Discussiones Mathematicae
Differential Inclusions, Control and Optimization 36 (2016) 7-31
doi:10.7151 /dmdico.1179

EFFECTIVE ENERGY INTEGRAL FUNCTIONALS FOR
THIN FILMS WITH THREE DIMENSIONAL BENDING
MOMENT IN THE ORLICZ-SOBOLEV SPACE SETTING

WLODZIMIERZ LASKOWSKI

School of Mathematics
West Pomeranian University of Technology

Al. Piastow 48, 70-311 Szczecin, Poland

e-mail: wlaskowski@zut.edu.pl
AND

HoNG THAI NGUYEN

Institute of Mathematics
Szczecin University
ul. Wielkopolska 15, 70-451 Szczecin, Poland

e-mail: nguyenhthaimathuspl@yahoo.com

Abstract

In this paper we consider an elastic thin film w C R? with the bending
moment depending also on the third thickness variable. The effective energy
functional defined on the Orlicz-Sobolev space over w is described by I'-
convergence and 3D-2D dimension reduction techniques. Then we prove
the existence of minimizers of the film energy functional. These results
are proved in the case when the energy density function has the growth
prescribed by an Orlicz convex function M. Here M is assumed to be non-
power-growth-type and to satisfy the conditions Ay and V.
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1. INTRODUCTION

We consider an elastic thin film as a bounded open subset w C R? with Lipschitz
boundary. The set Q. :=w x (-5, 5) C R? for a small thickness ¢ is considered as
an elastic cylinder approximate to the film w. A three-dimensional deformation
U : Q. — R? defined on the thin cylinder . has the re-scaled elastic total energy

represented by the difference of the re-scaled bulk and re-scaled surface energies

) B.0) = = [ W(DU)iz - 5Q.0)

where W : R? x R? — R is so-called the energy density function satisfying the
growth and coercivity conditions

(2) é(M(HFH) 1) SW(FE) <CO+M(|F]) (VF e R™)

for some C' > 0. Here M : R — [0, 00) is some Orlicz convex N-function.

The purpose of this type of research is to investigate, as the thickness ¢
goes to zero, the I'-convergence limit of the sequence of these re-scaled energies
and to understand the behavior of minimizers subject to appropriate boundary
conditions.

The values of exponents v and (5 in the definition (1) are important. It turns
out that when @ = 1, § = 0 and M(t) = [t|? (1 < p < oo) the form of the
functional (1) leads through the use of I'-convergence to the nonlinear membrane
theory in the reflexive Sobolev spaces WP [26, 27]. It is important to note
that the papers [26, 27] by H. Le Dret and A. Raoult published in 1993-1995
contain the first precise convergence results for the re-scaled energy functionals
in the nonlinear theory of thin membranes through the use of I'-convergence. For
the case « = 1, § =1 and M(t) = |t|P (1 < p < o0), one has to deal with the
additional two and three dimensional bending moment in the nonlinear membrane
theory in the reflexive Sobolev spaces WP, cf. [4] and [5] published in 2004 and
2009, respectively.

Many results through the use of I'-convergence were established for other
values of the exponents o and 3 in the reflexive Sobolev spaces WP (see, e.g.,
[16, 31]).

We assume that M is of the non-power-growth-type and satisfies the condi-
tions Ay and Vs (that is equivalent to the reflexivity of Orlicz and Orlicz-Sobolev
spaces generated by M).

In our previous papers (see [24, 25]) we consider the case o = 1, § = 0 and the
case « = 1, 8 = 1 with the 2-dimensional bending moment in the Orlicz-Sobolev
space setting WM,
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In Theorem 1, the effective energy functional for the thin film w with the 3-
dimensional bending moment is obtained, by I'-convergence and 3D-2D dimension
reduction techniques applied to the sequence of the re-scaled total energy integral
functionals of the elastic cylinders €2; as ¢ — 0. In Corollary 2, the existence of
minimizers of the energy functional for the thin film is established by showing
that some sequence of re-scaled minimizers weakly converges in an appropriate
Orlicz-Sobolev space to a minimizer of the film energy functional.

In Section 5, we give the proofs of Theorem 1 and Corollary 2. For these
proofs we apply also results: for Orlicz convex functions |20, Proposition 4], for
the Orlicz-Sobolev spaces |22, Theorem 5, Theorem 7| (cf. [10]), [17, Proposition
2.1], for differentiability properties of the Orlicz-Sobolev functions [3, Lemma 3.1,
Lemma 3.2], for the sub-differential operator in Orlicz spaces |35, Lemma 1], for
quasiconvex integral functionals and quasiconvexification in the Orlicz-Sobolev
space setting [13], for the LM -version [34, Homogenization Theorem 7.1, Remark
p. 121] for the Riemann-Lebesgue Lemma.

Examples of Orlicz N-functions M with M € AaNVy are M (t) = [¢t|P(log(1+
|t]))?, where p > 1iq > 1or M(t) = |t|P(log(1+|t]))? - (log(log(1+[t])))?, where
p > 11iq,q > 1. Many other examples of M with M € Ay N Vs can be
found in [23, Theorem 7.1, pp. 58-59] and [28, 29|. Furthermore, the assumption
M € Ay NV, is indispensable in the regularity study of minimizers of multiple
variational integrals with the M-growth on Orlicz-Sobolev spaces (see discussions
and references for many other concrete examples in [12, 7).

2.  SOME TERMINOLOGY AND NOTATION

>From now on, unless stated to the contrary, M: R — [0,00) is assumed to be
a non-power-growth-type Orlicz N-function (i.e., even convex function satisfying
limo 28 = 0 and lim M +00).

t—0 ¢ t——+o00 T ¢

We assume M € Ag N Vy. Here the condition M € Ag means that M (2t) <
cM(t) (t > tg) for some ty € [0,00) and ¢ € (0,00). The condition Ay implies
that M (2t) < a(2) 4+ b(2)M(t) for all ¢ > 0, where b(2) € (0,+00) and a(2) €
[0,4+00). The condition M € V3 means that 31 > 1,3¢, € [0,00) such that
M(t) < o, M(It) for all t > t,.

Let M* be the complementary (conjugate) Orlicz N-function of M defined
by M*(7) := sup{tT — M(t) : t € R}. It is known that the condition M € V3 is
equivalent to the condition M™* € As.

Denote by |v| the Euclidean norm of v and by (u, v) the scalar product. Given
an open bounded subset G C RV with Lipschitz (e.g., C?-smooth) boundary 0G
equipped with the (N — 1)-dimensional Hausdorff measure HV~!. Denote by
LM(G;R™) the Orlicz space of all (equivalent classes of) measurable functions
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u: G — R™ equipped with the Luxemburg norm

[ull Ly (Girmy := inf {/\ >0: /Q M (|u(z)|/N)dz < 1} .

It is known that M € As N Vs is equivalent to the reflexivity of LM (G;R™).

Recall that the Orlicz-Sobolev space WM (G;R3) is defined as the Banach
space of R3-valued functions u of L™ (G;R?) with the Sobolev-Schwartz distribu-
tional derivative Du € LM (G;R3*Y) equipped with the norm

ullwrar grsy == [Jullparamrsy + | Dul| parggraxay < oo.

The subspace WOI’M(G; R?) is defined as the closure in || - [ w10 (Grsy-norm of the
set C§°(G;R3) of C*°-smooth R3-valued functions with compact support in G.
Since OG is Lipschitz and M, M* € Ag, by [15, Theorems 2.1, 2.3] (cf. [21]) there
exists the bounded linear trace operator

Tr: WM (G, R3) — LM (0G; R?)

such that: (i) Tr(u) = upe (Yu € C°(G)) and (i) u € WOI’M(G;R?’) if and only
if Tr(u) = 0. So, for the simplicity of notation we will write "u(z) = ¢(z) on A"
for u € WHM(G;R3) and ¢ € LM(0G;R?) and A C 0G if Tr(u)(x) = p(x) for
almost every x € A. Due to this reason, we also denote by "u on A" for "Tr(u)
on A", etc.

Let (X, - [[w1.m(gr3)) be normed subspace of WHM(G;R3). By [2, Proof of
Theorem 3.9] and [19, Proof of Lemma 2.2] for every A € X* there exist elements
ho, h1,...,hy € LM (G;R3) such that

(3) Au) :/G(hg,u)d:wrf:/(} <hi,§5> dr (u€X).
i=1 !

Conversely, every functional A defined by (3) in the case hg, hi,...,hy €
LM (G;R?), is an element of X*.

3. SETUP

Define I := (—%,%), Q:=wxI, ST :=wx {:l:%}, I' := Ow x I, and for each
e>0, 5% :=wx {£5}, Tc := 0w x el. Greek indexes will be used to distinguish
the first two components of a vector, for instance (z,) and (x4, x3), designates
(1,72) and (21,72, 73), respectively. We denote by R3*3 and R3*2 the vector
spaces of respectively 3 x 3 and 3 x 2 real-valued matrices. Given F € R3*2
and b € R3, denote by (F|b) the 3 x 3 matrix whose first two columns are those
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of F and the last column is b. By the analogous way, set e, 1= (e1]es) € R?’XQ
where {e1, €2, e3} is the standard basis of R3. Set DU := (ax1 %2) DsU = 673

DU := (D,U|D3U) for an R3-valued function U. Denote by C, C generic positive
constants that may vary from line to line.

Let W: R332 — R be a continuous function satisfying the M-growth-type
and coercivity conditions:

() %(M(IFI) ~ 1) <SW(F) < C(L+M(F]) (VF € B¥?)

for some C' € (0, 00).
Set N
U= {U e W'M(QR3 :U(Z) =% on I'.}.

We consider the variational integral functional .J; : ¥, — R, where J.(U) (the
re-scaled total energy of the elastic cylinder 2. under a deformation U : . — R3)
is represented by the difference of the re-scaled bulk and re-scaled surface energies:

J.() / W(DU)di — 6/ (/- U)di — i/s (gt + 9, U)aH?
(5) 1 ;
+ 5/55(890_ + g, U)dH>.

Here, f. := f (:ca, ?) fe LM ]R3) 90 ,9 € LM (w;R?) and H? denotes the

2-dimensional Hausdorff measure in R3. Set
Vo= {a € WHM(w;R?) : 4(xa) = (24,0) on dw}.

Let Jo : U x LM(Q;R3) — R be defined by

(6) (i1, b) /Qoo Doti(26)|b(%a, -))dza — Po(ii, b),
where

(7) QoW (F,b) : = sup QW (F,b) (FeR¥>2 be LM(I;R?)
and

(8)  QuW(F,b) := inf {/ W (F 4+ Do@|AD3@)dz : X > 0,0 € WHM(Q;R?),
Q

- 1
o(-,x3) is Q" periodic Ll ae z3el, /)\Dggpeidx—/beidxg < E(i:l, . ,k‘)},
Q I
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for a fixed countable dense family {6;};en C LM (I;R3) (here, we assume that
M e As N VQ) and

Po(it) = [ (Frda+ [ (o = 5. 0) dao+ [ (a.0)da,

with f(za) := [} f(za,x3) dzs. By (see [23, p. 81]), we may choose {6;}icn from
Le(I; ]RS) Later on, Proposition 12 shows that O, W and Q. W are continuous.

4. 'THE FORMULATION OF MAIN RESULTS
Let Z be the space of membrane deformations defined by
(9) Z={ze W'M(Q;R?) : D3z =0, 2(x) = (24,0) on T'}.

Observe that Z is canonically isomorphic to Wy [30, Theorem 1.1.3/1]. Let z
denote the element of Wy that is associated with z € Z through this isomorphism:

(10) 2(xq, x3) = Z(x4) a.e.

Since we want to identify the sequence convergence with the thickness of our
domain tending to zero, for simplicity we assume this thickness parameter € takes
its values in a sequence £, — 0.

Theorem 1. Let J. be defined in (14) and Jo be defined in (6). Assume M € AN
Va. Assume that the continuous function W: R3*3 — R satisfies the hypothesis
(4). Let {U.} € .. For eache >0 and & = (T, T3) € Qe we associate T =
(T, x3) i= (;f:a, éfg) € Q and we set z.(xq, x3) := U (T, T3).

Then the sequence ja converges to Jy in the following sense:

(i) (lower bound) if z- — z weakly in WM (Q;R3), [2e |1 sy < +o0 and
z € Z with 2(zq, 13) = Z(zq) through the isomorphism (10) and 1Dsz. — b
weakly in LM (Q;R?) and H%DgZ(QHLIW(Q;RS) < +00, then

liminf J.(U.) > Jo(2, b);
e—0
(ii) (upper bound) for every pair (2,b) € Wo x LM(Q;R3), there exists a sequence
U. € WEM(Q;R3) such that z. — z weakly in WM (Q; R3), l|ze |l sy <
+oo and z € Z with z(xq,x3) = Z(x4) through the isomorphism (10) and
1 D3z — b weakly in LM (Q;R?) and ||%D328HLJM(Q;R3) < 400 and

lim J.(U.) = Jo(z, b).

e—0
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Consider the asymptotic behavior of U, € Ele such that

(11) J(Uz) < inf Jo(U) + (),
Uev.

where 7 is a positive function such that y(¢) — 0 as ¢ — 0.

Corollary 2 (The minimization problem). Assume that U, € V. satisfies (11).
Let the functions M, W and z., Z be such as in Theorem 1. Then:

(i) the sequence (ze,1Dsz.) is relatively weakly compact in WHM(Q;R3) x
LM(Q;R?);

(ii) the set Caim of cluster points of the sequence (zE, éDng) in the weak topology
is a non-empty subset of Z x LM (Q;R3);

(ili) any point (2e0,b) of Cim can be identified with (Z0,b) € ¥o X LM(Q;R3) by
the 3D-2D dimension reduction isomorphism (10) and (Z,b) is a solution
of the minimization problem

inf {Jo(@,b):be LM(uR?)}.
aevg
5. THE PROOFS OF THEOREM 1 AND COROLLARY 2

We will reformulat_e Theorem 1 and Corollary 2 by the use of the following equiv-
alent functionals J and Jj (see the re-formulation in Theorem 3 and Corollary
4). Define

(12) uoe(2) = (o, ex3), uo0(x) = (2q,0).
Notice that after the change of variables as in Theorem 1 with the association

(13) 2 = (2o, 23) = (gza, ix3> (s w3) = U(Fas 53),

and by the Fubini Theorem the re-scaled energy J.(U) in (14) can be rewritten
in the equivalent form

Jo(u) = /Q W (Dau iD3u> da — /Q (f, u)dz

(14) —/S+(go+,U)d”H2 +/S (90 »w)dH? —/w <g, U+QU_> dra
- /QW <Dau‘iD3u> d:z—/Q(f, w)dz
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1
—/ (gJ,u)d’Hz—i-/ (go_,u)dH2—/ (g,/Dguda:3> dz
S+ - w €Jr
:/W<Dau 1D3u) dar—/(f,u)dw
0 € Q
1
- [ wone s+ [ g - [ (0. 20w) as
S+ S- 9) €

where u*(z,) := Trg= (u)(74) and u is an element of

U, = {u e WhM(Q;R?) : u(x) = ug () on T'}.

In order to individualize this new sequence %Dgu and since the direct con-
sideration of J; would imply the study involving the weak topology of the Orlicz-
Sobolev space WM (Q; R3) which is non-metrizable on unbounded sets, then it is
needed to consider the new functional J. : WM (Q; R3) x LM (Q; R?) — RU{+o00}
defined by

1

, W (Dou|LDyu)dz — Po(u) L eDsu=0

(15) J.(u, b) ;:{ Jo W (Dol Dsuyde = Pe(u) | o700 v,
oo otherwise,

where

Pou) = /gz(f,u)dx—/g+(gg,u)d%2+/(go—,u)dﬂu/g <g, iD?,u) da.

Observe that the re-scaled displacement v = u — ug belongs to the set
V=W R?) == {v e WM (Q;R) : v(z) =0 on T}

and

Je(v+upe) = /

1
w <ea + Dav‘eg + D3v> dx — / (fiv+upe)dx
9) € 9)

1
/ (gar, v+ u075)d7-[2 +/ (99 ,v+ 1L()7£.;)cl’;'-l2 — / (g, ~Dsv + 63> dz.
S+ S— Q €

Define J* : WhHM(Q: R3) x LM(Q;R3) — RU {+o0} by
(16)

if LDsv+e3="0
_ W (eq + Dav|iDsv + e3)dr — Pe(v + Rt es
JZ(v,b) == { fQoo (ot Dorlebo s = B and v € V
+ otherwise .
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Let V be the space of membrane displacements defined by
(17) V={ve WM ;R : Dyv=0,v(z)=00onT} C V.

Similarly as in (9)—(10), V is canonically isomorphic to I/VO1 M (45;R3) [30, Theorem
1.1.3/1]. Let v denote the element of Wol’M(w; R3) that is associated with v € V
through this isomorphism:

(18) V(Zo, x3) = 0(q) a.e.

Analogously for v € V and b € LM (€; R3) define the functional
(19)  Ji(v,b) := / Qoo W(eq + Dat(x4)|b(zq, ) — e3)dza — Po(V+ up,0, b+ €3).

In this notion we have for U, € \TIE
To(UL) = Ja(ue) = J(ve + uo,e),
where u. € ¥, ve € V with v, = ve +up and
Jo(2,0) = J5(v,0) (veV,Z=0+ugo € ¥y).

Recall [9] that a sequence of functions I. from a topological space X to R
is said to I'-converge to Iy for the topology of X if the following conditions are
satisfied for all z € X:

(20) {Vma —x, Ip(z) <liminf I.(z¢),

e =y, Le(ye) — Io(y).
Theorem 3. Let J! be defined in (16) and J; be defined in (19). Assume
M € Ay N Vay. Suppose that the continuous function W: R3*3 — R satisfies

the hypothesis (4). Then the sequence J* T'—converges to J§ in the weak topology
of WHM(Q;R3) x LM(Q;R?), as e — 0.

Consider the asymptotic behavior of u. € ¥, such that

(21) Je(ue) < Jnf Je(u) +7(e),

where v is a positive function such that y(¢) — 0 as e — 0.

Corollary 4 (The minimization problem). Assume that u. € V. satisfies (21).
Let the functions M and W be such as in Theorem 3. Then:

(i) the sequence (ue,iDsuc) is relatively weakly compact in WHM(Q;R3) x
LM(Q;R?);
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(i) the set Caim of cluster points of the sequence (ue, %Dgus) in the weak topology
is a non-empty subset of Z x LM (Q;R3);

(iil) any point (teo,b) of Caim can be identified with (Tiso,b) € Wo x LM (;R3) by
the 3D-2D dimension reduction isomorphism (10) and (tso, b) is a solution
of the minimization problem

inf {Jo(a,b):be LM(Q;R*)}.
ueY

We start the proofs of Theorem 3 and Corollary 4, with Lemmas 5-6.
We consider the following condition (22):

Ji(M) € [1,00),3c € (0,00) such that

(22) M(at) < ca™M(t) (vt >0,Ya <1).

The condition (22) is equivalent to the condition

Ji(M) € [1,00),dc € (0,00) such that

23 )
(23) LyOnaL(s) < M(bs) (Vs> 0,¥b > 1),
C

Lemma 5 is a re-formulation of a part of |20, Proposition 4| (see the explana-
tion in our previous paper [24, Lemma 4.3, pp. 592-593]).

Lemma 5. Assume the dual Orlicz N-function M* satisfies the condition Agl‘)b,
i.e., M*(21) < K M*(7) for all T € [0,00) and for some K € (0,00). Then M
satisfies the condition (22) for some i(M) € (1,00).

Lemma 6 (compactness lemma). Let M and W be such as in Theorem 3. Let
ve € WEM(Q:R3) and b. € LM (Q;R?) be a sequence such that

(24) sup JX(ve,be) < d < +o0.
€€(0,1)

Then there exists di > 0 and dy > 0 such that:

(i)
(25) sup ||ve [l oursy < dy < +oo
€€(0,1)
and
(26) HlD <dg <+
su —Dsv 00
ee(OI,)l) e Pl amey = 7

and the sequence (v, 1Dgv.) is relatively weakly compact in WHM(Q;R3) x
LM(Q; R?);
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(ii) the set of cluster points of the sequence (ve, %ngs) in the weak topology of
WEM(Q:R3) x LM(Q;R3) is a non-empty subset of V x LM (Q;R3).

Proof. We divide the proof into Steps 6.1-6.2, where in Step 6.2 we assume
additionally M* € AJ".

Step 6.1. By (24) and (16) for J*, v. € V for all € > 0. Denote u. = ve + ug.
We claim that

(| (o

@7+ (g o 5wy + 195 e s-a) )| Trlle) HDuEHLMm;Rsxz))

D3u,

) Ddx <Gi+G ((\fHLM*<Q;R3>

1
+Cl”gHLM*(w;]R3) gD3u€ LM (Q;R3)

for some Cy € (0,+00) and for all € € (0,1). Here || Tr||z := Nt + N, where
N* (resp., N7) denotes the operator norm of the linear trace operator Tr :
WEM(Q:R3) — LM(ST:R3) (resp., Tr: WM (Q; R3) — LM(S—;R?)).

For this, by the coercivity condition (4) together with (24) and Fubini Theo-

rem, we infer that
Dsu,
3 E> D | |>
€

o (o (|(ee
/Q(f,ue)d:c [q+(gg,ue)dH2 /_(go_,ug)dHZ‘+’/Q (g, iDgzLa) dz| .

By the generalized Holder inequality (see, e.g., [33, Theorems 13.13, 13.11], [23]),
we deduce that

o ([ (o

2 (I N e s ey s oo sy + 115 e sy 12 Lz s e )

< d+ + +

D3u,

)[Jao=100) < s 2110y oz

1
(28)  + 2||gll Lo+ (o3 ~Dsue < d+ 2| fll prre ursy [l Lar oirsy

LM (Q;R3)

+ 2 (195 v (s + 193 2o 5y ) 1T Nl (Il s e

1
—D3u,
g

+ ||Du5||LM(Q;R3X3)) + 2||9||LM*(W;R3) LM (Q;R3)
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By the WM _generalization (see [22, Theorem 5 and 7| together with [10, Theo-
rem 3.9], [18, Lemma 4.14], [17, Proposition 2.1]) for the Poincaré-Sobolev-type
inequality (see [32, Theorem 3.6.4]), there exists C' € (0, 00) such that

(20)
el o) < © (||Du5||LMm;R3xs) - |us|cm2)

= 6 <||D’LL5||L1M(Q;R3><3) +/ ’U(),5|d7'[2>
r

<C <HDU5HLJW(Q;R3><3) + H?(T) sup \x]) <oo (Yee(0,1)).
€

Then (28)—(29) imply (27).

Step 6.2. By the additional assumption M* € Agl()b, we may apply Lemma 5,
and so M satisfies the condition (22) for some (M) € (1, 00).
We claim that

(30) HDUEHLM(Q;RSXS) <(Cy<oo (Vee(0,1)),

(31) [uel[ (s < C3 <00 (Ve € (0,1)),

(32) Hleua <Cy<oo (Vee(0,1))
€ LM (Q;R3) — e

D3u,

(33) /Q M (’ (Daug

for some Cy, C3, Cy, Cs.
For this, by (27) we infer that

)degcf,@o (Ve € (0,1))

1 /M(‘D 1D
Ue | —L/3U
(34) 1+ | Ducl| parpsxsy + || £ Dsuel i sy Jo N

< (Cg < 0

Jaa

for all € € (0,1) and for some C.
Consider the case when || Duc | ;v (r3xs)/2 > 1>0and || %D3U5||LM(Q;R3)/2 >

1 Si | Duell (o r3x3) D q ||éD3us||LM<Q;R3>
> (. Since 0 < — 5 < || u€||LM(Q;R3><3) and 0 < s E—
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11 Dgu|| M (;r3) by the definition of the Luxemburg norm and by (22), we deduce
that

1</M< | De| )da:
o \l[Duel[paqrsxs)/2

) 2 i(M)
= M(|Duc|)dz (Ve € (0,1
(HDU’EHLJW(Q;]R?)XB)) /Q (‘ ED ( ( ))
and
1D
1</M<1 < | Dsue| )dx
Q HED3USHLM(Q;R3)/2
2 2 i(M) 1
< < 1 ) / M(‘Dsug )dm (Ve € (0,1)).
||ED3’UJ€||LM(Q;R3) 0 €
Obviously
1
/ M(‘(Dua >dm+/ ]\4(’1)%5 )da;
Q Q c
(37)

Sy

Therefore, (34), (35)—(36) and (37) implies

ipgug) de (Ve € (0,1)).

1
(38) A <||Dus||LM(Q;R3X3), Hngug ) < (g < 00

LM (Q;R3)
whenever || Duel|pa qorsxs)y > 2 and ||%D3U5||LNI(Q;R3) > 2. Here

1 i) i)
2 2001+ s+1)

A(s,t) :=

Since (M) > 1, A(s,2) — 400 as s — +oo and A(2,t) — +o0 as t — 400
and so there exists C7,Cs € (0,00) such that A(s,2) > Cs (Vs > C7) and
A(2,t) > Cs (Vt > Cs). Hence, (38) implies the claims (30) and (32), where
Cy = C4 := max{C7,Cs,2}. By (29) and (27) we deduce the claims (31) and (33).

The remaining steps of the proof are analogous to Steps 4.3—4.6 in our previous
paper [24]. The arguments of these Steps allow to consider also the general case
of M*. [
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Remind that the quasiconvex envelope Qg : R™*™ — R of a continuous

function g : R™*"™ — R is defined (see, e.g., [8, Theorem 6.9]) by

Qg(E) := inf{ g(E+ Dp)dx : p € COOO(B;IR{m)}

wen®) ),

for all E € R™*™ where B is the open unit ball of R™.

We recall that a sequence w, € L'(G;RY) is said L'-equi-integrable if for
all ¢ > 0 there exists § > 0 such that [, |wy|dz < ¢ whenever E C G with
LN(E) < 6, where G C RV,

The next lemma is the direct WM -generalization in the case of M € Ay N
V3 of the Fonseca-Miiller-Pedregal Decomposition Lemma in the Sobolev W1P-
space [14].

Lemma 7 (decomposition lemma). Assume M € Ay N Va. Let G be an open
bounded subset of RN with Lipschitz boundary. Let w, € WM (G;RY) be such
that w, — wo weakly in WM (G;RY). Then there exists a subsequence of wy,

(not relabelled) and a sequence z, € WHM(G;R?) such that z, — wo weakly in
WEM(G;RY), 2, = wp in a neighborhood od 0G,

LY({z € G :wp(x) # 2p(x), Dwn(x) # Dzp(z)}) — 0,

as n — +oo, and the sequence M(|Dzy,|) is L'-equi-integrable on G.

Proposition 8. Let Q. W be defined by (7) and let W: R3*3 — R be a contin-
uous function satisfying the hypothesis (4). Then

(39) Qoo QW (F[b) = QoW (Fb),
where QW denotes the quasiconvex envelope of W.

Proof of Proposition 8 is analogous to the proof of Proposition 2.6 in [5]. It
is enough to apply WM _generalization in [13, Theorem 3.1] for the Acerbi-Fusco
weak l.s.c. WhP-theorem [1, Theorem I1.5] and Decomposition Lemma 7.

Let A(w) be a family of all open subsets of w. According to (15) define the
functional E. : WEM(Q; R3) x LM (;R3) x A(w) — RU {+00} by

1 if LDsu=1b
E.(u,b,A) = { {rsz W(Daulz Dgu)de . & " 0,
o0 otherwise.

Denote by Eg : Z x LM(Q;R?) x A(w) — RU {400} the I'- lower limit (see [9])
of ., ie.,
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(40) Eo(u,b, A) := inf { lim inf W (Doun| A\ Dsuy)de = u, — v weakly in

n—-+00 AxT

WM (A x I;R?), \,D3u,, — b weakly in LM(A x I; R?')},

where A, := (g,)7 1. Later on, we say that u, — u in L (A x I;R?) if for any
D cC A wu, —uin LM(D x I;R3)-norm.

Lemma 9. Let the functions M and W be such as in Theorem 3 and Eqy be
defined by (40). Then for any sequence A, — 400, there exists subsequence Ay,
such that for each (u,b) € Zx LM (Q;R3), the set function Eq(u,b,-) is a trace of a
Radon measure, absolutely continuous with respect to the 2-dimensional Lebesgue
measure.

Lemma 10. Let the functions M and W be such as in Theorem 3. Let A € A(w),
L € R, u € Z and consider a sequences u, € WM (A x I;R3) and \, € R
such that A\, — 400, u, — u in L%:(A X I;R3)—norm, A Dsu, — b weakly in
LM(A x I;R3) and

lim W (Daun| Ay D3uy)dx = L.
Nn—=+00 J Ay
Then there exists a subsequence A\, of Ay, and a sequence Uy € WLM(A x I;R3)
such that U, = u on ©x(0A) x I for some neighborhood O(0A), U — u in
LM (A x I;R3)-norm, A\, D3, — b weakly in LM (A x I;R3) and

loc

lim sup W (Dgatg|AnDstiy)dx < L.
k—+oo JAXI
The proofs of Lemma 9 and Lemma 10 are analogous to the proofs of Lemma
2.1 and Lemma 2.2 in [4].

Lemma 11. The infimum in (40) for Ey remains unchanged if we replace W by
its quasiconvex envelope QW .

Proof of Lemma 11 is analogous to the proof of Proposition 2.7 in [5]. It is
enough to apply W1 M_generalization in [13, Theorem 3.1] for the Acerbi-Fusco
weak L.s.c. W1P-theorem [1, Theorem I1.5] and the fact that embedding WM (A x
L;R3) < LM (A x I;R3) is compact (see Donaldson-Trudinger [10, Theorem
3.9] together with Gossez [18, Proposition 4.3]).

Notice that by Proposition 8 and Lemma 11 we may assume without loss
of generality that W is quasiconvex. Therefore by the hypothesis (4), M € Aq
together with Focardi [13, Proposition 3.2] W satisfies

(41) (W (&) = W(&)| < O+ h(1+|&] +[€]))]& — &2
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for some C € (0, +00) and for all &1, &, € R3*3, where h denotes the right deriva-
tive of M.

Proposition 12. Assume that a quasiconvex function W : R3*3 — R satisfies the
hypothesis (4) and M € As N'Vy. Then the functions

(42) (F,b) = QuW(FIb) € R, (F,b) s QuWW(F]b) € R
are continuous on R3*2 x LM (I;R3).

Proof. Let A > 0 and k € N be fixed and define

(13) QIW(F.b):= inf{ [ W+ DagirDspldr - o € W@, (. 20)
Q

is Q' periodic £ a.e.z3 € I,

)\D3(p9id$—/59idwg < =
Q I

Let (F,b), (F',b') € R3*2 x LM(I;R3). For any infimizing sequence {¢,} in the
definition of QW (F,b) consider the sequence 1y, := @, + M By (4)

and by considering the function ¢ := _ Jo?bls)ds b(s )45 10 the definition (43), we obtain

that

~LLQ) < QIW(F ) < /I W(F,b)das.

Hence we may assume that

/ W (F + Dapn|AD3py)dz < QpW (F,b) + 1
Q

(44)
< /W(F,b)dxg—i— 1.
I
Since
b —b
Doﬂ/]n - Doz‘;ona D3¢n - D390n + N
then

1
< (i=1..k),

’/ ADg?ﬂnHidw—/b/(gidJ}:; = ’/ )\Dggoné?idx—/bé?idxg
Q I Q I

which implies, that {1,,} is admissible for the definition of QQW (F’,¥'). Observe
that [, M (‘a z3) ) =M (‘a z3) )dxg for a € LYM(I), and so |lal| (g =

(0%
|all s (py follows. By [13, Proposition 3.2] the quasiconvex function W satisfies

(41). Thus by the Hélder inequality in L™-norm [23], we deduce that
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’/ W (EF' + Dotn|AD3tby, )dx —/ W (F + Duospn| D3y )dx
Q Q

<CAO+MHMF+QMM%%NHW+QMM%%W
(F' + DatbuAD3tbn) — (F + DapulADsn)|)da

(45) " < 90|11 + h(1 + |(F' + DathulADstb0)] + [(F + Dapn ADs o)) ar- (0

IE = F| 4+ 6() = 6Ol

= 2C| 1+ h(1 + [(F" + Dawn|ADsprn, + V'(-) = b(-))]

+ [(F + DapalADspn) )l s+ gy - I1E = FI+ 16 = bl 1.

By the coercivity condition (4), (44) implies that

(46) w%fmw+ﬂmmemm§@<#Wﬂwm+Q<+w

and so by using the Luxemburg norm, we obtain that

sup [M(F + DapuADae ) viqy < Ca ([ W(F Dz +1) 41

Hl + ’(F/ + Da@n‘)‘DSQOn + b/() - b())‘ + ’(F + Da‘Pn’)‘DBSOn)H‘LM(Q)

(a7) < Co (L 1P 4 1+ 6Ol + 16O )
+ 2Cy (/ W (F,b)dzs + 1) +2=:Cy(F,b, F'V),
I
where C3 := ||1||pm(g) + 1. By the Pluciennik-Tian-Wang lemma (see [35,

Lemma 1|) for M € Ay, there exists a function r: [0,+00) — [0,+00) such
that [|z]Laq) < a = [[A([2])||par+ () < r(a). Define

(48) rarla] = sup {Hh(!ZDllLM*(Q) zllzarg) < a}'

Then 0 < rysfa] < r(a) < +oo and rps is nondecreasing. Hence (47) and (45)
imply that
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’/ W (E' + Dotpn | \D3tby, )dx —/ W (F + Duopn| D3y )dx
(49) e Q

< 2C(Cs + ra[Co(F, 0, F'V)]) - (I = FI + [[V'() = b()l| arry) < +o0,

where Cs := [[1]| par -
By the upper bound condition (4) and M € Ag,

(50) /IW(FIb(:rs))d:vs < Ce(1+ M(|F))
+ M(IF']) + oar(JB]) + ens (['])) < 400

for some Cg € (0, +00) and for all ', F" b,b'. Here
61 (b= [ M(baa)das, onlW]) = [ MOV G)l)da,
Hence (50) and (49) and the definition of C4(F, b, F’, ') in (47) imply that

'/ W(F/""Dawn‘)‘Diiwn)dx_/ W<F+Da§0n’/\D3‘~Pn>dx
Q Q

(52)
< Cr(F, b, F'0) - (|F' = F| + V() = b()ll e (r)) < +00,

where

C7(F,b, F',b)
(53) =2C <C5 +ra[Ca(L+ [F'| + [ F|+ 1V ()l vy + Hb(')HLM(I))
+ 205 (56 (1+ M(|F)) + M(F')) + oar(|b]) + oar (1) +1) + 2) < oo.
By the definition of Q)W (F”,¥'), (52) implies that
(54) QW(FY) < /Q W(F' + Datb| ADsthn)de
< /QW(F+Da¢n\AD3¢n)dw+C~’7(F,b7 FLV)-(IF = FI+10/() =0l Ly ry)

and letting n — +o00, we infer that

(55) QW (F', V) < QW (F|b) + Cr (F, b, F',b) - (|F' = F|+ |1/ (-) = () | .o (1y)-
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Using the same arguments for the pair (F’|b’) in place of (F|b), we deduce that
(56) QAW (F|b) < QpW (F'|b') + Co(F, b, ', b) - (|F = F|+ [['(-) = b(:) | ar 1y)-

Taking infimum over A > 0 and then letting k¥ — 400 by (55) and (56) we deduce,
that

|QuW (F[b) — QuW (F'[V)], | Qoa W (F'|b) — Qoo W (F'[V))]

(57) o o
< Co(Fb, F' ) - (JF = F| 4 |6/ (-) = b(:) [ g (py) < o0

By M € A, and the definition of C7(F,b, F',¥) in (53), we deduce that (57)
implies the continuity of QW and Qs W on R3*2 x LM (I;R3). [

Lemma 13. Let W be a quasiconvex continuous function satisfying the hypothesis
(4) and M € Ay NVa. Consider the T'-lower limit Ey defined in (40). Then

(58) Ey(u,b, A) E/AQOOW(DaMb(iEa,‘))d%a

for all (u,b, A) € Z x LM(Q;R3) x A(w).

Proof. By Proposition 12, QW (Dyulb) and QW (F|b) are measurable non-

negative functions.

Step 13.1. Let k € N, b € LM(I;R3), u(zy) := Faqo+uo with F € R3¥2 g € R3.
By Lemma 10 we may restrict ourselves, in the definition (40) to sequences having
the same trace as it’s limit. Consider the sequence

wn(7) = pn(x) + (Fza + uo),
where ¢, € WHM(Q;R?) is such that ¢, = 0 on Q" x I, ¢, — 0 weakly
in WhM(Q;R?) and \,Dsp, — b weakly in LM (Q;R?). Then ¢, (-,73) is Q'-

periodic. For any 1 € L™ (Q";R?) by the Jensen inequality [23], together with
M € As, we infer that

[ ( Jasu< [ [ 2 aaoten) hassdon)

S/A/IM*(H&(xz’,)HLoo(I;Ra)W(%)Ddedxa

/ Gi(xg)w(xa)dxg
I

IN

0 (10:(3) | 1 (12 /A /I M*(|4(z0)))da

+ b (10:(3) [l Lo (1)) - L3(A) < o0,
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for all i € N. Therefore using 0;(x3)-1)(x) as a test function from LM (Q' x I; R3),
we deduce that

/ (A Dspnbids — b)) ¥(a)dra
/ / (AnDsgn — b(8)) b1t (za)dads — 0,

and so [; Ay Dspnbidzs — b; weakly in LM(Q';R3) for i = 1,..., k, where b; :=
J;b(s)0;ds. Therefore there exists nj, € N such that, for n > ny we have

- 1
‘/ )\angonOid:c—bi < - (i:1,...,k).
Q k

Thus ¢,, are admissible functions for the definition of QW and by the definition
of QL W, we have

liminf/ W (F + Daopn|AnDspn)dz > QpW (F|b).

n—-+o0o Q

By taking supremum over all £ € N

(60) hglnf/ W (F 4 Dan| AnD3gn)dz > Qo W (F|b).
Since {wy, }nen is admissible for the definition of (40), we complete the proof of
(58) for the case in Step 13.1 by taking the infimum over all admissible sequences
n (60), and then we get the inequality

Eo(Fzo + ug,b,Q') > QoW (F|b)dx,,
(61) @

= £2(Q') - Qu W (F|b) = QoW (F D).

We omit the general case for the proof of the inequality (58), since it is anal-
ogous to Step 2 in Proposition 3.4 [5]. It is enough to apply WM -generalization
in [13, Theorem 3.1] for the Acerbi-Fusco weak l.s.c. W1P-theorem [1, Theorem
IL.5], the fact that embedding WM (A x I;R?) < LM (A x I;R3) is compact
(see Donaldson-Trudinger [10, Theorem 3.9] together with Gossez |18, Proposition
4.3]) and differentiability properties of the Orlicz-Sobolev functions |3, Lemma 3.1,

Lemma 3.2|. ]

Lemma 14. Under the hypothesis of Lemma 13, we have
(62) Eo(ub,4) £ [ QuW(Dalb(za, ))dr,
A

for all (u,b, A) € Z x LM(Q;R3) x A(w).
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Proof. By Proposition 12, QoW (D4ulb) and QW (F|b) are measurable non-
negative functions.

Step 14.1. Let u(xy) := Fxo + up with F € R3*2 4y € R3 and b € LM (I;R3).
Since QW (F|b) is nondecreasing in k, by Proposition 12

(63) QW (F|b) € R, QoW (F|b) = kli_}m QLW (F[b) € R

By the definition of QxW (F|b) there exists t;, € R, ¥ € WHM(Q;R3), (-, x3)
is Q'-periodic £ a.e. x5 € I,

1
(64) ’/ tkDSSOkeidCU/beidiUg <— (i=1,...,k)
Q I k

and

(65 QuW(FID) < [ W(F+ Dt Dag)de < QuV (FIb) + 1.
Q

Extending Q'-periodically of the Q’-periodic function ¢, we define ¥ : R? x T —
R3 by
t A
(@) = 3¢ (ﬁxa,m) :
Observe that the function
Yo tk/D390k(ya,333)91(963)d963
I

belongs to LM (A;R3), since by the Jensen inequality [23] and M € A, we infer
(cf. (59)) that

o

/D390k(ya7 x3)0;(x3)dxs3
I

>d:z:a S//M()Dgapk(ya,$3)9i($3)‘)dx3dxa
AJIT
< oo (10 peqrzs) [ [ MADse ) dasd,
+ b2||9i($3)”Loo([;R3) . ﬁS(A X I) < +00
Applying the LM (Q')-version (see Pedregal [34, Homogenization Theorem 7.1,

Remark p. 121]) for the Riemann-Lebesgue lemma in LP(Q’)-spaces (see, e.g.,
[8]) we infer that

An
)\n/D?,SOZ@idﬂ?s = tk/DssOk <$a,$3> 0;dxs
I I 123

(66)
— tk/ D30 (Yo, 3)dyodas =: /b(s)«%ds +rF asn — +oo
1Jq I
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weakly in LM (4;R3). By (64) |rf| < 1 (i =1,...,k). Define
H" @a,3) i= (F + Do (20, 29) [tk Dap" (e, 73) )
Wh(zy) = /W (Hk(xa,x3)> dzxs.
I

By the coercivity condition (4) and H* € WhM(Q;R?),

Wk(xa)da:a = /
Q' Q

< Oy <1 +/ M(|F +Dagok(xa,xgﬂtkDggpk(xa,x3)|)dxad:v3) < 00,
Q

w (Hk (Za, l‘g)) dxsdx,,

and so Wk ¢ L' (Q';R?). Using the Riemann-Lebesgue lemma, we deduce that

(67)
_ —. /A
. k k T k n
nll}l-il-loo s W (F + Do, | A\ D3y )dx = ngr}rloo o 1a(za)W <tk xa> dxo

:/ lA(xa> ( Wk(yoc)dya) dwa = ‘CQ(A>/ W(F+Da<pk’tkD3(Pk)dx'
! Q’ Q

In view of the coercivity condition (4) and by the Alaoglu-Bourbarki theorem [11,
Theorem V.4.2] using the Moore lemma [11, Lemma 1.7.6], by (63)—(67) we may
find a subsequence {\,, } and {cpflk} such that go’;ik — 0 weakly in WEM(AxT;R?),
Ay 7 Dgg@’kaQid:ﬂg — [, bhidx3 weakly in LM(A;R3) for all i € N and

lim W(F + Doy | An, D3l )dz = L£2(A) Qoo W (F|b).
k—+oo AxT

Hence by the argument in [23, pp. 81-82] together with the Stone-Weierstrass ap-
proximation theorem and by our choice of the family {6; };cn for the definition (8),
we deduce that A\, Dgapflk — bweakly in LM (AxI;R3) as k — oo. Consequently,

Eo(u,b, A) < L2(A)Qu W (F|b).

Step 14.2. By Lemma 9 and Step 14.1 the inequality (62) holds for piecewise
affine functions.

Step 14.3. By Proposition 12 and Step 14.2 the inequality (62) holds for any
(u,b, A) € WEM(w: R3) x LM(Q;R?) x A(w). m
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Proof of Theorem 3. Let u. € ¥, be such that u. — @ weakly in WM (Q; R3),
1Dsue — b weakly in LM (€Q;R3). It is easy to check by the representation (3),
the isomorphism (18) and by the Fubini theorem that P.(u.) — FPy(u,b) and
P.(ve+upe) = Po(v+wup0,b+e3) as e — 0, with u. = v. +up and @ = v+ ug g,
where v. € V. By the same argument analog to the one used in A. Braides, I.
Fonseca and G. Francfort [6, Step 2, Theorem 2.5], in order to show that J* T-
converges to j(’]‘ it is enough to prove that the I'-lower limit Ey of any subsequence
of E. coincides with Jy. Therefore the assertions of Theorem 3 follows from
Lemmas 13-14 applied to the sequence u. = v; + ug . [ ]

We omit the proof of Corollary 4 since it is analogous to the proof of Corollary
4.2 in our previous paper [24].
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