⊂
C0(I, Tm0M). By Lemma 3 the vector Cu is continuous in u(·) and bounded.
Hence, setting v(·) = u(·) + Cu, we obtain from Lemma 10 and Lemma 11
that B is upper semicontinuous and compact. Since the parallel translation
preserves the norm of a vector, one can easily see that B maps UCt0 into
itself and therefore it has a fixed point u0 ∈ Bu0 in UCt0 :

u0(·) ∈
∫

PΓF

(
t, S(u0(t) + Cu0),

d

dt
S(u0(t) + Cu0)

)
dt.(5)

Now we are in the position to demonstrate that m(t) = S(u0(t) + Cu0) is a
solution in question of (3), i.e., that (5) plays the role of velocity hodograph
for (3). By the construction m(0) = m0, m(t0) = m1, m(t) is a C1-curve,
ṁ(t) is absolutely continuous. Since u0 is a fixed point of B, u̇0 is a selection
of ΓF (t, S(u0+Cu0),

d
dtS(u0+Cu0)), i.e., at points t, where u̇0 exists, we have

the inclusion u̇0 ∈ ΓF (t, S(u0+Cu0),
d
dtS(u0+Cu0)). Using the properties of

covariant derivatives one can easily derive from the construction that after
parallel translation of u̇0(t) and ΓF (t, S(u0 + Cu0),

d
dtS(u0 + Cu0))dt along

m(·) to the point m(t) we obtain D
dtṁ and F (t,m(t), ṁ(t)), respectively.

Thus we get
D

dt
ṁ(t) ∈ F (t,m(t), ṁ(t)).

The theorem is proved.
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Remark 12. Taking into account remarks 2 and 4, one can easily see that
in the case of an Euclidian space inclusion (5) transforms into an inclusion
of type (2) from [7].
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