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1. Introduction

We consider an elastic thin film as a bounded open subset ω ⊂ R2 with Lipschitz
boundary. The set Ωε := ω× (− ε

2 ,
ε
2) ⊂ R3 for a small thickness ε is considered as

an elastic cylinder approximate to the film ω. A three-dimensional deformation
U : Ωε → R3 defined on the thin cylinder Ωε has the re-scaled elastic total energy
represented by the difference of the re-scaled bulk and re-scaled surface energies

(1) Eε(U) =
1

εα

∫
Ωε

W (DU)dx− 1

εβ
Qε(U),

where W : R3 × R3 → R is so-called the energy density function satisfying the
growth and coercivity conditions

(2)
1

C
(M(‖F‖)− 1) ≤W (F ) ≤ C(1 +M(‖F‖)) (∀F ∈ R3×3)

for some C > 0. Here M : R→ [0,∞) is some Orlicz convex N -function.
The purpose of this type of research is to investigate, as the thickness ε

goes to zero, the Γ-convergence limit of the sequence of these re-scaled energies
and to understand the behavior of minimizers subject to appropriate boundary
conditions.

The values of exponents α and β in the definition (1) are important. It turns
out that when α = 1, β = 0 and M(t) = |t|p (1 < p < ∞) the form of the
functional (1) leads through the use of Γ-convergence to the nonlinear membrane
theory in the reflexive Sobolev spaces W 1,p [26, 27]. It is important to note
that the papers [26, 27] by H. Le Dret and A. Raoult published in 1993-1995
contain the first precise convergence results for the re-scaled energy functionals
in the nonlinear theory of thin membranes through the use of Γ-convergence. For
the case α = 1, β = 1 and M(t) = |t|p (1 < p < ∞), one has to deal with the
additional two and three dimensional bending moment in the nonlinear membrane
theory in the reflexive Sobolev spaces W 1,p, cf. [4] and [5] published in 2004 and
2009, respectively.

Many results through the use of Γ-convergence were established for other
values of the exponents α and β in the reflexive Sobolev spaces W 1,p (see, e.g.,
[16, 31]).

We assume that M is of the non-power-growth-type and satisfies the condi-
tions ∆2 and ∇2 (that is equivalent to the reflexivity of Orlicz and Orlicz-Sobolev
spaces generated by M).

In our previous papers (see [24, 25]) we consider the case α = 1, β = 0 and the
case α = 1, β = 1 with the 2-dimensional bending moment in the Orlicz-Sobolev
space setting W 1,M .
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In Theorem 1, the effective energy functional for the thin film ω with the 3-
dimensional bending moment is obtained, by Γ-convergence and 3D-2D dimension
reduction techniques applied to the sequence of the re-scaled total energy integral
functionals of the elastic cylinders Ωε as ε → 0. In Corollary 2, the existence of
minimizers of the energy functional for the thin film is established by showing
that some sequence of re-scaled minimizers weakly converges in an appropriate
Orlicz-Sobolev space to a minimizer of the film energy functional.

In Section 5, we give the proofs of Theorem 1 and Corollary 2. For these
proofs we apply also results: for Orlicz convex functions [20, Proposition 4], for
the Orlicz-Sobolev spaces [22, Theorem 5, Theorem 7] (cf. [10]), [17, Proposition
2.1], for differentiability properties of the Orlicz-Sobolev functions [3, Lemma 3.1,
Lemma 3.2], for the sub-differential operator in Orlicz spaces [35, Lemma 1], for
quasiconvex integral functionals and quasiconvexification in the Orlicz-Sobolev
space setting [13], for the LM -version [34, Homogenization Theorem 7.1, Remark
p. 121] for the Riemann-Lebesgue Lemma.

Examples of Orlicz N -functionsM withM ∈ ∆2∩∇2 areM(t) = |t|p(log(1+
|t|))q, where p > 1 i q > 1 orM(t) = |t|p(log(1+ |t|))q1 ·(log(log(1+ |t|)))q2 , where
p > 1 i q1, q2 > 1. Many other examples of M with M ∈ ∆2 ∩ ∇2 can be
found in [23, Theorem 7.1, pp. 58–59] and [28, 29]. Furthermore, the assumption
M ∈ ∆2 ∩ ∇2 is indispensable in the regularity study of minimizers of multiple
variational integrals with the M -growth on Orlicz-Sobolev spaces (see discussions
and references for many other concrete examples in [12, 7]).

2. Some terminology and notation

>From now on, unless stated to the contrary, M : R → [0,∞) is assumed to be
a non-power-growth-type Orlicz N -function (i.e., even convex function satisfying
limt→0

M(t)
t = 0 and limt→+∞

M(t)
t = +∞).

We assume M ∈ ∆2 ∩ ∇2. Here the condition M ∈ ∆2 means that M(2t) ≤
cM(t) (t ≥ t0) for some t0 ∈ [0,∞) and c ∈ (0,∞). The condition ∆2 implies
that M(2t) ≤ a(2) + b(2)M(t) for all t ≥ 0, where b(2) ∈ (0,+∞) and a(2) ∈
[0,+∞). The condition M ∈ ∇2 means that ∃ l > 1,∃ t∗ ∈ [0,∞) such that
M(t) ≤ 1

2lM(lt) for all t ≥ t∗.
Let M∗ be the complementary (conjugate) Orlicz N -function of M defined

by M∗(τ) := sup{tτ −M(t) : t ∈ R}. It is known that the condition M ∈ ∇2 is
equivalent to the condition M∗ ∈ ∆2.

Denote by |v| the Euclidean norm of v and by (u, v) the scalar product. Given
an open bounded subset G ⊂ RN with Lipschitz (e.g., C2-smooth) boundary ∂G
equipped with the (N − 1)-dimensional Hausdorff measure HN−1. Denote by
LM (G;Rm) the Orlicz space of all (equivalent classes of) measurable functions
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u : G→ Rm equipped with the Luxemburg norm

‖u‖LM (G;Rm) := inf

{
λ > 0 :

∫
Ω
M(|u(x)|/λ)dx ≤ 1

}
.

It is known that M ∈ ∆2 ∩∇2 is equivalent to the reflexivity of LM (G;Rm).
Recall that the Orlicz-Sobolev space W 1,M (G;R3) is defined as the Banach

space of R3-valued functions u of LM (G;R3) with the Sobolev-Schwartz distribu-
tional derivative Du ∈ LM (G;R3×N ) equipped with the norm

‖u‖W 1,M (G;R3) := ‖u‖LM (G;R3) + ‖Du‖LM (G;R3×N ) <∞.

The subspace W 1,M
0 (G;R3) is defined as the closure in ‖ ·‖W 1,M (G;R3)-norm of the

set C∞0 (G;R3) of C∞-smooth R3-valued functions with compact support in G.
Since ∂G is Lipschitz and M,M∗ ∈ ∆2, by [15, Theorems 2.1, 2.3] (cf. [21]) there
exists the bounded linear trace operator

Tr : W 1,M (G;R3)→ LM (∂G;R3)

such that: (i) Tr(u) = u|∂G (∀u ∈ C∞(G)) and (ii) u ∈ W 1,M
0 (G;R3) if and only

if Tr(u) = 0. So, for the simplicity of notation we will write "u(x) = ϕ(x) on A"
for u ∈ W 1,M (G;R3) and ϕ ∈ LM (∂G;R3) and A ⊂ ∂G if Tr(u)(x) = ϕ(x) for
almost every x ∈ A. Due to this reason, we also denote by "u on A" for "Tr(u)
on A", etc.

Let (X, ‖ · ‖W 1,M (G;R3)) be normed subspace of W 1,M (G;R3). By [2, Proof of
Theorem 3.9] and [19, Proof of Lemma 2.2] for every Λ ∈ X∗ there exist elements
h0, h1, . . . , hN ∈ LM

∗
(G;R3) such that

(3) Λ(u) =

∫
G

(h0, u)dx+

N∑
i=1

∫
G

(
hi,

∂u

∂xi

)
dx (u ∈ X).

Conversely, every functional Λ defined by (3) in the case h0, h1, . . . , hN ∈
LM

∗
(G;R3), is an element of X∗.

3. Setup

Define I := (−1
2 ,

1
2), Ω := ω × I, S± := ω × {±1

2}, Γ := ∂ω × I, and for each
ε > 0, S±ε := ω×{± ε

2}, Γε := ∂ω× εI. Greek indexes will be used to distinguish
the first two components of a vector, for instance (xα) and (xα, x3), designates
(x1, x2) and (x1, x2, x3), respectively. We denote by R3×3 and R3×2 the vector
spaces of respectively 3 × 3 and 3 × 2 real-valued matrices. Given F̄ ∈ R3×2

and b ∈ R3, denote by (F̄ |b) the 3 × 3 matrix whose first two columns are those
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of F̄ and the last column is b. By the analogous way, set eα := (e1|e2) ∈ R3×2

where {e1, e2, e3} is the standard basis of R3. Set DαU := ( ∂U∂x1
| ∂U∂x2

), D3U := ∂U
∂x3

,
DU := (DαU |D3U) for an R3-valued function U . Denote by C, C̃ generic positive
constants that may vary from line to line.

Let W : R3×3 → R be a continuous function satisfying the M -growth-type
and coercivity conditions:

(4)
1

C
(M(|F |)− 1) ≤W (F ) ≤ C(1 +M(|F |))

(
∀F ∈ R3×3

)
for some C ∈ (0,∞).

Set
Ψ̃ε := {U ∈W 1,M (Ωε;R3) : U(x̃) = x̃ on Γε}.

We consider the variational integral functional J̃ε : Ψ̃ε → R, where J̃ε(U) (the
re-scaled total energy of the elastic cylinder Ωε under a deformation U : Ωε → R3)
is represented by the difference of the re-scaled bulk and re-scaled surface energies:

(5)

J̃ε(U) :=
1

ε

∫
Ωε

W (DU)dx̃− 1

ε

∫
Ωε

(fε, U)dx̃− 1

ε

∫
S+
ε

(εg+
0 + g, U)dH2

+
1

ε

∫
S−ε

(εg−0 + g, U)dH2.

Here, fε := f
(
x̃α,

x̃3
ε

)
, f ∈ LM∗(Ω;R3), g±0 , g ∈ LM

∗
(ω;R3) and H2 denotes the

2-dimensional Hausdorff measure in R3. Set

Ψ0 := {ū ∈W 1,M (ω;R3) : ū(xα) = (xα, 0) on ∂ω}.

Let J0 : Ψ0 × LM (Ω;R3)→ R be defined by

(6) J0(ū, b) :=

∫
ω
Q∞W (Dαu(xα)|b(xα, ·))dxα − P0(ū, b),

where

(7) Q∞W (F̄ , b̃) := sup
k∈N
QkW (F̄ , b̃) (F̄ ∈ R3×2, b̃ ∈ LM (I;R3))

and

(8) QkW (F̄ , b̃) := inf

{∫
Q
W (F̄ +Dαϕ|λD3ϕ)dx : λ > 0, ϕ ∈W 1,M (Q;R3),

ϕ(·, x3) is Q′ periodic L1 a.e. x3 ∈ I,
∣∣∣∣∫
Q
λD3ϕθidx−

∫
I
b̃θidx3

∣∣∣∣< 1

k
(i=1, . . . , k)

}
,
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for a fixed countable dense family {θi}i∈N ⊂ LM
∗
(I;R3) (here, we assume that

M ∈ ∆2 ∩∇2) and

P0(ū, b) :=

∫
ω
(f̄ , ū)dxα +

∫
ω
(g+

0 − g
−
0 , ū) dxα +

∫
Ω

(g, b)dx,

with f̄(xα) :=
∫
I f(xα, x3) dx3. By (see [23, p. 81]), we may choose {θi}i∈N from

L∞(I;R3). Later on, Proposition 12 shows that Q∞W and QkW are continuous.

4. The formulation of main results

Let Z be the space of membrane deformations defined by

(9) Z = {z ∈W 1,M (Ω;R3) : D3z = 0, z(x) = (xα, 0) on Γ}.

Observe that Z is canonically isomorphic to Ψ0 [30, Theorem 1.1.3/1]. Let z̄
denote the element of Ψ0 that is associated with z ∈ Z through this isomorphism:

(10) z(xα, x3) = z̄(xα) a.e.

Since we want to identify the sequence convergence with the thickness of our
domain tending to zero, for simplicity we assume this thickness parameter ε takes
its values in a sequence εn → 0.

Theorem 1. Let J̃ε be defined in (14) and J0 be defined in (6). AssumeM ∈ ∆2∩
∇2. Assume that the continuous function W : R3×3 → R satisfies the hypothesis
(4). Let {Uε} ∈ Ψ̃ε. For each ε > 0 and x̃ = (x̃α, x̃3) ∈ Ωε we associate x =
(xα, x3) :=

(
x̃α,

1
ε x̃3

)
∈ Ω and we set zε(xα, x3) := Uε(x̃α, x̃3).

Then the sequence J̃ε converges to J0 in the following sense:

(i) (lower bound) if zε ⇀ z weakly in W 1,M (Ω;R3), ‖zε‖W 1,M (Ω;R3) < +∞ and
z ∈ Z with z(xα, x3) = z̄(xα) through the isomorphism (10) and 1

εD3zε ⇀ b
weakly in LM (Ω;R3) and ‖1

εD3zε‖LM (Ω;R3) < +∞, then

lim inf
ε→0

J̃ε(Uε) ≥ J0(z̄, b);

(ii) (upper bound) for every pair (z̄, b) ∈ Ψ0×LM (Ω;R3), there exists a sequence
Uε ∈W 1,M (Ω;R3) such that zε ⇀ z weakly inW 1,M (Ω;R3), ‖zε‖W 1,M (Ω;R3) <
+∞ and z ∈ Z with z(xα, x3) = z̄(xα) through the isomorphism (10) and
1
εD3zε ⇀ b weakly in LM (Ω;R3) and ‖1

εD3zε‖LM (Ω;R3) < +∞ and

lim
ε→0

J̃ε(Uε) = J0(z̄, b).
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Consider the asymptotic behavior of Uε ∈ Ψ̃ε such that

(11) J̃ε(Uε) ≤ inf
U∈Ψ̃ε

J̃ε(U) + γ(ε),

where γ is a positive function such that γ(ε)→ 0 as ε→ 0.

Corollary 2 (The minimization problem). Assume that Uε ∈ Ψ̃ε satisfies (11).
Let the functions M , W and zε, z̄ be such as in Theorem 1. Then:

(i) the sequence
(
zε,

1
εD3zε

)
is relatively weakly compact in W 1,M (Ω;R3) ×

LM (Ω;R3);

(ii) the set Cfilm of cluster points of the sequence
(
zε,

1
εD3zε

)
in the weak topology

is a non-empty subset of Z × LM (Ω;R3);

(iii) any point (z∞, b) of Cfilm can be identified with (z̄∞, b) ∈ Ψ0 ×LM (Ω;R3) by
the 3D-2D dimension reduction isomorphism (10) and (z̄∞, b̄) is a solution
of the minimization problem

inf
ū∈Ψ0

{
J0(ū, b) : b ∈ LM (Ω;R3)

}
.

5. The Proofs of Theorem 1 and Corollary 2

We will reformulate Theorem 1 and Corollary 2 by the use of the following equiv-
alent functionals J̄∗ε and J̄∗0 (see the re-formulation in Theorem 3 and Corollary
4). Define

(12) u0,ε(x) := (xα, εx3), u0,0(x) := (xα, 0).

Notice that after the change of variables as in Theorem 1 with the association

(13) x = (xα, x3) :=

(
x̃α,

1

ε
x̃3

)
, u(xα, x3) := U(x̃α, x̃3),

and by the Fubini Theorem the re-scaled energy J̃ε(U) in (14) can be rewritten
in the equivalent form

(14)

Jε(u) =

∫
Ω
W

(
Dαu

∣∣∣1
ε
D3u

)
dx−

∫
Ω

(f, u)dx

−
∫
S+

(g+
0 , u)dH2 +

∫
S−

(g−0 , u)dH2 −
∫
ω

(
g,
u+ − u−

ε

)
dxα

=

∫
Ω
W

(
Dαu

∣∣∣1
ε
D3u

)
dx−

∫
Ω

(f, u)dx
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−
∫
S+

(g+
0 , u)dH2 +

∫
S−

(g−0 , u)dH2 −
∫
ω

(
g,

1

ε

∫
I
D3udx3

)
dxα

=

∫
Ω
W

(
Dαu

∣∣∣1
ε
D3u

)
dx−

∫
Ω

(f, u)dx

−
∫
S+

(g+
0 , u)dH2 +

∫
S−

(g−0 , u)dH2 −
∫

Ω

(
g,

1

ε
D3u

)
dx,

where u±(xα) := TrS±(u)(xα) and u is an element of

Ψε := {u ∈W 1,M (Ω;R3) : u(x) = u0,ε(x) on Γ}.

In order to individualize this new sequence 1
εD3u and since the direct con-

sideration of Jε would imply the study involving the weak topology of the Orlicz-
Sobolev spaceW 1,M (Ω;R3) which is non-metrizable on unbounded sets, then it is
needed to consider the new functional J̄ε : W 1,M (Ω;R3)×LM (Ω;R3)→ R∪{+∞}
defined by

(15) J̄ε(u, b) :=

{ ∫
ΩW (Dαu|1εD3u)dx− Pε(u)

+∞

if 1
εD3u = b

and u ∈ Ψε

otherwise,

where

Pε(u) :=

∫
Ω

(f, u)dx−
∫
S+

(g+
0 , u)dH2 +

∫
S−

(g−0 , u)dH2 +

∫
Ω

(
g,

1

ε
D3u

)
dx.

Observe that the re-scaled displacement v = u− u0,ε belongs to the set

V = W 1,M
Γ (Ω;R3) := {v ∈W 1,M (Ω;R3) : v(x) = 0 on Γ}

and

Jε(v + u0,ε) =

∫
Ω
W

(
eα +Dαv

∣∣∣e3 +
1

ε
D3v

)
dx−

∫
Ω

(f, v + u0,ε)dx

−
∫
S+

(g+
0 , v + u0,ε)dH2 +

∫
S−

(g−0 , v + u0,ε)dH2 −
∫

Ω

(
g,

1

ε
D3v + e3

)
dx.

Define J̄∗ε : W 1,M (Ω;R3)× LM (Ω;R3)→ R ∪ {+∞} by
(16)

J̄∗ε (v, b) :=

{ ∫
ΩW (eα +Dαv|1εD3v + e3)dx− Pε(v + u0,ε)

+∞

if 1
εD3v + e3 = b

and v ∈ V
otherwise .
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Let V be the space of membrane displacements defined by

(17) V = {v ∈W 1,M (Ω;R3) : D3v = 0, v(x) = 0 on Γ} ⊂ V.

Similarly as in (9)–(10), V is canonically isomorphic toW 1,M
0 (ω;R3) [30, Theorem

1.1.3/1]. Let v̄ denote the element of W 1,M
0 (ω;R3) that is associated with v ∈ V

through this isomorphism:

(18) v(xα, x3) = v̄(xα) a.e.

Analogously for v ∈ V and b ∈ LM (Ω;R3) define the functional

(19) J̄∗0 (v, b) :=

∫
ω
Q∞W (eα +Dαv̄(xα)|b(xα, ·)− e3)dxα−P0(v̄+ u0,0, b+ e3).

In this notion we have for Uε ∈ Ψ̃ε

J̃ε(Uε) = Jε(uε) = Jε(vε + u0,ε),

where uε ∈ Ψε, vε ∈ V with uε = vε + u0,ε and

J0(z̄, b) = J̄∗0 (v, b) (v ∈ V, z̄ = v̄ + u0,0 ∈ Ψ0).

Recall [9] that a sequence of functions Iε from a topological space X to R
is said to Γ-converge to I0 for the topology of X if the following conditions are
satisfied for all x ∈ X:

(20)

{
∀xε → x, I0(x) ≤ lim inf Iε(xε),

∃yε → y, Iε(yε)→ I0(y).

Theorem 3. Let J̄∗ε be defined in (16) and J̄∗0 be defined in (19). Assume
M ∈ ∆2 ∩ ∇2. Suppose that the continuous function W : R3×3 → R satisfies
the hypothesis (4). Then the sequence J̄∗ε Γ−converges to J̄∗0 in the weak topology
of W 1,M (Ω;R3)× LM (Ω;R3), as ε→ 0.

Consider the asymptotic behavior of uε ∈ Ψε such that

(21) Jε(uε) ≤ inf
u∈Ψε

Jε(u) + γ(ε),

where γ is a positive function such that γ(ε)→ 0 as ε→ 0.

Corollary 4 (The minimization problem). Assume that uε ∈ Ψε satisfies (21).
Let the functions M and W be such as in Theorem 3. Then:

(i) the sequence
(
uε,

1
εD3uε

)
is relatively weakly compact in W 1,M (Ω;R3) ×

LM (Ω;R3);
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(ii) the set Cfilm of cluster points of the sequence
(
uε,

1
εD3uε

)
in the weak topology

is a non-empty subset of Z × LM (Ω;R3);

(iii) any point (u∞, b) of Cfilm can be identified with (ū∞, b) ∈ Ψ0×LM (Ω;R3) by
the 3D-2D dimension reduction isomorphism (10) and (ū∞, b) is a solution
of the minimization problem

inf
ū∈Ψ0

{
J0(ū, b) : b ∈ LM (Ω;R3)

}
.

We start the proofs of Theorem 3 and Corollary 4, with Lemmas 5–6.
We consider the following condition (22):

∃ i(M) ∈ [1,∞),∃ c ∈ (0,∞) such that

M(at) ≤ c ai(M)M(t) (∀t ≥ 0, ∀a ≤ 1).
(22)

The condition (22) is equivalent to the condition

∃ i(M) ∈ [1,∞),∃ c ∈ (0,∞) such that
1

c
bi(M)M(s) ≤ M(bs) (∀s ≥ 0,∀b ≥ 1).

(23)

Lemma 5 is a re-formulation of a part of [20, Proposition 4] (see the explana-
tion in our previous paper [24, Lemma 4.3, pp. 592–593]).

Lemma 5. Assume the dual Orlicz N -function M∗ satisfies the condition ∆glob
2 ,

i.e., M∗(2τ) ≤ KM∗(τ) for all τ ∈ [0,∞) and for some K ∈ (0,∞). Then M
satisfies the condition (22) for some i(M) ∈ (1,∞).

Lemma 6 (compactness lemma). Let M and W be such as in Theorem 3. Let
vε ∈W 1,M (Ω;R3) and bε ∈ LM (Ω;R3) be a sequence such that

(24) sup
ε∈(0,1)

J̄∗ε (vε, bε) ≤ d < +∞.

Then there exists d̄1 > 0 and d̄2 > 0 such that:

(i)

(25) sup
ε∈(0,1)

‖vε‖W 1,M (Ω;R3) ≤ d̄1 < +∞

and

(26) sup
ε∈(0,1)

∥∥∥1

ε
D3vε

∥∥∥
LM (Ω;R3)

≤ d̄2 < +∞

and the sequence (vε,
1
εD3vε) is relatively weakly compact in W 1,M (Ω;R3)×

LM (Ω;R3);
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(ii) the set of cluster points of the sequence (vε,
1
εD3vε) in the weak topology of

W 1,M (Ω;R3)× LM (Ω;R3) is a non-empty subset of V × LM (Ω;R3).

Proof. We divide the proof into Steps 6.1–6.2, where in Step 6.2 we assume
additionally M∗ ∈ ∆glob

2 .

Step 6.1. By (24) and (16) for J̄∗ε , vε ∈ V for all ε > 0. Denote uε = vε + u0,ε.
We claim that

(27)

∫
Ω
M

(∣∣∣∣(Dαuε

∣∣∣∣D3uε
ε

)∣∣∣∣)dx ≤ C1 + C1

((
‖f‖LM∗ (Ω;R3)

+
(
‖g+

0 ‖LM∗ (S+;R3) + ‖g−0 ‖LM∗ (S−;R3)

)
‖Tr ‖L

)
‖Duε‖LM (Ω;R3×3)

)
+ C1‖g‖LM∗ (ω;R3)

∥∥∥1

ε
D3uε

∥∥∥
LM (Ω;R3)

for some C1 ∈ (0,+∞) and for all ε ∈ (0, 1). Here ‖Tr ‖L := N+ + N−, where
N+ (resp., N−) denotes the operator norm of the linear trace operator Tr :
W 1,M (Ω;R3)→ LM (S+;R3) (resp., Tr : W 1,M (Ω;R3)→ LM (S−;R3)).

For this, by the coercivity condition (4) together with (24) and Fubini Theo-
rem, we infer that

1

C

(∫
Ω
M

(∣∣∣∣(Dαuε

∣∣∣∣D3uε
ε

)∣∣∣∣)dx− |Ω|)
≤ d+

∣∣∣∣∫
Ω

(f, uε)dx

∣∣∣∣+∣∣∣∣∫
S+

(g+
0 , uε)dH

2

∣∣∣∣+∣∣∣∣∫
S−

(g−0 , uε)dH
2

∣∣∣∣+∣∣∣∣∫
Ω

(
g,

1

ε
D3uε

)
dx

∣∣∣∣ .
By the generalized Hölder inequality (see, e.g., [33, Theorems 13.13, 13.11], [23]),
we deduce that

(28)

1

C

(∫
Ω
M

(∣∣∣∣(Dαuε

∣∣∣∣D3uε
ε

)∣∣∣∣)dx−|Ω|)≤ d+ 2‖f‖LM∗ (Ω;R3)‖uε‖LM (Ω;R3)

+ 2
(
‖g+

0 ‖LM∗ (S+;R3)‖u
+
ε ‖LM (S+;R3) + ‖g−0 ‖LM∗ (S−;R3)‖u

−
ε ‖LM (S−;R3)

)
+ 2‖g‖LM∗ (ω;R3)

∥∥∥1

ε
D3uε

∥∥∥
LM (Ω;R3)

≤ d+ 2‖f‖LM∗ (Ω;R3)‖uε‖LM (Ω;R3)

+ 2
(
‖g+

0 ‖LM∗ (S+;R3) + ‖g−0 ‖LM∗ (S−;R3)

)
‖Tr ‖L

(
‖uε‖LM (Ω;R3)

+ ‖Duε‖LM (Ω;R3×3)

)
+ 2‖g‖LM∗ (ω;R3)

∥∥∥1

ε
D3uε

∥∥∥
LM (Ω;R3)

.
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By the W 1,M -generalization (see [22, Theorem 5 and 7] together with [10, Theo-
rem 3.9], [18, Lemma 4.14], [17, Proposition 2.1]) for the Poincaré-Sobolev-type
inequality (see [32, Theorem 3.6.4]), there exists C̃ ∈ (0,∞) such that

‖uε‖LM (Ω;R3) ≤ C̃
(
‖Duε‖LM (Ω;R3×3) +

∫
Γ
|uε|dH2

)
= C̃

(
‖Duε‖LM (Ω;R3×3) +

∫
Γ
|u0,ε|dH2

)
≤ C̃

(
‖Duε‖LM (Ω;R3×3) +H2(Γ) sup

x∈Ω
|x|
)
<∞ (∀ε ∈ (0, 1)).

(29)

Then (28)–(29) imply (27).

Step 6.2. By the additional assumption M∗ ∈ ∆glob
2 , we may apply Lemma 5,

and so M satisfies the condition (22) for some i(M) ∈ (1,∞).
We claim that

(30) ‖Duε‖LM (Ω;R3×3) ≤ C2 <∞ (∀ε ∈ (0, 1)),

(31) ‖uε‖LM (Ω;R3) ≤ C3 <∞ (∀ε ∈ (0, 1)),

(32)
∥∥∥1

ε
D3uε

∥∥∥
LM (Ω;R3)

≤ C4 <∞ (∀ε ∈ (0, 1)),

(33)
∫

Ω
M

(∣∣∣∣(Dαuε

∣∣∣∣D3uε
ε

)∣∣∣∣) dx ≤ C5 <∞ (∀ε ∈ (0, 1))

for some C2, C3, C4, C5.
For this, by (27) we infer that

(34)

1

1 + ‖Duε‖LM (Ω;R3×3) + ‖1
εD3uε‖LM (Ω;R3)

∫
Ω
M

(∣∣∣∣Dαuε

∣∣∣∣1εD3uε

∣∣∣∣)dx
≤ C6 <∞

for all ε ∈ (0, 1) and for some C6.
Consider the case when ‖Duε‖LM (Ω;R3×3)/2 ≥ 1>0 and ‖1

εD3uε‖LM (Ω;R3)/2 ≥

1 > 0. Since 0 <
‖Duε‖LM (Ω;R3×3)

2 < ‖Duε‖LM (Ω;R3×3) and 0 <
‖ 1
ε
D3uε‖LM (Ω;R3)

2 <
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‖1
εD3uε‖LM (Ω;R3) by the definition of the Luxemburg norm and by (22), we deduce

that

1 <

∫
Ω
M

(
|Duε|

‖Duε‖LM (Ω;R3×3)/2

)
dx

≤
(

2

‖Duε‖LM (Ω;R3×3)

)i(M) ∫
Ω
M(|Duε|)dx (∀ε ∈ (0, 1))

(35)

and

1 <

∫
Ω
M

( 1
ε |D3uε|

‖1
εD3uε‖LM (Ω;R3)/2

)
dx

≤
(

2

‖1
εD3uε‖LM (Ω;R3)

)i(M) ∫
Ω
M

(∣∣∣∣1εD3uε

∣∣∣∣)dx (∀ε ∈ (0, 1)).

(36)

Obviously ∫
Ω
M

(∣∣∣∣(Duε∣∣∣∣)dx+

∫
Ω
M

(∣∣∣∣1εD3uε

∣∣∣∣)dx
≤ 2

∫
Ω
M

(∣∣∣∣(Dαuε

∣∣∣∣1εD3uε

)∣∣∣∣)dx (∀ε ∈ (0, 1)).

(37)

Therefore, (34), (35)–(36) and (37) implies

(38) A

(
‖Duε‖LM (Ω;R3×3),

∥∥∥1

ε
D3uε

∥∥∥
LM (Ω;R3)

)
≤ C6 <∞

whenever ‖Duε‖LM (Ω;R3×3) ≥ 2 and ‖1
εD3uε‖LM (Ω;R3) ≥ 2. Here

A(s, t) :=
1

2
· si(M) + ti(M)

2i(M)(1 + s+ t)
.

Since i(M) > 1, A(s, 2) → +∞ as s → +∞ and A(2, t) → +∞ as t → +∞
and so there exists C7, C8 ∈ (0,∞) such that A(s, 2) > C6 (∀s > C7) and
A(2, t) > C6 (∀t > C8). Hence, (38) implies the claims (30) and (32), where
C2 = C4 := max{C7, C8, 2}. By (29) and (27) we deduce the claims (31) and (33).

The remaining steps of the proof are analogous to Steps 4.3–4.6 in our previous
paper [24]. The arguments of these Steps allow to consider also the general case
of M∗.
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Remind that the quasiconvex envelope Qg : Rm×n → R of a continuous
function g : Rm×n → R is defined (see, e.g., [8, Theorem 6.9]) by

Qg(E) := inf

{
1

meas(B)

∫
B
g(E +Dϕ)dx : ϕ ∈ C∞0 (B;Rm)

}
for all E ∈ Rm×n where B is the open unit ball of Rn.

We recall that a sequence wn ∈ L1(G;Rd) is said L1-equi-integrable if for
all ε > 0 there exists δ > 0 such that

∫
E |wn|dx < ε whenever E ⊂ G with

LN (E) < δ, where G ⊂ RN .
The next lemma is the direct W 1,M -generalization in the case of M ∈ ∆2 ∩

∇2 of the Fonseca-Müller-Pedregal Decomposition Lemma in the Sobolev W 1,p-
space [14].

Lemma 7 (decomposition lemma). Assume M ∈ ∆2 ∩ ∇2. Let G be an open
bounded subset of RN with Lipschitz boundary. Let wn ∈ W 1,M (G;Rd) be such
that wn ⇀ w0 weakly in W 1,M (G;Rd). Then there exists a subsequence of wn
(not relabelled) and a sequence zn ∈ W 1,M (G;Rd) such that zn ⇀ w0 weakly in
W 1,M (G;Rd), zn = w0 in a neighborhood od ∂G,

LN ({x ∈ G : wn(x) 6= zn(x), Dwn(x) 6= Dzn(x)})→ 0,

as n→ +∞, and the sequence M(|Dzn|) is L1-equi-integrable on G.

Proposition 8. Let Q∞W be defined by (7) and let W : R3×3 → R be a contin-
uous function satisfying the hypothesis (4). Then

(39) Q∞QW (F̄ |b) = Q∞W (F̄ |b),

where QW denotes the quasiconvex envelope of W .

Proof of Proposition 8 is analogous to the proof of Proposition 2.6 in [5]. It
is enough to apply W 1,M -generalization in [13, Theorem 3.1] for the Acerbi-Fusco
weak l.s.c. W 1,p-theorem [1, Theorem II.5] and Decomposition Lemma 7.

Let A(ω) be a family of all open subsets of ω. According to (15) define the
functional Eε : W 1,M (Ω;R3)× LM (Ω;R3)×A(ω)→ R ∪ {+∞} by

Eε(u, b, A) =

{ ∫
A×IW (Dαu|1εD3u)dx

+∞

if 1
εD3u = b

and u ∈ Ψε

otherwise.

Denote by E0 : Z × LM (Ω;R3)×A(ω)→ R ∪ {+∞} the Γ- lower limit (see [9])
of Eε, i.e.,
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(40) E0(u, b, A) := inf

{
lim inf
n→+∞

∫
A×I

W (Dαun|λnD3un)dx : un ⇀ u weakly in

W 1,M (A× I;R3), λnD3un ⇀ b weakly in LM (A× I;R3)

}
,

where λn := (εn)−1. Later on, we say that un → u in LMloc(A × I;R3) if for any
D ⊂⊂ A un → u in LM (D × I;R3)-norm.

Lemma 9. Let the functions M and W be such as in Theorem 3 and E0 be
defined by (40). Then for any sequence λn → +∞, there exists subsequence λnk

such that for each (u, b) ∈ Z×LM (Ω;R3), the set function E0(u, b, ·) is a trace of a
Radon measure, absolutely continuous with respect to the 2-dimensional Lebesgue
measure.

Lemma 10. Let the functions M and W be such as in Theorem 3. Let A ∈ A(ω),
L ∈ R, u ∈ Z and consider a sequences un ∈ W 1,M (A × I;R3) and λn ∈ R
such that λn → +∞, un → u in LMloc(A × I;R3)-norm, λnD3un ⇀ b weakly in
LM (A× I;R3) and

lim
n→+∞

∫
A×I

W (Dαun|λnD3un)dx = L.

Then there exists a subsequence λnk
of λn and a sequence ũk ∈W 1,M (A× I;R3)

such that ũk = u on Θk(∂A) × I for some neighborhood Θk(∂A), ũk → u in
LMloc(A× I;R3)-norm, λnD3ũk ⇀ b weakly in LM (A× I;R3) and

lim sup
k→+∞

∫
A×I

W (Dαũk|λnD3ũk)dx ≤ L.

The proofs of Lemma 9 and Lemma 10 are analogous to the proofs of Lemma
2.1 and Lemma 2.2 in [4].

Lemma 11. The infimum in (40) for E0 remains unchanged if we replace W by
its quasiconvex envelope QW .

Proof of Lemma 11 is analogous to the proof of Proposition 2.7 in [5]. It is
enough to apply W 1,M -generalization in [13, Theorem 3.1] for the Acerbi-Fusco
weak l.s.c. W 1,p-theorem [1, Theorem II.5] and the fact that embeddingW 1,M (A×
I;R3) ↪→↪→ LMloc(A × I;R3) is compact (see Donaldson-Trudinger [10, Theorem
3.9] together with Gossez [18, Proposition 4.3]).

Notice that by Proposition 8 and Lemma 11 we may assume without loss
of generality that W is quasiconvex. Therefore by the hypothesis (4), M ∈ ∆2

together with Focardi [13, Proposition 3.2] W satisfies

(41) |W (ξ1)−W (ξ2)| ≤ C(1 + h(1 + |ξ1|+ |ξ2|))|ξ1 − ξ2|
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for some C ∈ (0,+∞) and for all ξ1, ξ2 ∈ R3×3, where h denotes the right deriva-
tive of M .

Proposition 12. Assume that a quasiconvex function W : R3×3 → R satisfies the
hypothesis (4) and M ∈ ∆2 ∩∇2. Then the functions

(42) (F̄ , b) 7→ QkW (F̄ |b) ∈ R, (F̄ , b) 7→ Q∞W (F̄ |b) ∈ R

are continuous on R3×2 × LM (I;R3).

Proof. Let λ > 0 and k ∈ N be fixed and define

(43) QλkW (F̄ , b) := inf

{∫
Q
W (F̄ +Dαϕ|λD3ϕ)dx : ϕ ∈W 1,M (Q;R3), ϕ(·, x3)

is Q′ periodic L1 a.e. x3 ∈ I,
∣∣∣∣∫
Q
λD3ϕθidx−

∫
I
bθidx3

∣∣∣∣ < 1

k
(i = 1, . . . , k)

}
.

Let (F̄ , b), (F̄ ′, b′) ∈ R3×2 × LM (I;R3). For any infimizing sequence {ϕn} in the
definition of QλkW (F̄ , b) consider the sequence ψn := ϕn+

∫ x3
0 (b′(s)−b(s))ds

λ . By (4)

and by considering the function ϕ :=
∫ x3
0 b(s)ds

λ in the definition (43), we obtain
that

− 1

C
L3(Q) ≤ QλkW (F̄ , b) ≤

∫
I
W (F̄ , b)dx3.

Hence we may assume that∫
Q
W (F̄ +Dαϕn|λD3ϕn)dx ≤ QλkW (F̄ , b) + 1

≤
∫
I
W (F̄ , b)dx3 + 1.

(44)

Since
Dαψn = Dαϕn, D3ψn = D3ϕn +

b′ − b
λ

,

then∣∣∣∣∫
Q
λD3ψnθidx−

∫
I
b′θidx3

∣∣∣∣ =

∣∣∣∣∫
Q
λD3ϕnθidx−

∫
I
bθidx3

∣∣∣∣ < 1

k
(i = 1, . . . , k),

which implies, that {ψn} is admissible for the definition of QλkW (F̄ ′, b′). Observe
that

∫
QM

(
|a(x3)|
α

)
dx =

∫
IM

(
|a(x3)|
α

)
dx3 for a ∈ LM (I), and so ‖a‖LM (Q) =

‖a‖LM (I) follows. By [13, Proposition 3.2] the quasiconvex function W satisfies
(41). Thus by the Hölder inequality in LM -norm [23], we deduce that
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(45)

∣∣∣∣∫
Q
W (F̄ ′ +Dαψn|λD3ψn)dx−

∫
Q
W (F̄ +Dαϕn|λD3ϕn)dx

∣∣∣∣
≤ C

∫
Q

(1 + h(1 + |(F̄ ′ +Dαψn|λD3ψn)|+ |(F̄ +Dαϕn|λD3ϕn)|)

· |(F̄ ′ +Dαψn|λD3ψn)− (F̄ +Dαϕn|λD3ϕn)|)dx

≤ 2C‖1 + h(1 + |(F̄ ′ +Dαψn|λD3ψn)|+ |(F̄ +Dαϕn|λD3ϕn)|)‖LM∗ (Q)

· ‖|F̄ ′ − F̄ |+ |b′(·)− b(·)|‖LM (I)

= 2C‖1 + h(1 + |(F̄ ′ +Dαϕn|λD3ϕn + b′(·)− b(·))|

+ |(F̄ +Dαϕn|λD3ϕn)|)‖LM∗ (Q) · ‖|F̄
′ − F̄ |+ |b′(·)− b(·)|‖LM (I).

By the coercivity condition (4), (44) implies that

(46) sup
n

∫
Q
M(|(F̄ +Dαϕn|λD3ϕn)|)dx ≤ C2

(∫
I
W (F̄ , b)dx3 + 1

)
< +∞,

and so by using the Luxemburg norm, we obtain that

sup
n
‖M(|(F̄ +Dαϕn|λD3ϕn)|)‖LM (Q) ≤ C2

(∫
I
W (F̄ , b)dx3 + 1

)
+ 1,

(47)

‖1 + |(F̄ ′ +Dαϕn|λD3ϕn + b′(·)− b(·))|+ |(F̄ +Dαϕn|λD3ϕn)|‖LM (Q)

≤ C3

(
1 + |F̄ ′|+ |F̄ |+ ‖b′(·)‖LM (I) + ‖b(·)‖LM (I)

)
+ 2C2

(∫
I
W (F̄ , b)dx3 + 1

)
+ 2 =: C̃4(F̄ , b, F̄ ′, b′),

where C3 := ‖1‖LM (Q) + 1. By the Płuciennik-Tian-Wang lemma (see [35,
Lemma 1]) for M ∈ ∆2, there exists a function r : [0,+∞) → [0,+∞) such
that ‖z‖LM (Q) ≤ a⇒ ‖h(|z|)‖LM∗ (Q) ≤ r(a). Define

(48) rM [a] = sup
{
‖h(|z|)‖LM∗ (Q) : ‖z‖LM (Q) ≤ a

}
.

Then 0 ≤ rM [a] ≤ r(a) < +∞ and rM is nondecreasing. Hence (47) and (45)
imply that
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∣∣∣∣∫
Q
W (F̄ ′ +Dαψn|λD3ψn)dx−

∫
Q
W (F̄ +Dαϕn|λD3ϕn)dx

∣∣∣∣
≤ 2C(C5 + rM [C̃4(F̄ , b, F̄ ′, b′)]) · (|F̄ ′ − F̄ |+ ‖b′(·)− b(·)‖LM (I)) < +∞,

(49)

where C5 := ‖1‖LM∗ (Q).
By the upper bound condition (4) and M ∈ ∆2,

(50)
∫
I
W (F̄ |b(x3))dx3 ≤ C̃6(1 +M(|F̄ |)

+M(|F̄ ′|) + %M (|b|) + %M (|b′|)) < +∞

for some C̃6 ∈ (0,+∞) and for all F̄ , F̄ ′, b, b′. Here

(51) %M (|b|) :=

∫
I
M(|b(x3)|)dx3, %M (|b′|) :=

∫
I
M(|b′(x3)|)dx3.

Hence (50) and (49) and the definition of C̃4(F̄ , b, F̄ ′, b′) in (47) imply that∣∣∣∣∫
Q
W (F̄ ′ +Dαψn|λD3ψn)dx−

∫
Q
W (F̄ +Dαϕn|λD3ϕn)dx

∣∣∣∣
≤ C̃7(F̄ , b, F̄ ′, b′) · (|F̄ ′ − F̄ |+ ‖b′(·)− b(·)‖LM (I)) < +∞,

(52)

where

(53)

C̃7(F̄ , b, F̄ ′, b′)

:= 2C
(
C5 + rM [C3(1 + |F̄ ′|+ |F̄ |+ ‖b′(·)‖LM (I) + ‖b(·)‖LM (I)

)
+ 2C2

(
C̃6

(
1 +M(|F̄ |) +M(|F̄ ′|) + %M (|b|) + %M (|b′|)

)
+ 1) + 2

)
<∞.

By the definition of QλkW (F̄ ′, b′), (52) implies that

(54) QλkW (F̄ ′, b′) ≤
∫
Q
W (F̄ ′ +Dαψn|λD3ψn)dx

≤
∫
Q
W (F̄ +Dαϕn|λD3ϕn)dx+ C̃7(F̄ , b, F̄ ′, b′) · (|F̄ ′− F̄ |+‖b′(·)− b(·)‖LM (I)),

and letting n→ +∞, we infer that

(55) QλkW (F̄ ′, b′) ≤ QλkW (F̄ |b) + C̃7(F̄ , b, F̄ ′, b′) · (|F̄ ′− F̄ |+‖b′(·)− b(·)‖LM (I)).
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Using the same arguments for the pair (F̄ ′|b′) in place of (F̄ |b), we deduce that

(56) QλkW (F̄ |b) ≤ QλkW (F̄ ′|b′) + C̃7(F̄ , b, F̄ ′, b′) · (|F̄ ′− F̄ |+ ‖b′(·)− b(·)‖LM (I)).

Taking infimum over λ > 0 and then letting k → +∞ by (55) and (56) we deduce,
that

|QkW (F̄ |b)−QkW (F̄ ′|b′)|, |Q∞W (F̄ |b)−Q∞W (F̄ ′|b′)|

≤ C̃7(F̄ , b, F̄ ′, b′) · (|F̄ ′ − F̄ |+ ‖b′(·)− b(·)‖LM (I)) < +∞.
(57)

By M ∈ ∆2 and the definition of C̃7(F̄ , b, F̄ ′, b′) in (53), we deduce that (57)
implies the continuity of QkW and Q∞W on R3×2 × LM (I;R3).

Lemma 13. LetW be a quasiconvex continuous function satisfying the hypothesis
(4) and M ∈ ∆2 ∩∇2. Consider the Γ-lower limit E0 defined in (40). Then

(58) E0(u, b, A) ≥
∫
A
Q∞W (Dαu|b(xα, ·))dxα

for all (u, b, A) ∈ Z × LM (Ω;R3)×A(ω).

Proof. By Proposition 12, Q∞W (Dαu|b) and QkW (F̄ |b) are measurable non-
negative functions.

Step 13.1. Let k ∈ N, b ∈ LM (I;R3), u(xα) := F̄ xα+u0 with F̄ ∈ R3×2, u0 ∈ R3.
By Lemma 10 we may restrict ourselves, in the definition (40) to sequences having
the same trace as it’s limit. Consider the sequence

wn(x) := ϕn(x) + (F̄ xα + u0),

where ϕn ∈ W 1,M (Q;R3) is such that ϕn = 0 on ∂Q′ × I, ϕn ⇀ 0 weakly
in W 1,M (Q;R3) and λnD3ϕn ⇀ b weakly in LM (Q;R3). Then ϕn(·, x3) is Q′-
periodic. For any ψ ∈ LM∗(Q′;R3) by the Jensen inequality [23], together with
M ∈ ∆2, we infer that

(59)

∫
A
M∗

(∣∣∣∣∫
I
θi(x3)ψ(xα)dx3

∣∣∣∣) dxα ≤ ∫
A

∫
I
M∗(|θi(x3)ψ(xα)|)dx3dxα)

≤
∫
A

∫
I
M∗(‖θi(x3)‖L∞(I;R3)|ψ(xα)|)dx3dxα

≤ a
(
‖θi(x3)‖L∞(I;R3)

) ∫
A

∫
I
M∗(|ψ(xα)|)dxα

+ b
(
‖θi(x3)‖L∞(I;R3)

)
· L2(A) <∞,
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for all i ∈ N. Therefore using θi(x3)·ψ(xα) as a test function from LM
∗
(Q′×I;R3),

we deduce that ∫
Q′

(
λnD3ϕnθidx3 − b̄i

)
ψ(xα)dxα

=

∫
Q′

∫
I

(λnD3ϕn − b(s)) θiψ(xα)dxαds→ 0,

and so
∫
I λnD3ϕnθidx3 ⇀ b̄i weakly in LM (Q′;R3) for i = 1, . . . , k, where b̄i :=∫

I b(s)θids. Therefore there exists nk ∈ N such that, for n ≥ nk we have∣∣∣∣∫
Q
λnD3ϕnθidx− b̄i

∣∣∣∣ ≤ 1

k
(i = 1, . . . , k).

Thus ϕn are admissible functions for the definition of QkW and by the definition
of QkW , we have

lim inf
n→+∞

∫
Q
W (F̄ +Dαϕn|λnD3ϕn)dx ≥ QkW (F̄ |b).

By taking supremum over all k ∈ N

(60) lim inf
n→+∞

∫
Q
W (F̄ +Dαϕn|λnD3ϕn)dx ≥ Q∞W (F̄ |b).

Since {wn}n∈N is admissible for the definition of (40), we complete the proof of
(58) for the case in Step 13.1 by taking the infimum over all admissible sequences
in (60), and then we get the inequality

(61)
E0(F̄ xα + u0, b, Q

′) ≥
∫
Q′
Q∞W (F̄ |b)dxα

= L2(Q′) · Q∞W (F̄ |b) = Q∞W (F̄ |b).

We omit the general case for the proof of the inequality (58), since it is anal-
ogous to Step 2 in Proposition 3.4 [5]. It is enough to apply W 1,M -generalization
in [13, Theorem 3.1] for the Acerbi-Fusco weak l.s.c. W 1,p-theorem [1, Theorem
II.5], the fact that embedding W 1,M (A× I;R3) ↪→↪→ LMloc(A× I;R3) is compact
(see Donaldson-Trudinger [10, Theorem 3.9] together with Gossez [18, Proposition
4.3]) and differentiability properties of the Orlicz-Sobolev functions [3, Lemma 3.1,
Lemma 3.2].

Lemma 14. Under the hypothesis of Lemma 13, we have

(62) E0(u, b, A) ≤
∫
A
Q∞W (Dαu|b(xα, ·))dxα

for all (u, b, A) ∈ Z × LM (Ω;R3)×A(ω).
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Proof. By Proposition 12, Q∞W (Dαu|b) and QkW (F̄ |b) are measurable non-
negative functions.

Step 14.1. Let u(xα) := F̄ xα + u0 with F̄ ∈ R3×2, u0 ∈ R3 and b ∈ LM (I;R3).
Since QkW (F̄ |b) is nondecreasing in k, by Proposition 12

(63) QkW (F̄ |b) ∈ R, Q∞W (F̄ |b) = lim
k→∞

QkW (F̄ |b) ∈ R

By the definition of QkW (F̄ |b) there exists tk ∈ R, ϕk ∈ W 1,M (Q;R3), ϕk(·, x3)
is Q′-periodic L1 a.e. x3 ∈ I,

(64)
∣∣∣∣∫
Q
tkD3ϕ

kθidx−
∫
I
bθidx3

∣∣∣∣ < 1

k
(i = 1, . . . , k)

and

(65) QkW (F̄ |b) ≤
∫
Q
W (F̄ +Dαϕ

k|tkD3ϕ
k)dx < QkW (F̄ |b) +

1

k
.

Extending Q′-periodically of the Q′-periodic function ϕ, we define ϕkn : R2 × I →
R3 by

ϕkn(x) :=
tk
λn
ϕ

(
λn
tk
xα, x3

)
.

Observe that the function

yα 7→ tk

∫
I
D3ϕ

k(yα, x3)θi(x3)dx3

belongs to LM (A;R3), since by the Jensen inequality [23] and M ∈ ∆2, we infer
(cf. (59)) that∫
A
M

(∣∣∣∣∫
I
D3ϕ

k(yα, x3)θi(x3)dx3

∣∣∣∣)dxα ≤∫
A

∫
I
M
(∣∣∣D3ϕ

k(yα, x3)θi(x3)
∣∣∣)dx3dxα

≤ a2

(
‖θi‖L∞(I;R3)

) ∫
A

∫
I
M(|D3ϕ

k(yα, x3)|)dx3dxα

+ b2‖θi(x3)‖L∞(I;R3) · L3(A× I) < +∞

Applying the LM (Q′)-version (see Pedregal [34, Homogenization Theorem 7.1,
Remark p. 121]) for the Riemann-Lebesgue lemma in Lp(Q′)-spaces (see, e.g.,
[8]) we infer that

(66)
λn

∫
I
D3ϕ

k
nθidx3 = tk

∫
I
D3ϕ

k

(
λn
tk
xα, x3

)
θidx3

⇀ tk

∫
I

∫
Q′
D3ϕ

k(yα, x3)dyαdx3 =:

∫
I
b(s)θids+ rki , as n→ +∞
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weakly in LM (A;R3). By (64) |rki | < 1
k (i = 1, . . . , k). Define

Hk(xα, x3) :=
(
F̄ +Dαϕ

k(xα, x3)|tkD3ϕ
k(xα, x3)

)
,

W̃ k(xα) :=

∫
I
W
(
Hk(xα, x3)

)
dx3.

By the coercivity condition (4) and Hk ∈W 1,M (Q;R3),∫
Q′
W̃ k(xα)dxα =

∫
Q
W
(
Hk(xα, x3)

)
dx3dxα

≤ C2

(
1 +

∫
Q
M(|F̄ +Dαϕ

k(xα, x3)|tkD3ϕ
k(xα, x3)|)dxαdx3

)
<∞,

and so W̃ k ∈ L1(Q′;R3). Using the Riemann-Lebesgue lemma, we deduce that

lim
n→+∞

∫
A×I

W (F̄ +Dαϕ
k
n|λnD3ϕ

k
n)dx = lim

n→+∞

∫
Q′

1A(xα)W̃ k

(
λn
tk
xα

)
dxα

=

∫
Q′

1A(xα)

(∫
Q′
W̃ k(yα)dyα

)
dxα = L2(A)

∫
Q
W (F̄ +Dαϕ

k|tkD3ϕ
k)dx.

(67)

In view of the coercivity condition (4) and by the Alaoglu-Bourbarki theorem [11,
Theorem V.4.2] using the Moore lemma [11, Lemma I.7.6], by (63)–(67) we may
find a subsequence {λnk

} and {ϕknk
} such that ϕknk

⇀ 0 weakly inW 1,M (A×I;R3),
λnk

∫
I D3ϕ

k
nk
θidx3 ⇀

∫
I bθidx3 weakly in LM (A;R3) for all i ∈ N and

lim
k→+∞

∫
A×I

W (F̄ +Dαϕ
k
nk
|λnk

D3ϕ
k
nk

)dx = L2(A)Q∞W (F̄ |b).

Hence by the argument in [23, pp. 81–82] together with the Stone-Weierstrass ap-
proximation theorem and by our choice of the family {θi}i∈N for the definition (8),
we deduce that λnk

D3ϕ
k
nk
⇀ b weakly in LM (A×I;R3) as k →∞. Consequently,

E0(u, b, A) ≤ L2(A)Q∞W (F̄ |b).

Step 14.2. By Lemma 9 and Step 14.1 the inequality (62) holds for piecewise
affine functions.

Step 14.3. By Proposition 12 and Step 14.2 the inequality (62) holds for any
(u, b, A) ∈W 1,M (ω;R3)× LM (Ω;R3)×A(ω).
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Proof of Theorem 3. Let uε ∈ Ψε be such that uε ⇀ ū weakly inW 1,M (Ω;R3),
1
εD3uε ⇀ b weakly in LM (Ω;R3). It is easy to check by the representation (3),
the isomorphism (18) and by the Fubini theorem that Pε(uε) → P0(ū, b) and
Pε(vε+u0,ε)→ P0(v̄+u0,0, b+ e3) as ε→ 0, with uε = vε+u0,ε and ū = v̄+u0,0,
where vε ∈ V . By the same argument analog to the one used in A. Braides, I.
Fonseca and G. Francfort [6, Step 2, Theorem 2.5], in order to show that J̄∗ε Γ-
converges to J̄∗0 it is enough to prove that the Γ-lower limit E0 of any subsequence
of Eε coincides with J0. Therefore the assertions of Theorem 3 follows from
Lemmas 13–14 applied to the sequence uε = vε + u0,ε.

We omit the proof of Corollary 4 since it is analogous to the proof of Corollary
4.2 in our previous paper [24].
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