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Abstract

The ideas of robust sets, robust functions and robustness of general
set-valued maps were introduced by Chew and Zheng [7, 26], and fur-
ther developed by Shi, Zheng, Zhuang [18, 19, 20], Phú, Hoffmann and
Hichert [8, 9, 10, 17] to weaken up the semi-continuity requirements
of certain global optimization algorithms. The robust analysis, along
with the measure theory, has well served as the basis for the integral
global optimization method (IGOM) (Chew and Zheng [7]). Hence, we
have attempted to extend the robust analysis of Zheng et al. to that
of robustness of set-valued maps with given structures and marginal
value functions. We are also strongly convinced that the results of our
investigation could open a way to apply the IGOM for the numerical
treatment of some class of parametric optimization problems, when
global optima are required.
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1. Introduction

The concept of robust sets and functions was first initiated by Chew and
Zheng [7, 26] as a weakening of the semi-continuity requirements of certain
global optimization algorithms. Later on this theory was elaborated and
extended by Shi, Zheng and Zhuang [18, 19, 20], Hoffmann, Phú, and Hichert
[8, 9, 10, 17]. In fact, Chew and Zehng [7] proposed and developed an
integral global optimization method (IGOM) for the computation of the
global optima of discontinuous functions based on robustness properties.
Depending on these ideas Hichert [8] designed a more general version of
the IGOM into a software routine called BARLO, which is found to be
computationally efficient for the global optimization problem with robust
data.

In their paper, Shi, Zheng and Zhuang [20] also introduced robustness
of general set-valued maps with the same purpose of weakening set-valued
continuity – a concept which is tantamount to an almost (semi-)continuity
property. Hence, the major aims of this paper are:

• to give the robust version of some well-known and standard results of
set-valued maps; thereby pointing out connections, differences and sim-
ilarities between robustness and continuity of such maps;

• to provide conditions for robustness of set-valued maps which are defined
through parametric systems of functional inequalities; and

• to verify certain robustness properties of marginal value functions.

Such an undertaking is believed to serve a dual purpose, both as an extension
of the theory of robust analysis and to throw some light on the possibility
of using the IGOM to some class of optimization problems, where global
optimality is ardently needed. The theory of robust analysis coupled with
the IGOM has been used to solve: integer and mixed integer optimization
through robustification (Zheng and Zhaung [28]); non-linear complementar-
ity problems (Kostreva and Zheng [16]), constrained optimization problems
with discontinuous penalty functions (Zheng and Zhang [27], Zheng [26]), the
determination of the essential infimum and supremum of summable functions
(Phu and Hoffmann [17]); layout optimization of analog circuits, minimiza-
tion of total energy in atomic clusters, and modelling and design analysis
of electrical networks (Hichert [8]); statistical computations (Zheng [26]);
determination of economic equilibria and fixed points of discontinuous oper-
ators (Zheng [26], Zheng and Zhuang [29]), and so on. Furthermore, in the
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paper (Geletu and Hoffmann [2]) we have indicated how to use robust anal-
ysis and the IGOM for the numerical treatment of a certain class of general-
ized semi-infinite optimization problems (cf. also Geletu [1]). In addition, we
are strongly convinced that the theory of robust analysis plays a significant
role in fields like parametric optimization, optimal control, computational
partial differential equation, stochastic optimization, etc.; where researchers
frequently need to deal with discontinuous functions.

In the following, the statements with no citations are from us. Fur-
thermore, to simplify the reading of the article we have compiled the major
definitions and results into tables (see Section 8).

2. Preliminaries

We begin with basic definitions and results from robust analysis. The results
mentioned here are mainly taken from [7, 19, 26]. At the same time, we also
attempt to provide some minor complementary results.

We use the notations: Bε(x0) to represent an open ball of radius ε > 0
around the point x0 ∈ X, when X is a metric space. Furthermore, we use
x0 + εB instead of Bε(x0), when X is a normed linear space; where Bε and
B denote the open balls of radius ε and unit radius around the zero element
of X, respectively.

Definition 2.1 (robust set, Zheng [26]). Let X be a topological space and
let D ⊂ X. Then D is called a robust set iff clD = cl intD, where clD and
intD denote the topological closure and the interior of D, respectively, in
the topology of X.

Remark 2.2. In [26] we find that ∅, X and open sets are robust, the union
of an arbitrary collection of robust sets is again robust; but the intersection
of two robust sets may not be robust. However, the intersection of an open
and a robust set is again robust.

Corollary 2.3 (see also [26]). Let D ⊂ X. If D is convex (or star-shaped)
and intD 6= ∅, then D is a robust set.

Definition 2.4 (robust point, [26]). Let D ⊂ X. A point x ∈ clD is said
to be a robust point to D if N(x) ∩ intD 6= ∅ for each neighborhood N(x)
of x. If, further, x ∈ D, then x is said to be a robust point of D.
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Proposition 2.5 (Zheng [26]).

1. D is a robust subset of X if and only if each point x ∈ D is a robust
point of D.

2. Any accumulation point of a set of robust points to D is also a robust
point to D.

Moreover, an open set is a neighborhood of each of its points. Hence, ro-
bustness of a set is connected with a weaker notion of a neighborhood.

Definition 2.6 (semi-neighborhood (SNH), [26]). A set D is called a semi-
neighborhood of a point x iff x is a robust point of the set D.

Corollary 2.7 (Zheng [26]). A robust set D is a semi-neighborhood of each
of its points.

We also have the following properties, which we may frequently be used:

Proposition 2.8 (Zheng [26]).

1. If D is a semi-neighborhood of x and intD ⊂ A, then A is also a semi-
neighborhood of x.

2. If D is a semi-neighborhood of x and x ∈ O, where O is an open set,
then D ∩O is also a semi-neighborhood of x.

Remark 2.9. The union of a family of semi-neighborhoods of x is again a
semi-neighborhood of x, whereas the intersection of two semi-neighborhoods
of x may not be again a semi-neighborhood of x. Consequently, the collection
of all semi-neighborhoods of a point x (or of robust sets) cannot define a
topology.

Definition 2.10 (upper robust (u.r.) function, [26]). A function f : X →
R is called upper robust (u.r.) [upper semi-continuous] on X iff for all c ∈ R
the set

Fc := {x ∈ X | f(x) < c} =: [f < c]

is a robust [open] set.

The upper robustness of a function can also be defined pointwise in the
traditional way.
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Definition 2.11 (upper robustness at a point). Let X be a topological
space, f : X → R and x0 ∈ X. If for each given ε > 0 there is a semi-
neighborhood SNHε(x0) of x0 such that

f(x) ≤ f(x0) + ε,∀x ∈ SNHε(x0),

then f is said to be upper robust at x0.

Proposition 2.12. Let X be a topological space and f : X → R. The
function f is upper robust at each x ∈ X iff it is an upper robust function.

Proof. (a) Suppose f is upper robust at each x ∈ X. Let c ∈ R be
arbitrary. Then we show that Fc = {x ∈ X | f(x) < c} is a robust set. If
Fc = ∅, then we are done. Thus, let Fc 6= ∅ and x0 ∈ Fc be any. Then
f(x0) < c. Choose ε such that 0 < ε < c − f(x0). Then, by assumption,
there is a semi-neighborhood SNHε(x0) such that

∀x ∈ SNHε(x0) : f(x) < f(x0) + ε.

This establishes that
x0 ∈ SNHε(x0) ⊂ Fc.

Since x0 is a robust point of SNHε(x0), then x0 is a robust point of Fc (cf.
Proposition 2.8(1)). Since x0 ∈ Fc is arbitrary, we conclude that Fc is a
robust set. Hence, f is an upper robust function.

(b) Suppose that f is an upper robust function. Let x0 ∈ X and ε > 0
be given. Then the set

SNHε(x0) := {x ∈ X | f(x) < f(x0) + ε}

contains x0 and, by assumption, SNHε(x0) is a robust set. Consequently,
SNHε(x0) is a semi-neighborhood of x0 and

∀x ∈ SNHε(x0) : f(x) < f(x0) + ε.

This entails that

∀x ∈ SNHε(x0) : f(x) ≤ f(x0) + ε.

Hence, f is upper robust at x0. Since x0 ∈ X is arbitrary, we conclude that
f is upper robust at each x ∈ X.
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Among lots of properties of upper robust functions we find the following
statements.

Corollary 2.13 (Zheng [26]). Let D ⊂ X and f : D → R. If D is a robust
set and f is u.s.c., then f is u.r. on D.

Definition 2.14 (lower robust (l.r.) function, [26]). A function f : X → R
is called lower robust (l.r.) on X iff −f is upper robust on X.

Proposition 2.15 (upper robustness of composition). Let X be a topolog-
ical space. If f : X → R is u.r. and r : R → R is a strictly increasing
function, then the composite function r ◦ f (i.e., (r ◦ f)(x) = r(f(x))) is
upper robust.

Proof. From [f < r−1(c)] = [r ◦ f < c] follows the statement.

Remark 2.16. It is to be noted that the concept of robustness (like open-
ness) of sets is dependent on the topology of the underlying space. Likewise,
robustness of a function also depends on the topologies of both its domain
and image spaces. Hence, the definitions of robustness here are with respect
to the relative topology on the set X, when X is assumed to be a subset
of some topological space. Such issues of relative robustness are discussed
in [26, Section 2.2.4]. We underline that the relative robustness in [26] and
in our article are based on robust subsets X of an underlying topological
space, say X0. Hence, the relative robustness on X is the robustness on the
topological subspace X with respect to the relative topology of X induced
by X0.

It seems possible to extend the notion of robustness to a different kind
of relative robustness of a set B closely connected with the well-known
relative interior (rel intB) or relative closure (rel clB), which is topologi-
cally related to the affine hull of the set B under consideration (or more
generally to some B contained in a nonlinear manifold). This approach is
frequently and successfully used in the finite dimensional convex analysis
and optimization. However, one has to be careful in extending results of
the relative interior or closure to a similar kind of relative robustness since
openness is strongly connected with the topology and neighborhoods, but
robustness bases on semi-neighborhoods which fail to satisfy the intersection
property. So far, we have not thought about such a generalization and have
not found any studies on it.
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3. Approximatable functions

Approximatability of functions and the SVM’s have been discussed in rela-
tion with robustness by Shi, Zheng and Zhuang in [19, 20]. This concept
will be seen to offer the possibility of numerical approximation of the val-
ues of a robust function (3.1) or a set-valued map (SVM) at a given point.
Roughly speaking, when a function is approximatable at a point x0, then
f(x0) could be approximated by those values of f at which it is continuous.
The same holds true of the SVM’s (cf. Section 4.4). In fact, the idea of
approximatability reveals the practical usability of robustness for computa-
tional purposes; especially, when robustness is guaranteed to be equivalent to
approximatability. Hence, in this section, the definition of approximatable
functions of [19] will be extended to that of upper approximatable functions.
Furthermore, a statement of equivalence between upper approximatability
and upper robustness is also stated and proved.

We proceed by citing relevant definitions and results.

Definition 3.1 (robust function, [19, 26]). Let f : X → Y and x ∈ X.
Then f is called robust at x iff for any neighborhood U ⊂ Y of y = f(x), x
is a robust point of f−1(U).

Clearly,

Corollary 3.2. If f : X → Y is continuous, then f is robust.

Remark 3.3. Upper semi-continuity and lower semi-continuity imply conti-
nuity; but, upper and lower robustness do not imply robustness (see Remark
2.9 in [26]).

Definition 3.4 (approximatable functions, [19]). Let X and Y be topolog-
ical spaces and f : X → Y be a function. Suppose that S ⊂ X is a set of
points of continuity of f . Then f is said to be approximatable iff
1. S is dense in X,
2. for any x0∈ X, there exists a net (a Moor-Smith sequence†) {xα}α∈Λ⊂S

†The notion of a sequence {xn}n∈N of a countable number of elements xn is generalized
to the notion of a function x : Λ → X, where Λ is a directed uncountable set of elements
α. The family {xα}α∈Λ is called a generalized sequence or Moore-Smith sequence. The
notion limn→∞ xn of the limit of a sequence may be extended to the notion limα∈Λ xα or,
more shortly, limα xα of the generalized limit of the generalized sequence {xα}α∈Λ. For
more information see e.g. [14, Chapter I. §5.7] or [25, Chapter IV. 2].



66 A. Hoffmann and A. Geletu

such that
lim
α

xα = x0 and lim
α

f(xα) = f(x0).

In contrast to its continuity counterpart, Definition 3.4 requires only the
existence of a net to guarantee the approximatability. Actually, with respect
to continuity, property 2 of Definition 3.4 is expected to be valid for every
net {xα}α∈Λ converging to x0.

Theorem 3.5 (Theorem 2.1, Zheng et al. [19]). Any approximatable func-
tion is robust.

In general, the converse of Theorem 3.5 may not be true. However, if X
is a Baire space and Y is second countable, then approximatability will be
equivalent to robustness.

Theorem 3.6 (Theorem 3.1, [19]). Let X be a Baire and Y a second count-
able topological spaces and f : X → Y . Then f is robust iff f is approxi-
matable.

Remark 3.7. If X is a complete metric space and Y = R, then the assump-
tions of Theorem 3.6 will be easily satisfied. However, it should be stressed
that the result in Theorem 3.6 is based on general topological spaces. That
is what has to be used next.

Subsequently, we give a generalization of Definition 3.4 for the case when X
is a metric space and Y = R.

Definition 3.8 (upper approximatable functions). Let X be a metric space
and f : X → R. Suppose that S ⊂ X be the set of points, where f is u.s.c.
Then f is upper approximatable (u.a.) iff

1. S is dense in X;
2. for any x0 ∈ X, there is a sequence {xk} ⊂ S such that

lim
k

xk = x0 and lim sup
k

f(xk) ≤ f(x0).

We show next that upper approximatability implies upper robustness.

Proposition 3.9. Let X be a metric space and f : X → R. If f is upper
approximatable, then f is upper robust.
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Proof. Let x ∈ R be any and take an arbitrary x0 ∈ [f < c]; i.e., f(x0) < c.
We show that x0 is a robust point of [f < c]. There are two cases to consider:

Case a. If f is u.s.c. at x0, then, for every ε > 0, there is a neighborhood
N(x0) in X such that

f(x) ≤ f(x0) + ε, ∀x ∈ N(x0).

In particular, taking ε with 0 < ε < c− f(x0) we have

∀x ∈ N(x0) : f(x) < c.

This yields that x0 ∈ int[f < c]. Hence, x0 is a robust point of [f < c].

Case b. If f is not u.s.c. at x0, then there is a sequence {xk} ⊂ S such
that

lim
k

xk = x0 and lim sup
k

f(xk) ≤ f(x0)

and lim supk f(xk) implies that there exists k0(ε) such that

f(xk) ≤ f(x0) + ε, ∀k ≥ k0(ε).

Choosing 0 < ε < c− f(x0) it then follows, by the upper semi-continuity of
f at xk, that there exists rk(ε) > 0 such that for all r ∈ (0, rk(ε))

Br(xk) ⊂ [f ≤ f(xk) + ε] ⊂ [f < c], ∀k ≥ k0(ε).

Hence, for all k ≥ k0(ε), xk is a robust point of [f < c]. Moreover, limk xk =
x0. Consequently, by Proposition 2.5(2), x0 is a robust point of [f < c].
This completes the proof.

A statement of equivalence between upper robustness and upper approxi-
matability could be given if X is assumed to be a complete metric space.

Proposition 3.10. Let X be a complete metric space with topology τ and
f : X → R. Then f is upper robust iff f is upper approximatable.
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Proof. It only remains to show the forward implication (the reverse impli-
cation is already contained in Proposition 3.9). Take the following family of
subsets of R

i := {(−∞, q)}q∈Q ∪ {R, ∅},

where Q denotes the set of rational numbers. Obviously, < R,i > is a
topological space with countable basis of open sets (but it is not Hausdorff).
Hence, < R,i > is second countable. We now consider

f :< X, τ >→< R,i > .

Then the upper robustness of f in the usual topology of R is now the robust-
ness of f with respect to the topology i on R (cf. Definition 3.1). Hence,
Theorem 3.6 (Theorem 3.1 in [19]) yields that f is approximatable with
respect to i in R. That is, there exists a set S ⊂ X such that

(i) f is continuous at each x ∈ S with respect to i on R,
(ii) S is dense in X, and
(iii) for each x0 ∈ X, there is a sequence {xk} ⊂ S such that

lim
k

xk = x0 and (i) lim
k

f(xk) = f(x0)

(observe that the limit with respect to i is not unique). We next formulate
(i) limk f(xk) = f(x0) in the traditional notation. Thus, for any ε > 0,
there exists (−∞, q(ε)) ∈ i such that f(x0) ∈ (−∞, q(ε)) ⊂ (−∞, f(x0)+ε).
Hence, (i) limk f(xk) = f(x0) implies that there is k0(ε) such that

f(x0) < q(ε) < f(x0) + ε, ∀k ≥ k0(ε).

Subsequently, it follows that

lim sup
k

f(xk) ≤ f(x0) + ε.

It remains now to show that S contains the set of points of X, where f is
upper semi-continuous with respect to the usual topology on R. Thus, let
x0 ∈ S, then the continuity of f :< X, τ >→< R,i > at x0 implies that for
any ε > 0,∃q(ε) ∈ Q, U(x0) ⊂ X such that

f(x) ∈ (−∞, q(ε)) ⊂ (−∞, f(x0) + ε), ∀x ∈ U(x0).
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This concludes that

f(x) ≤ f(x0) + ε,∀x ∈ U(x0),

which is the usual upper semi-continuity of f at x0. Hence, the claim is
justified.

4. Robustness of set-valued maps

Beginning with the basic definition of set-valued maps, it has been indicated
by Zheng et al. [20] that a set-valued map with a dense set of upper [lower]
semi-continuity is upper [lower] robust. Conversely, on a complete metric
space, an upper [lower] robust map has a dense set of upper [lower] semi-
continuity. This, in fact, contains implicitly the idea of approximatability
of set-valued maps. Furthermore, it also cautiously implies that an upper
[lower] robust set-valued map is almost upper [lower] semi-continuous.

Thus, one may like to find out: how much of continuity could be re-
writable in terms of robustness. However, here, we give only some repre-
sentative results to this very broad question. Furthermore, in Section 6 we
refine robustness to set-valued maps with given structures.

4.1. Definitions and results

For a set-valued map (SVM) M : X −→→ Y and U ⊂ Y , we use the notations

M−1(U) := {x ∈ X | M(x) ∩ U 6= ∅};
M+(U) := {x ∈ X | M(x) ⊂ U}.

M+(U) and M−1(U) are known as the core and the inverse-image; respec-
tively, of the set U with respect to M(·). See Aubin and Frankowska [4] for
the concept of semi-continuity of set-valued maps.

Definition 4.1 (lower robust SVM, [20, 26]). Let X and Y be topological
spaces and M : X ⇒ Y be a set-valued map. Then M(·) is lower robust
[l.s.c.] at x ∈ X iff for each y ∈ M(x) and each neighborhood U(y) ⊂ Y of y,
M−1(U(y)) is a semi-neighborhood [neighborhood] of x in X. Furthermore,
M(·) is lower robust (l.r.) [l.s.c.] iff M(·) is lower robust [l.s.c.] at x, for all
x ∈ X.

The following two statements are trivially implied by Definition 4.1.
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Corollary 4.2 ([20, 26]). M(·) is l.r. iff M−1(U) is a robust set in X for
every open set U ⊂ Y .

Corollary 4.3 ([20, 26]). If M : X ⇒ Y is l.s.c., then M(·) is l.r.

However, the converse of Corollary 4.2 is not always true.

Example 4.4. The set-valued map

M(x) :=





[1, 4] if x > 0,

{4} if x = 0,

[2, 3] if x < 0.

is a simple example of a map which is l.r., but not l.s.c. at x = 0.

Definition 4.5 (upper robust SVM, [20, 26]). Let X and Y be topological
spaces and M : X −→→ Y be a set-valued map.

1. M(·) is said to be upper robust (u.r.)[u.s.c.] at x ∈ X iff, for any neigh-
borhood U of M(x), M+(U) is a semi-neighborhood [neighborhood] of
x. (i.e., x is a robust point of M+(U)).

2. M(·) is said to be upper robust [u.s.c.] iff M(·) is upper robust [u.s.c.]
on X at every x ∈ X.

Correspondingly, we have the statements

Corollary 4.6.
1. M(·) is u.r. iff for any open set U ⊂ Y , M+(U) is a robust set in X

(cf. [20] and [26]).
2. If M(·) is an u.r. SVM, then the set

E := {x ∈ X | M(x) = ∅}
is robust in X.

Corollary 4.7 ([20, 26]). If M(·) is u.s.c., then M(·) is u.r.

Example 4.4 demonstrates that there is a l.r. set-valued map which is not
l.s.c. A similar example could be set up for upper robustness. Furthermore,
the SVM in Example 4.4 is lower robust, but not upper robust. To see this,
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for ε > 0, we find that

M+((−ε, ε) + 4) = {0}.

This shows that M(·) is not upper robust.

4.2. ε-robustness of set-valued maps

In the following, we would like to see how far the notions of Hausdorff or
ε-semi-continuity could be carried over to that of robustness.

Hence, let X and Y be normed linear spaces, let M : X −→→ Y be a set-
valued map, and denote by Bε the open ball of radius ε at the zero element
of Y , with ε > 0.

Definition 4.8 (ε-upper robust SVM). We say that M(·) is ε-upper ro-
bust [ε-upper semi-continuous] at x0 if given ε > 0, there exists a semi-
neighborhood [neighborhood] SNHε(x0) such that

∀x ∈ SNHε(x0) : M(x) ⊂ M(x0) + εB.

M(·) is called an ε-upper robust map, if it is ε-upper robust at every x0 ∈ X.

Proposition 4.9. If M(·) is u.r., then M(·) is ε-upper robust.

Proof. Given ε > 0 and x0 ∈ X, let U := M(x0) + εB (which is an open
set). Hence, M(x0) ⊂ U . By assumption M+(U) is a semi-neighborhood of
x0. Set SNHε(x0) := M+(U). Thus,

∀x ∈ SNHε(x0) : M(x) ⊂ U = M(x0) + εB.

This concludes the proof.

Proposition 4.10. If M(·) is compact-valued and ε-upper robust, then M(·)
is u.r.

Proof. Let U ⊂ Y be an open set. We need to show that M+(U) is a
robust set in X. Let x0 ∈ M+(U). Hence, M(x0) ⊂ U . This yields that,
for each y ∈ M(x0), there exists ε(y) > 0 such that y + εB ⊂ U . But, since
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M(x0) is compact, there are y1, . . . , ym ∈ M(x0) and

M(x0) ⊂
m⋃

i=1

(yi + ε(yi)B) ⊂ U.

Let ε0 := min1≤i≤m ε(yi). From this it follows that

M(x0) + ε0B ⊂ U.

By ε-upper robustness, there is a semi-neighborhood SNH(x0) such that

∀x ∈ SNH(x0) : M(x) ⊂ M(x0) + ε0B.

Consequently,

SNH(x0) ⊂ M+(M(x0) + ε0B) ⊂ M+(U).

Therefore, x0 is a robust point of M+(U). Since, x0 ∈ M+(U) is arbitrary,
we have that M(·) is upper robust.

Similarly, we define

Definition 4.11 (ε-lower robust SVM). We say that M(·) is ε-lower ro-
bust [ε-lower semi-continuous] at x0 iff for any ε > 0 there exists a semi-
neighborhood [neighborhood] SNHε(x0) such that

∀x ∈ SNHε(x0) : M(x0) ⊂ M(x) + εB.

We say that M(·) is ε-lower robust [ε-lower semi-continuous] if it is ε-lower
robust [ε-lower semi-continuous] at every x0 ∈ X.

Proposition 4.12. If M(·) is ε-lower robust, then M(·) is l.r.

Proof. Let U ⊂ Y be an open set. We show that M−1(U) is a robust set in
X; i.e., we show for arbitrary x0 ∈ M−1(U), x0 is a robust point of M−1(U).
But, then M(x0)∩U 6= ∅. This means that there is a point y0 ∈ M(x0)∩U .
Hence, for some ε > 0, we have

(y0 + εB) ⊂ U and M(x0) ∩ (y0 + εB) 6= ∅.
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By ε-lower robustness, there is a semi-neighborhood SNHε(x0) of x0 such
that

∀x ∈ SNHε(x0) : M(x0) ⊂ M(x) + εB.

Hence, it follows that

∀x ∈ SNHε(x0) : y0 ∈ M(x) + εB.

Consequently,

∀x ∈ SNHε(x0) : M(x) ∩ (
y0 + εB

) 6= ∅.

Since y0 + εB ⊂ U , we have that

SNHε(x0) ⊂ M−1(U).

Hence, M−1(U) is also a semi-neighborhood of x0. Since x0 is arbitrary, it
follows that M−1(U) is a robust set. Therefore, M(·) is a lower robust map.

However, the converse of Proposition 4.12 may not hold true even if M(·) is
compact-valued. Hence, a similar statement of equivalence, as in the case of
l.s.c. set valued maps with compact values (see p. 45, paragraph 3 of Aubin
and Cellina [3]), fails to exist between lower robust and ε-lower robust set-
valued maps. This is one evidence that robustness of a set-valued map is
weaker than continuity.

Example 4.13. Consider the set-valued map M : R −→→ R given by

M(x) :=





[2, 5], if x < 0
[1, 2] ∪ [3, 5], if x = 0
[1, 3], if x > 0.

Let ε = 1
2 . For any semi-neighborhood SNH(0) and neighborhood N(0) of

0, there is x ∈ SNH(0)∩N(0). Hence, if x > 0, we have M(x) = [1, 3], but
then M(0) = [1, 2] ∪ [3, 5] 6⊂ [1, 3] + (−1

2 , 1
2). Similarly, if x < 0, we have

M(x) = [2, 5], so that M(0) = [1, 2]∪ [3, 5] 6⊂ [2, 5] + (−1
2 , 1

2). Consequently,
M(·) is both not l.s.c. and not ε-lower robust at x = 0.

Obviously, M(·) is lower robust (also l.s.c.) at x, for either x < 0 or
x > 0. And, if y0 ∈ M(0), then either y0 ∈ [1, 2] or y0 ∈ [3, 5]. Hence, for
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any open ball Bε(y0), we have

• if y0 ∈ [1, 2], then M−1(Bε(y0)) = [0,∞); or
• if y0 ∈ [3, 5], then M−1(Bε(y0)) = (−∞, 0].

In both cases, M−1(Bε(y0)) is a semi-neighborhood of x = 0. Consequently,
M(·) is a lower robust SVM with compact values.

4.3. Piecewise semi-continuous set-valued maps

Again, following [20] we define piecewise semi-continuity. Analogously, as
a sort of generalization, we also consider piecewise robustness properties
for set-valued maps (and of functions in Section 5.3). Here, we have the
property that piecewise robustness implies robustness, which is not true of
semi-continuity. Thus, some suitable decomposition of the domain space is
possible under the weaker robustness assumptions.

Let X and Y be two topological spaces. We say that X1, X2, . . . , Xr is
a partition of X iff the sets Xi are pairwise disjoint and X is the union of
all Xi. The partition is called robust iff each Xi is robust with respect to X.

M : X ⇒ Y is said to be piecewise l.s.c. (l.r.)[u.s.c.]{u.r.} iff there
exists a robust partition X1, X2, . . . , Xr of X such that for all i ∈ {1, . . . , r}
the restriction of M(·) to Xi is l.s.c.(l.r.) [u.s.c.] {u.r.} with respect to the
relative topology of Xi induced by the topological space X.

The proofs of the following two theorems are not available in their orig-
inal source [20]. Hence, they are supplied here for the sake of completeness.

Theorem 4.14 (Zheng et al. [20]). If M(·) is piecewise l.s.c., then M(·)
is l.r.

Proof. Let U ⊂ Y be any open set. We want to show that M−1(U) is a
robust set in X. Since, for each i = 1, . . . , r, M |Xi : Xi

−→→ Y is l.s.c. with
respect to Xi, we have that M−1(U) ∩ Xi is an open set in Xi. Hence,
there is an open set V ⊂ X such that Xi ∩ V = M−1(U) ∩ Xi. But, then
Xi ∩ V is a robust set in X, by Remark 2.2. Hence, for each i ∈ {1, . . . , r},
M−1(U) ∩Xi is a robust set. Subsequently, it follows that

r⋃

i=1

M−1(U) ∩Xi = M−1(U)

is a robust set in X.
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Similarly we have

Theorem 4.15 (Zheng et al. [20]). If M(·) is piecewise u.s.c., then M(·)
is u.r.

Proof. Let V ⊂ Y be any open set. We show that M+(V ) := {x ∈
X | M(x) ⊂ V } is a robust set in X. Since M : Xi

−→→Y is u.s.c. in the
relative topology of Xi, we have, for each i,

(M |Xi)
+(V ) = {x ∈ Xi | M(x) ⊂ V }

is an open set in Xi. Then the rest of the proof is as in Theorem 4.14.

In the following, we represent the interior of a set B with respect to the
relative topology induced in A by X, where B ⊂ A, by intA B.

Lemma 4.16. Let X be a topological space and A be a non-empty robust
subset of X. If B ⊂ A is such that intAB 6= ∅, then intXB 6= ∅.
Proof. Clearly, intA B is an open set in A. Hence, there exists O ⊂ X
open in X such that B ⊃ intAB = O ∩ A. Since A is robust in X and
O ∩A 6= ∅ (while intAB 6= ∅ and A 6= ∅) we have that O ∩ intXA 6= ∅. This
yields B ⊃ intAB = O ∩ A ⊃ O ∩ intXA 6= ∅. From this we obtain that
intXB ⊃ O ∩ intXA 6= ∅, which completes the proof.

If the set A ⊂ X is not assumed to be robust, then the above implication
fails to be true. We consider two examples.

Example 4.17. Let X = R, A = B = Q where Q is the set of rational
numbers. Observe that intAB 6= ∅. However, intXB = ∅ and A = Q is not
robust in X = R.

Example 4.18. Let the interval [a, b] ⊂ Rn be the convex hull of the points
a, b ∈ Rn and define A = [a, b]. Suppose the set B ⊂ A is robust in the
relative topology of A with respect to Rn. Again, this does not imply that
B is a robust set of Rn.

Analogously to open and closed sets in a topological space, we get the fol-
lowing statement for a robust set X0.

Lemma 4.19. Let X0 be a robust subset of a topological space X and assume
that X̂ ⊂ X0. If X̂ is robust in X0 in the relative topology of X0 with respect
to X, then X̂ is a robust set in X.
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Proof. Let x ∈ X̂ and N(x) be any open neighborhood of x with respect
to X. Then N(x) ∩X0 is the neighborhood of x in the relative topology of
X0. Since X̂ is robust in the relative topology of X0 we have

intX0

(
N(x) ∩X0 ∩ X̂

)
6= ∅

(note that X0 ∩ X̂ = X̂) and

intX0

(
N(x) ∩X0 ∩ X̂

)
⊂ N(x) ∩X0.

Since N(x) is open in X, N(x)∩X0 is robust in X (cf. Remark 2.2). Hence,
we get, by Lemma 4.16, that

int(N(x) ∩X0 ∩ X̂) 6= ∅
which implies that N(x) ∩ int(X̂) 6= ∅. Since N(x) is arbitrary, it follows
that x is a robust point of X̂. Therefore, using Proposition 2.5(1), X̂ is a
robust set in X.

Theorem 4.20. If M(·) is piecewise l.r. [u.r.], then M(·) is l.r. [u.r.].

Proof. Taking M(·) piecewise-l.r., let U ⊂ Y be any open set. We have to
show that

M−1(U) = {x ∈ X | M(x) ∩ U 6= ∅}
is a robust set. Since, M : Xi

−→→ Y is l.r. in the relative topology of Xi, we
have, for each i, that

(M |Xi)
−1(U) = {x ∈ Xi | M(x) ∩ U 6= ∅}

is a robust subset of Xi in the relative topology of Xi with respect to X.
Then, the rest of the proof follows by similar arguments as in Theorem 4.14
using Lemma 4.19.

4.4. Approximatable set-valued maps

In the same vein as for functions (cf. Section 3) there are similar statements
for the approximatability of SVM’s.

Definition 4.21 (lower approximatable SVM, [20]). Let X and Y be topo-
logical spaces and M : X −→→ Y be a SVM. Suppose that S is a set of points
of lower semi-continuity of M(·). Then M(·) is called lower approximatable
iff
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1. S is dense in X;
2. for any x0 ∈ X and y0 ∈ M(x0), there exist a net {xα}α∈Λ ⊂ S and a

net {yα}α∈Λ with yα ∈ M(xα) for every α ∈ Λ such that

lim
α

xα = x0 and lim
α

yα = y0.

Proposition 4.22 (Theorem 2.1, [20]). Any lower approximatable set-valued
map is lower robust.

Definition 4.23 (upper approximatable SVM, [20]). Let X and Y be topo-
logical spaces and M : X −→→ Y be a SVM. Suppose that S is a set of points of
upper semi-continuity of M(·). Then M(·) is called upper approximatable iff

1. S is dense in X;
2. for any x0 ∈ X there is a net {xα}α∈Λ in S such that for each neigh-

borhood U of x0 there is some directed set α(U), α(U) ⊂ Λ, such that

∀α ∈ α(U) : M(xα) ⊂ U.

Proposition 4.24 cf. [20]). Any upper approximatable set-valued map is
upper robust.

Proof. The proof is a similar as for Proposition 4.22 (see the proof of
Theorem 2.1 in [20]).

It has been indicated by Zheng et al. [19, 20] that robustness of SVM’s is
weaker than approximatability. However, if a lower or upper robust map has
a dense set of upper or lower semi-continuity, then it will be approximatable
(cf. Proposition 2.3 in [20]).

Remark 4.25. Furthermore, if X is a Baire and Y a second countable
topological spaces, then both kinds of approximatability of M(·) will be
equivalent to their corresponding robustness properties (cf. [20] for details).

5. Marginal value functions

5.1. Upper robustness of infimum

Let us next come to the investigation of the behavior of marginal functions
with respect to robustness properties of its defining data. Hence, we first
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consider the marginal function ϕ defined by

ϕ(x) := inf
y∈M(x)

ψ(x, y).(1)

Theorem 5.1 (upper robustness of infimum). Let ψ : X×Y → R be u.s.c.
on {x0}×M(x0), where M : X ⇒ Y is a l.r. set-valued map, then ϕ is u.r.
at x0.

Proof. Let c ∈ R and x0 ∈ Φc := {x | ϕ(x) < c}. We have to show
that Φc is a semi-neighborhood of x0. Let ε > 0 be arbitrary, then there
exists yε ∈ M(x0) such that ψ(x0, yε) < ϕ(x0) + ε. Since ψ is u.s.c. on
{x0}×M(x0), there exist open neighborhoods N(x0) of x0 and N(yε) of yε

such that

∀x ∈ N(x0),∀y ∈ N(yε) : ψ(x, y) ≤ ψ(x0, yε) + ε.

Since M(·) is l.r., yε ∈ M(x0) and N(yε) is a neighborhood of yε, then
M−1(N(yε)) is a semi-neighborhood of x0. Hence, Q := N(x0)∩M−1(N(yε)),
by Proposition 2.8(2), is a semi-neighborhood of x0, too. Thus, we have for
all x ∈ Q, ỹ ∈ M(x) ∩N(yε)

ϕ(x) = inf
y∈M(x)

ψ(x, y) ≤ ψ(x, ỹ) ≤ ψ(x0, yε) + ε < ϕ(x0) + 2ε.

Choosing ε > 0 such that 0 < 2ε < c−ϕ(x0), we have Q ⊂ Φc. Hence Φc is
a semi-neighborhood of x0.

Remark 5.2. In Theorem 5.1, the upper semi-continuity assumption on ψ
cannot be replaced by upper robustness (see Remark 2.2). But, if ψ is upper
robust, then M(·) has to be lower semi-continuous.

Corollary 5.3 (lower robustness of supremum). Let ψ : X × Y → R be
l.s.c. on {x0} ×M(x0), where M : X ⇒ Y is a l.r. set-valued map, then
the marginal value function

φ(x) := sup
y∈M(x)

ψ(x, y)

is l.r. at x0.
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Proof. The claim follows trivially, if we write

−φ(x) := inf
y∈M(x)

−ψ(x, y)

and observe that −φ is upper robust by Theorem 5.1. From, which follows
that φ is lower robust.

Corollary 5.4. Let (X, ρ) be a metric space and M : X ⇒ Y be a set-valued
map. If M(·) is l.r., r : R+ → R+ is continuous and strictly increasing on
R+, then the function

ϕ(x) = r (dist(x,M(x))) := inf
ξ∈M(x)

r (ρ(x, ξ))

is u.r.

Proof. The functions ρ and r are continuous and infξ∈M(x) r(ρ(x, ξ)) =
r(infξ∈M(x) ρ(x, ξ)). Then, using Theorem 5.1 and Proposition 2.15 the
claim follows.

This corollary guarantees that, when r is as above, ψ : X × X → R+,
ψ(x, ξ) := r(‖x − ξ‖) and the map M(·) is l.r., then the marginal function
ϕ(x) = dist(x,M(x)) is u.r..

Hu and Papageorgiou [12] stated and proved the following

Proposition 5.5 (Proposition 2.26, p. 45, in [12]). Let X be a Hausdorff
topological space, Y be a metric space, M : X −→→ Y and M(x) 6= ∅, ∀x ∈ X.
Then M(·) is l.s.c. if and only if for every fixed ξ ∈ Y , the function ϕξ :
X → R, ϕξ(x) := dist(ξ,M(x)), is u.s.c.,

where
ϕξ(x) = inf

y∈M(x)
ρ(ξ, y).

A similar statement of equivalence will be

Proposition 5.6. Let X be a Hausdorff topological space and Y be a metric
space, with a metric ρ on Y, M : X −→→ Y and M(x) 6= ∅, ∀x ∈ X. Then
M(·) is l.r. if and only if for every fixed ξ ∈ Y , the function ϕξ : X → R,
ϕξ(x) := dist(ξ,M(x)), is u.r..
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Proof. The forward implication follows from Theorem 5.1 with ψ(x, y) =
ρ(x, y). The backward implication follows with some modification of the
proof of Proposition 5.5, in [12]. Let V ⊂ Y be any open set and Bε(y) be
the open ball around y with radius ε. We need to show that M−1(V ) is a
robust set in X; i.e., if x ∈ M−1(V ), we have to show x is a robust point
of M−1(V ). Hence, M(x) ∩ V 6= ∅. Let ξ ∈ M(x) ∩ V and Bε(ξ) ⊂ V , for
some ε > 0. Hence, we have

{x ∈ X | ϕξ(x) < ϕξ(x) + ε}

is a non-empty robust set, since x ∈ {x ∈ X | ϕξ(x) < ϕξ(x) + ε} = {x ∈
X | ϕξ(x) < ε} as ϕξ(x) = 0. Thus, for any neighborhood N(x) of x we
have

N(x) ∩ int{x ∈ X | ϕξ(x) < ε} 6= ∅.

It then follows that there is x∗ ∈ N(x)∩ int{x ∈ X | ϕξ(x) < ε} and an open
neighborhood U(x∗) ⊂ N(x) ∩ int{x ∈ X | ϕξ(x) < ε} of x∗. Consequently,

∀x ∈ U(x∗) : ϕξ(x) < ε,

that is
∀x ∈ U(x∗) : dist(ξ, M(x)) < ε.

This implies that

∀x ∈ U(x∗),∃y ∈ M(x) : ‖ξ − y‖ < ε

and thus
∀x ∈ U(x∗) : M(x) ∩Bε(ξ) ⊂ M(x) ∩ V.

Hence, U(x∗) ⊂ M−1(V ). Which yields N(x) ∩ intM−1(V ) 6= ∅. Since
N(x) is an arbitrary neighborhood, we conclude that x is a robust point of
M−1(V ). As x ∈ M−1(V ) was chosen arbitrarily, we have that M−1(V ) is
a robust set in X.

5.2. Upper robustness of supremum

A similar statement of upper robustness could also be given for supremum
marginal value functions. Hence, let

φ(x) := sup
y∈M(x)

ψ(x, y).
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Theorem 5.7 (upper robustness of supremum). Let X and Y be topological
spaces and x0 ∈ X. If M : X −→→ Y is compact-valued, u.r. at x0 and
ψ : X × Y → R is u.s.c. on {x0} ×M(x0), then φ is upper robust at x0.

Proof. (cf. Theorem 2, p. 52 in [3]). Let c ∈ R be arbitrary and let
x0 ∈ [φ < c] be any, then we show that x0 is a robust point of [φ < c] or,
equivalently, [φ < c] is a semi-neighborhood of x0. Since, ψ is u.s.c. on
{x0}×M(x0), we have, for each y ∈ M(x0) and ε > 0 neighborhoods N ε(y)
and N ε

y (x0) of y and x0, respectively, such that

∀y ∈ N ε(y), ∀x ∈ N ε
y (x0) : ψ(x, y) ≤ ψ(x0, y) + ε.

The compactness of M(x0) implies the existence of {y1, . . . , yn(ε)} ⊂ M(x0)
such that:

M(x0) ⊂
n(ε)⋃

i=1

N ε(yi).

We define the open set:

N :=
n(ε)⋃

i=1

N ε(yi).

Since, M(·) is upper robust at x0, M(x0) ⊂ N and N is open, there is a
semi-neighborhood S(x0) of x0 such that

∀x ∈ S(x0) : M(x) ⊂ N

(As M(·) is u.r. at x0 and M(x0) ⊂ N , we may take the set S(x0) := {x ∈
X | M(x) ⊂ N}). Hence, the set

Nε(x0) := S(x0) ∩
n(ε)⋂

i=1

N ε
yi

(x0)

is a semi-neighborhood of x0 (see Proposition 2.8(2)). If D(x0) is any open
neighborhood of x0 in X, then D(x0) ∩Nε(x0) is also a semi-neighborhood
of x0. Let x ∈ D(x0) ∩Nε(x0) be arbitrarily chosen. Then it follows that

x ∈ S(x0), x ∈
n(ε)⋂

i=1

N ε
yi

(x0) and y ∈ M(x) ⊂ N.
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Hence, for some i0, 1 ≤ i0 ≤ nε(x), y ∈ N ε(yi0) and x ∈ ⋂n(ε)
i=1 N ε

yi
(x0) ⊂

N ε
yi0

(x0). This implies that ψ(x, y) ≤ ψ(x0, yi0) + ε. Moreover, since x ∈
D(x0) ∩Nε(x0) and y ∈ M(x) are arbitrary, we have that

∀x ∈ D(x0) ∩Nε(x0) : sup
y∈M(x)

ψ(x, y) ≤ ψ(x0, yi0) + ε ≤ φ(x0) + ε.

This yields
∀x ∈ D(x0) ∩Nε(x0) : φ(x) ≤ φ(x0) + ε.

Now, since x0 ∈ [φ < c] and ε > 0 are arbitrary, we can choose 0 < ε <
c− φ(x0). It then follows that

∀x ∈ D(x0) ∩Nε(x0) : φ(x) ≤ φ(x0) + ε < φ(x0) + c− φ(x0) = c.

From this we conclude that

∀x ∈ D(x0) ∩Nε(x0) : φ(x) < c.

Hence, D(x0)∩Nε(x0) ⊂ [φ < c]. Therefore, [φ < c] is a semi-neighborhood
of x0 and the claim follows from Proposition 2.8(2).

Corollary 5.8 (lower robustness of infimum). Let X and Y be topological
spaces and x0 ∈ X. If M : X −→→ Y is compact-valued and u.r. at x0; and
ψ : X × Y → R l.s.c. on {x0} ×M(x0), then the marginal value function

ϕ(x) = inf
y∈M(x)

ψ(x, y)

is lower robust at x0.

Proof. Use
−ϕ(x) = sup

y∈M(x)
[−ψ(x, y)]

and apply Theorem 5.7; i.e., −ϕ will be u.r. at x0. This concludes that ϕ is
lower robust at x0.

Remark 5.9. For similar reasons as in Remark 5.2, the upper semi-continuity
of ψ, in Theorem 5.7, cannot be weakened further. But if ψ is u.r., then
M(·) has to be u.s.c.
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5.3. Upper robustness over robust partitions

We call ϕ : X → R piecewise u.r. (l.r.) iff there exists a robust partition
X1, X2, . . . , Xr of X such that for all i ∈ {1, . . . , r} the restriction of ϕ to
Xi is u.r. (l.r.) with respect to the relative topology of Xi induced by the
topological space X.

Theorem 5.10. Let X be a topological space and ϕ : X → R. If ϕ is
piecewise u.r. (l.r.), then ϕ is u.r. (l.r.).

Proof. Let c ∈ R, such that Fc := {x ∈ X | ϕ(x) < c}. Then Fc =⋃
i∈I(Xi ∩ {x ∈ X | ϕ(x) < c}). Assume now x ∈ Fc and N(x) be any

open neighborhood of x with respect to X. Then we get x ∈ Xi ∩ {x ∈
X | ϕ(x) < c} for some i ∈ I; hence, N(x) ∩ Xi is a neighborhood of x
relative to Xi. Since ϕ is u.r. with respect to the relative topology on Xi,
we get intXi [Xi ∩ {x ∈ X | ϕ(x) < c} ∩ N(x)] 6= ∅ and intXi [Xi ∩ {x ∈
X | ϕ(x) < c} ∩ N(x)] ⊂ N(x) ∩Xi. Since N(x) is open and N(x) ∩Xi is
robust in X, Lemma 4.16 yields:

intX [{x ∈ X | ϕ(x) < c} ∩N(x)]

⊃ intX [Xi ∩ {x ∈ X | ϕ(x) < c} ∩N(x)] 6= ∅
⇒ N(x) ∩ int ({x ∈ Xi | ϕ(x) < c}) 6= ∅.

Consequently, it follows that x is a robust point of {x ∈ Xi | ϕ(x) < c}.
Consequently, by Remark 2.2, we have that the set {x ∈ X | ϕ(x) < c} is
robust. Therefore, ϕ is u.r. on X. The proof for l.r. follows along the same
line of arguments.

Theorem 5.11. Let ψ : X ×Y → R be an u.s.c. function and let M : X ⇒
Y be a piecewise l.s.c. (l.r.) SVM on X. Then the marginal function ϕ is
u.r. on X.

Proof. Since M(·) is piecewise l.s.c. (piecewise l.r.), there is a robust
partition X1, ..., Xr of X such that for each i ∈ I := {1, ..., r}, Xi is robust
in X and the restriction of M(·) to Xi is l.s.c. (l.r.). Thus, using [3, Theorem
4, p. 51] (or Theorem 5.1), we see that ϕ is u.s.c. (ϕ is u.r.) on Xi, which
implies that ϕ is u.r. on Xi for each i ∈ I. Therefore, by Theorem 5.10, ϕ
is u.r. on X.



84 A. Hoffmann and A. Geletu

Similarly,

Theorem 5.12. If ψ : X × Y → R is u.s.c. and M : X −→→ Y is a piecewise
u.s.c. (u.r.) compact-valued SVM, then the marginal function φ is u.r.

Furthermore, Corollary 5.3 and Corollary 5.8 could be reformulated to pro-
vide lower robustness properties of marginal functions, based on the corre-
sponding piecewise semi-continuity of M(·).

Remark 5.13. Obviously, to verify the upper robustness of ϕ and φ in
Theorems 5.11 and 5.12 we need only the upper semi-continuity of ψ on
Xi × Y with respect to relative topology for i = 1, . . . , r.

5.4. Approximatable marginal functions

Here, we stress the fact that X does not need to be a complete metric space.
In this case approximatability can be a sharper assumption than robustness.

Remark 5.14. If X is a complete metric space, then the upper approxi-
matability of ϕ follows immediately from its upper robustness by Proposition
3.9, with M(·) taken as lower robust.

To guarantee the upper approximatability of a supremum we need the fol-
lowing lemma.

Lemma 5.15. Let X be a metric space, φ : X → R be a function and S ⊂ X
be the set of points of upper semi-continuity of φ. If φ is upper robust and
S is dense in X, then φ is upper approximatable.

Proof. (The proof follows Zheng et al. (Proposition 3.4, [19]) for a robust
function.) Take an arbitrary x0 ∈ X. For each n ∈ N consider the set

Φn :=
{

x ∈ X | φ(x) < φ(x0) +
1
n

}
.

Then for all n ∈ N, x0 ∈ Φn and Φn is a robust set in X. Moreover, if
B 1

n
(x0) is any open ball around x0, then x0 ∈ B 1

n
(x0) ∩ Φn, ∀n ∈ N, and

B 1
n
(x0)∩Φn is a robust set in X. Hence, int(B 1

n
(x0)∩Φn) 6= ∅. Since, S is
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dense in X, for each n ∈ N, there is xn ∈ S ∩ (B 1
n
(x0)∩Φn). Consequently,

there is a sequence {xn} ⊂ S such that

lim
n→∞xn = x0, and

φ(xn) < φ(x0) +
1
n

, ∀n ∈ N.

The latter implies that lim supn φ(xn) ≤ φ(x0). Therefore, φ is upper ap-
proximatable by Definition 3.8.

Theorem 5.16 (upper approximatability of supremum). Let X and Y be
metric spaces. If M : X −→→ Y is upper approximatable and compact-valued;
and ψ : X × Y → R is u.s.c., then ϕ is upper approximatable.

Proof.

(i) Since M(·) is upper approximatable, M(·) is upper robust. Moreover,
since M(·) is compact-valued, Theorem 5.7 assures that φ is upper
robust.

(ii) At the same time, since M(·) is upper approximatable then M(·) has a
dense set S of upper semi-continuity. From this it follows that φ(x) =
supy∈M(x) ψ(x, y) is u.s.c. on S (Theorem 5, [3]); i.e., φ has a dense set
of upper semi-continuity.

Consequently, using (i) and (ii), the claim follows from Lemma 5.15.

Proposition 5.17 (upper approximatability of infimum). Let X and Y be
metric spaces. Suppose that the function ψ : X × Y → R is u.s.c. and
M : X −→→ Y is a lower approximatable SVM, then the function ϕ is upper
approximatable.

Proof. It follows from a similar argument as in Theorem 5.16 using The-
orem 5.1 and Lemma 5.15.

6. Robustness of SVM’s with given structures

Subsequently, we consider the robustness of set-valued maps defined by using
systems of functional inequalities. For issues related with the continuity
properties of such set-valued maps one finds the book of Bank et al. [5] and
the paper of Hogan [11] indispensable.
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6.1. The finite parametric case

6.1.1. Lower robustness

To begin with, let X and T be metric spaces and B : X −→→ T be a SVM
given by

B(x) := {t ∈ T | hi(x, t) ≤ 0, i ∈ I},

where hi : X × T → R, i ∈ I := {1, . . . , p}. We would like to characterize
robustness properties of B(·) through the functions hi, i ∈ I.

Proposition 6.1. Let B(·) be as given above and suppose that for each fixed
t ∈ T the set

4(t) :=
p⋂

i=1

{x ∈ X | hi(x, t) ≤ 0}

is non-empty and robust in X. Then for every open set U ⊂ T , the set
B−1(U) is robust; i.e., B(·) is a lower robust SVM.

Proof. Let U ⊂ T be any open set. It suffices to show that B−1(U) is a
robust set in X. Then

B−1(U) =
⋃

t∈U

B−1(t) =
⋃

t∈U

{x ∈ X | t ∈ B(x)}

=
⋃

t∈U

{x ∈ X | hi(x, t) ≤ 0, i ∈ I}

=
⋃

t∈U

p⋂

i=1

{x ∈ X | hi(x, t) ≤ 0}.

By assumption 4(t) =
⋂p

i=1{x ∈ X | hi(x, t) ≤ 0} is robust; hence, B−1(U)
is a union of robust sets. Therefore, by Remark 2.2, B−1(U) is a robust set.

Remark 6.2. Let B(·) and 4(t) be as given in Proposition 6.1. If for every
fixed t ∈ T and for each fixed i ∈ I, the functions hi(·, t) are quasi-convex,
then this is equivalent to that the set

4i(t) := {x ∈ X | hi(x, t) ≤ 0}
is convex. Furthermore, if int(4(t)) 6= ∅, then 4(t) will be a convex set
with a non-empty interior, which is a robust set (cf. Corollary 2.3). Hence,
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in such a case to guarantee that int(4(t)) 6= ∅, we may need to assume the
satisfaction of some Slater condition.

Proposition 6.3. Let X be a topological space, T be a normed linear space,
and B : X −→→ T be given according to

B(x) = {t ∈ T | hi(x, t) ≤ 0, ∀i ∈ I},

where I = {1, . . . , p}. If

1. for every pair (x0, t0) ∈ X × T , and every neighborhood V (t0) of t0,
there exists t̃ ∈ V (t0) such that

hi(x0, t0) ≤ 0 implies hi(x0, t̃) < 0, ∀i ∈ I;

2. hi0(·, t) is u.r. on X for each t ∈ T ;
3. hi(·, t) u.s.c. on X for each t ∈ T, i ∈ I \ {i0};

then B(·) is l.r. on X.

Proof. Let x0 ∈ X and t0 ∈ B(x0) and V (t0) be a neighborhood of t0.
Then we want to show that B−1(V ) is a semi-neighborhood of x0; i.e., x0 is
a robust point of B−1(V ).

By (i) we have some t̃ ∈ V (t0) with hi(x0, t̃) < 0. Using the upper semi-
continuity, there is some neighborhood U(x0) such that for all x ∈ U(x0)

hi(x, t̃) < 0, i ∈ I \ {i0}

and we know, by the upper robustness of hi0(·, t̃), that x0 ∈ {x ∈ X | hi0(x, t̃)
< 0} =: H and that H is robust. Hence, U(x0)∩H is a robust set containing
x0 (cf. Remark 2.2). Furthermore, B−1(V ) ⊃ U(x0) ∩H 3 x0; i.e., B−1(V )
is a semi-neighborhood of x0.

In the following corollary we use some well-known generalization of convexity
ensuring Slater’s condition, whenever level sets are not a singleton. For
convenience, we repeat here its definition.

Definition 6.4 (see e.g., [6]). A function h of the normed linear space T
in R is called strictly quasi-convex iff h(λs + (1− λ)t) < max{h(s), h(t)}
for all λ ∈ (0, 1) and all s, t ∈ T, s 6= t.
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Corollary 6.5 (cf. also Theorem 3.1.6, p. 41, [5]). Let X be a topological
space, T be a normed linear space and B : X −→→ T be given by

B(x) = {t ∈ T | hi(x, t) ≤ 0, i ∈ I}.

If the following conditions hold true:
1. for each fixed x0 ∈ X, B(x0) 6= ∅ and is not a singleton;
2. for each i ∈ I, hi(x, ·) : T → R is strictly quasi-convex, for every fixed

x ∈ X,
3. for one i0 ∈ I, hi0(·, t) is upper robust on X, for every fixed t ∈ T ;
4. for each i ∈ I \ {i0}, hi(·, t) is u.s.c., for each fixed t ∈ T ;

then B(·) is lower robust on X.

Proof. Assumptions 1 and 2 imply assumption 1 of Proposition 6.3 (see
Theorem 3.1.6 in [5]). The rest is as in the proof of Proposition 6.3.

Proposition 6.6. Let X be a topological space, T be a normed linear space,
and x0 ∈ X and t0 ∈ T . If hi(x0, ·) : T → R, i ∈ I, are convex and there is
some t̃ ∈ T \ {t0} such that for all i ∈ I :

hi(x0, t0) ≤ 0 ⇒ hi(x0, t̃) < 0 (Slater’s Condition),

then condition (i) of Proposition 6.3 is satisfied at x0.

Proof. Let hi(x0, t0) ≤ 0, ∀i ∈ I. Hence, by assumption, there is t̃ 6= t0

such that hi(x0, t̃) < 0,∀i ∈ I. This implies

tn =
1
n

t̃ +
(

1− 1
n

)
t0 → t0 for n →∞.

Subsequently, for a given neighborhood V (t0) and a sufficiently large n we
have that tn ∈ V (t0). Furthermore,

hi(x0, tn) ≤ 1
n

hi(x0, t) +
(

1− 1
n

)
hi(x0, t̃) < 0.

To relate lower robustness to a well-known result of Bank et al. [5], we
consider a function h : X → R and define its level set map as

Lh,X(α) := {x ∈ X | h(x) ≤ α}.
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Theorem 3.1.7 of Bank et al. [5] claims that Lh,X(·) is l.s.c. on X if and
only if h is continuous and has only global minima on X. However, we give
here a general statement indicating that lower robustness of Lh,X(·) does
not preclude the existence of local minima of h.

Proposition 6.7. Let X ⊂ Rn, T ⊂ Rm, X be a robust set in Rn and
B(x) := {t ∈ T | hi(t) ≤ xi, for all i, 1 ≤ i ≤ n}, where hi : T → R, 1 ≤
i ≤ n, are functions. If, for each fixed t ∈ T, int{x ∈ X | hi(t) ≤ xi, for
all i, 1 ≤ i ≤ n} 6= ∅, then the set-valued map B : X −→→ T is lower robust
on X.

Proof. Given x0 ∈ X and a t0 ∈ B(x0), observe that

n∏

i=1

[
hi(t0), +∞

)
∩X = B−1(t0) = {x ∈ X | hi(t0) ≤ xi, i = 1, . . . , n}.

Hence, x0 ∈ ∏n
i=1[hi(t0), +∞)∩X and int[

∏n
i=1[hi(t0), +∞)∩X] 6= ∅. This

shows that x0 is a robust point of
∏n

i=1[hi(t0), +∞) ∩ X. Consequently,
intB−1(t0) 6= ∅ and x0 is a robust point of B−1(t0) (cf. Proposition 2.8(1)).
Since x0 is arbitrary, B(·) will be a lower robust SVM.

In the special cases when X = Rn, the assumption int{x ∈ X | hi(t) ≤ xi,
for all i, 1 ≤ i ≤ n} 6= ∅ of Proposition 6.7 is obviously satisfied. Note also
that, in Proposition 6.7, the functions hi, i ∈ I, are not required to possess
any topological property like robustness or continuity.

6.1.2. Upper robustness

Once again, reiterating Definition 4.5, we have that B : X −→→ T is upper
robust at x0 ∈ X if for each neighborhood U of B(x0) there is a semi-
neighborhood SNH(x0) of x0 such that

∀x ∈ SNH(x0) : B(x) ⊂ U.

In contrast to the lower robustness of B(·), its upper robustness could follow
from relatively weaker assumptions. One standard result has been given
below.

Proposition 6.8 (see Theorem 3.1.2 [5] and Theorem 3 [11]). Let X and
T be Hausdorff topological spaces and let T be compact. Assume further that
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hi : X × T → R are lower semi-continuous, for all i ∈ I of the finite index
set I. Then B(·) with

B(x) = {t ∈ T | hi(x, t) ≤ 0, i ∈ I}

is u.s.c. on dom(B)‡ with respect to the relative topology on dom(B), hence,
it is u.r. on X. In addition, if dom(B) is closed, then B(·) is u.s.c. on X.

To give further results of upper robustness, we introduce the following defi-
nition:

Definition 6.9. Let X and T be topological spaces and h : X × T → Rp.
Then h(·, t) is called lower robust [l.s.c.] at x0 uniformly for all t ∈ T iff
for all ε > 0 there exists a semi-neighborhood SNHε(x0) [a neighborhood
U(x0)] of x0 such that

hi(x, t) > hi(x0, t)− ε,∀x ∈ SNHε(x0), ∀t ∈ T,∀i ∈ I
[
hi(x, t) > hi(x0, t)− ε, ∀x ∈ U(x0), ∀t ∈ T, ∀i ∈ I

]
.

Moreover, we need some regularity condition given by

Definition 6.10. Let X be a topological space and T be a metric space.
The function h : X × T → Rp is called strictly r-regular at x0 ∈ X, for
all t ∈ T , iff there is a strictly increasing function r : R+ → R+, r(0) = 0,
such that

dist(t, B(x0)) ≤ r

(
max

i=1,...,p

[
hi(x0, t)+

])
.

Proposition 6.11. Let X be a topological space, T be a compact metric
space, h : X × T → Rp, h := (h1, . . . , hp), and let B : X−→→T be a set-valued
map, such that for each x ∈ X, B(x) is given by

B(x) = {t ∈ T | h(x, t) ≤ 0}.
If

1. h(·, t) is lower robust [l.s.c.] at x0 uniformly for all t ∈ T ; and
2. h is strictly r-regular at x0 for all t ∈ T ,

then B(·) is upper robust [u.s.c.] at x0.

‡dom(B) = {x ∈ X | B(x) 6= ∅}
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Proof. (In the following, to prove the upper semi-continuity, replace SNH
by neighborhood.) Thus, for any neighborhood U of B(x0) we have to find
some semi-neighborhood SNHU (x0) such that

∀x ∈ SNHU (x0) : {t ∈ T | h(x, t) ≤ 0} ⊂ U.

But, since B(x0) is bounded, there is ε > 0 such that

Uε := {t ∈ T | dist(t, B(x0)) < ε} ⊂ U.

Consequently, we need only to show that there is a semi-neighborhood
SNHUε of x0 such that

∀x ∈ SNHUε : {t ∈ T | h(x, t) ≤ 0} ⊂ {t ∈ T | dist(t, B(x0)) < ε}.

From the lower robustness of h(·, t) at x0 uniformly for t ∈ T , we get, for any
σ > 0, a semi-neighborhood SNHσ(x0) such that, for each x ∈ SNHσ(x0)
and each t ∈ {t ∈ T | hi(x, t) ≤ 0, i = 1, . . . , p}, the following holds

hi(x, t) > hi(x0, t)− σ.

Hence,
hi(x0, t) < σ, ∀i = 1, . . . , p.

This implies

max
i=1,...,p

[
hi(x0, t)

]+
< σ.

Using strict r-regularity and the monotonicity of r, we obtain

dist(t, B(x0)) < r(σ).

Taking SNHUε := SNHr−1(ε)(x0) (i.e., ε := r(σ), by choosing σ = r−1(ε))
the proof is complete.

6.2. A semi-infinite case

In the marginal analysis of the generalized semi-infinite optimization, the
following parametric problem (with a parameter x) is considered (see e.g.
Geletu [1], Jongen et al. [13], Stein [21, 22], Weber [24], etc.):

f(ξ, x) → min



92 A. Hoffmann and A. Geletu

subject to the constraint ξ ∈ M(x), which is given by

M(x) := {ξ ∈ Y | G(ξ, x, t) ≤ 0, t ∈ B(x)}.

The SVM M(·) : X ⇒ Y is defined using a semi-infinite inequality system,
where G : Y × X × T → R and B : X −→→ T is again an SVM. Thus, the
problem possesses uncountably many constraints. The SVM B(·) is often
called an index map of the semi-infinite (finite number of variables, infinite
number of constraints) problem. In this section we are only interested in
the robustness properties of the map M(·). Define the marginal function

m(ξ, x) :=





sup
t∈B(x)

G(ξ, x, t), if B(x) 6= ∅;

−∞, if B(x) = ∅.

Obviously, we have that

M(x) := {ξ ∈ Y | m(ξ, x) ≤ 0}.

Corollary 6.12. Let M(x) := {ξ ∈ X | m(ξ, x) ≤ 0}. If

1. for each fixed x ∈ X,m(·, x) is strictly quasi-convex and M(x) is not a
singleton, and

2. for each fixed ξ ∈ Y, m(ξ, ·) is upper robust,

then M(·) is lower robust.

Proof. See Corollary 6.5.

Next we will try to guarantee the assumptions on the marginal function
m(·, ·) in Corollary 6.12 through the properties of G and B(·). We use the
following definitions of convexity of functions.

Definition 6.13 (γ-strongly convex function). Let Y be a linear space and
f : Y → R. If for any ξ1, ξ2 ∈ Y and α ∈ (0, 1) there are some fixed c > 0
and 0 < γ ≤ 2 such that

f(αξ1 + (1− α)ξ2) ≤ αf(ξ1) + (1− α)f(ξ2)− 1
2
cα(1− α)‖ξ1 − ξ2‖γ .

In Definition 6.14, when γ = 2, f is called strongly convex (cf. [23]).
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Definition 6.14 (γ-strongly quasi-convex function). Let Y be a linear
space and f : Y → R. If for any ξ1, ξ2 ∈ Y and α ∈ (0, 1) there are
some fixed c > 0 and 0 < γ ≤ 2 such that

f(αξ1 + (1− α)ξ2) ≤ max
{

f(ξ1), f(ξ2)
}
− 1

2
cα(1− α)‖ξ1 − ξ2‖γ ,

then f is called γ-strongly quasi-convex.

Example 6.15. If f : [a, b] → R, f ′(x) ≥ d > 0, for all x ∈ [a, b], then f is
γ-strongly quasi-convex for γ = 1; and for γ > 0, whenever [a, b] is a bounded
interval. The verification of this statement is straightforward. Accordingly,
the function f(x) = x3 + x is γ−strongly quasi-convex either for x ∈ R and
γ = 1 or for x ∈ [a, b] and γ > 0.

Obviously, a γ-strongly quasi-convex function is strictly quasi-convex. More-
over, we have

Lemma 6.16. γ-strongly convex implies γ-strongly quasi-convex.

Proposition 6.17. Let X and T be topological spaces, Y be a linear space
and B : X −→→ T be an SVM with compact values. If, for any fixed x ∈ X
and t ∈ T , G(·, x, t) is γ-strongly (quasi-) convex, then m(·, x) is strictly
quasi-convex.

Proof. For ξ1, ξ2 ∈ Y and λ1, λ2 ∈ [0, 1] we have

m(λ1ξ1 + λ2ξ2, x) = sup
t∈B(x)

[
G(λ1ξ1 + λ2ξ2, x, t)

]

≤ sup
t∈B(x)

[
max

{
G(ξ1, x, t), G(ξ2, x, t)

}
− 1

2
cα(1− α)‖ξ1 − ξ2‖γ

]

= max
{

sup
t∈B(x)

G(ξ1, x, t), sup
t∈B(x)

G(ξ2, x, t)
}
− 1

2
cα(1− α)‖ξ1 − ξ2‖γ

= max
{

m(ξ1, x),m(ξ2, x)
}
− 1

2
cα(1− α)‖ξ1 − ξ2‖γ .

This implies that m(·, x) is γ-strongly quasi-convex; hence, it is strictly
quasi-convex.

Observe that, in Proposition 6.17, to get the strict quasi-convexity of m(·, x),
we required no robustness property of B(·). However, this is not the case
for the robustness of m(ξ, ·).
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Proposition 6.18. If for each fixed ξ ∈ Y , G(ξ, ·, ·) is u.s.c. and B(·) is
upper robust and compact-valued, then m(ξ, ·) is upper robust.

Proof. For a fixed ξ ∈ Y , we could write

m(ξ, x) := sup
t∈B(x)

G(ξ, x, t).

Thus, if we let φ(x) := m(ξ, x) and ψ(x, t) := G(ξ, x, t), then the claim
follows from Theorem 5.7.

Summing up, given Y a linear space and

M(x) = {ξ ∈ Y |G(ξ, x, t) ≤ 0, t ∈ B(x)}

then M(·) will be a lower robust SV M

1. if
(a) G(·, ·, ·) is u.s.c. and M(x) is not a singleton;
(b) G(·, x, t) is (γ−) strongly (quasi−) convex, with respect to ξ ∈ Y

for each t ∈ B(x);
(c) B(·) is upper robust and compact-valued;

2. or if
(a) G(·, ·, ·) is u.s.c.;
(b) for each x ∈ X, there exists ξ̂ such that G(ξ̂, x, t) < 0 for all

t ∈ B(x) (note that G u.s.c. implies there is U(ξ̂) : G(ξ, x, t) < 0
for all ξ ∈ U(ξ̂));

(c) B(·) is upper robust and compact-valued.

6.3. Piecewise semi-continuity of a SVM with a structure

In Section 4.3, we have considered piecewise semi-continuity properties of
a general SVM. Correspondingly, we would like to characterize piecewise
semi-continuity for set valued maps with given structures.

Recall that M(x) = {ξ ∈ Y | G(ξ, x, t) ≤ 0, ∀ t ∈ B(x)}. We give now
a second characterization of lower robustness of M(·), besides the ones in
Section 6.2, based on piecewise upper semi-continuity of B(·), joint upper
semi-continuity of G and some weaker regularity condition of the system
defining M(x). Let X be a metric space, with metric ρ, let Y be a robust
subset of some topological space, and T be a topological space.
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Assumption (A): X has a robust partition (Xi)i∈I , I = {0, 1, 2, . . . , r+1},
where X0 := {x ∈ X|B(x) = ∅} and Xr+1 := {x ∈ X | M(x) = ∅} are
among the robust partitions.

Assumption (B): B : X −→→ T is compact-valued and B|Xi , i = 0, 1, 2, . . . , r,
r + 1 is u.s.c. with respect to the relative topology on Xi.

Definition 6.19 (local r-regularity). The system

G(ξ, x, t) ≤ 0, ∀t ∈ B(x)
ξ ∈ Y

is r-regular at (ξ0, x0) ∈ Y ×Xi if there is a semi-neighborhood SNH(x0) ⊂
Xi of x0 with respect to the relative topology of Xi and a non-decreasing
function rξ0,x0,SNH(x0) : R+ → R+ continuous at 0, with r(0) = 0 such that

∀x ∈ SNH(x0) : dist(ξ0,M(x)) ≤ r

(
max

t∈B(x)
[G(ξ0, x, t)]+

)
.

The r-regularity given in Definition 6.19 is quite weaker than the metric
regularity condition given by Klatte and Henrion [15]. In fact, from the
metric regularity follows the lower semi-continuity of M(·).
Theorem 6.20. Let X and Y be normed spaces. If G is u.s.c. on Y ×X×T ,
Assumptions (A), (B) are satisfied; and for all i ∈ {0, 1, . . . , r, r + 1} and
all x0 ∈ Xi the system defining M(x) is r-regular at each (ξ0, x0), for each
ξ0 ∈ M(x0), then M(·) is l.r. on X.

Proof. We show that M(·) is piecewise lower robust. That is we show that
for each i ∈ {0, 1, . . . , r + 1}, M(·) is lower robust on Xi. If x ∈ X0 we have
that M(x) = X; hence, M(·) is continuous on X0 in the relative topology.
For all x ∈ Xr+1 we get, from M(x) = ∅ that M(·) is l.r. on Xr+1. Thus, it
remains to discuss the case 1 ≤ i ≤ r.

Thus, let i ∈ {1, . . . , r} and x0 ∈ Xi. Let also ξ0 ∈ M(x0). By definition
of M(·) we have that

G(ξ0, x0, t) ≤ 0,∀t ∈ B(x0).

If we let g(ξ, x) := maxt∈B(x)[G(ξ, x, t)]+, then g(ξ0, x0) = 0. Since B(·) is
u.s.c. on Xi with respect to the relative topology of Xi, g(ξ, ·) is u.s.c. at
x0 in the topology of Xi. Hence, given ε > 0, there is a neighborhood Vε(x0)
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such that

g(ξ0, x) ≤ ε,∀x ∈ Vε(x0) ∩Xi.(2)

By the r-regularity at (ξ0, x0), we obtain that

∀x ∈ SNH(x0) ∩ [
Vε(x0) ∩Xi

]
: dist(ξ0,M(x))

≤ r

(
max

t∈B(x)

[
G(ξ0, x, t)

]+
)

= r(g(ξ0, x)).

Using (2) and the property of the function r(·), we obtain that

∀x ∈ SNH(x0) ∩ [
Vε(x0) ∩Xi

]
: dist(ξ0,M(x)) ≤ r(ε).

Now, given an arbitrary neighborhood U(ξ0) ⊂ Y of ξ0, there is ε > 0 (and
a corresponding Vε(x0)) such that the open ball B2r(ε)(ξ0) is contained in
U(ξ0). Accordingly, for each fixed x ∈ SNH(x0) ∩ [Vε(x0) ∩Xi], we deduce
that

B2r(ε)(ξ
0) ∩M(x) 6= ∅.

Accordingly, we find that

∀x ∈ SNH(x0) ∩ [
Vε(x0) ∩Xi

]
: M(x) ∩ U(ξ0) 6= ∅.

In other words

SNH(x0) ∩ [
Vε(x0) ∩Xi

] ⊂ M−1(U(ξ0)).

Since, SNH(x0) is a robust set with respect to the topology of Xi, we
have [intXi SNH(x0)] ∩ [Vε(x0) ∩ Xi] 6= ∅. Hence, intXi M−1(U(ξ0)) 6= ∅.
Moreover, x0 is a robust point of SNH(x0) ∩ [Vε(x0) ∩ Xi]; thereby, x0 is
robust point of M−1(U(ξ0)) in the relative topology of Xi. Since, x0 ∈ Xi is
arbitrary, then we conclude that M(·) is lower robust on Xi in the relative
topology. Therefore, M(·) is piecewise lower robust; and hence, it is lower
robust (cf. Theorem 4.20).

Observe that the upper semi-continuity of B(·) is not assumed on the whole
of X, whereas it is on each of the partitioning sets Xi of X.



On robustness of set-valued maps 97

Remark 6.21. Let X and Y be normed spaces. If the regularity condition
given by Definition 6.19 holds at (ξ0, x0) ∈ Y ×X, where ξ0 ∈ M(x0), for a
neighborhood V (x0) of x0 with respect to X and B(·) is u.s.c. on X, then
M(·) will be lower semi-continuous at x0. The verification of this follows
from a slight modification of the proof of Theorem 6.20.

For a related result of upper robustness, we make the following assumption:

Assumption(C): B|Xi , i = 1, . . . , r is l.s.c. with respect to the relative
topology of Xi.

Theorem 6.22. Let Y be a compact set. If G is l.s.c. on Y ×X × T and
Assumptions (A) and (C) are satisfied, then M(·) is u.r. on X.

Proof. Considering m(ξ, x) = maxt∈B(x) G(ξ, x, t), we get M(x) = {ξ ∈
Y | m(ξ, x) ≤ 0}. Then Assumption(C) and the lower semi-continuity of G
yield, by Theorem 4, Aubin and Cellina [3] that m is l.s.c. on Y ×Xi, 1 ≤
i ≤ r, in relative topology. Furthermore, since Y is compact, we have that
M(·) is u.s.c. on Xi in the relative topology of Xi, for each i ∈ {1, . . . , r}
(cf. Proposition 6.8).

From the above, we obtain that M(·) is piecewise-u.s.c. on X. Applying
Theorem 4.15, we conclude that M(·) is upper robust.

Remark 6.23. In Theorems 6.20 and 6.22 it suffices to ensure the semi-
continuity properties of G on Y ×Xi × T in the relative topology of Xi.

6.4. Characterization of robustness through constraint
qualifications

In this section, we try to find out some results connecting certain Mangasarian-
Fromovitz type constraint qualifications with the robustness of set-valued
maps.

Lemma 6.24. Suppose that X and O are robust and open sets, respectively.
Then X ∩O 6= ∅ implies intX ∩O 6= ∅
Proof. Obvious.

Let W be a normed space. We put, for ξ ∈ W ; λ, ρ > 0, the convex set

Kλ(ξ, ρ) := cone(ξ + ρB) ∩ λB

which has a nonempty interior.
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Definition 6.25. In a normed linear space W we define the tangential cone
T (X, x̄) of X ⊂ W at x̄ ∈ clX by

T (X, x̄) = {ξ ∈ W | ∀ε > 0,∀ρ > 0 : (x̄ +Kε(ξ, ρ)) ∩X 6= ∅}

which is known to be closed and which has the well-known properties

T (intX, x̄) ⊂ T (X, x̄) = T (clX, x̄) .

Lemma 6.26. If X is a robust set and x̄ ∈ clX then T (X, x̄) = T (intX, x̄).

Proof. Observe that T (intX, x̄) ⊂ T (X, x̄) = T (cl X, x̄) = T (cl(intX), x̄)
= T (intX, x̄)

Lemma 6.27. Suppose X is a robust subset of W , x̄ ∈ X (or x̄ ∈ clX). If
ξ0 ∈ T (X, x̄) and λ > 0, then int([x̄ +Kλ(ξ0, ρ)]∩X) 6= ∅ and x̄ is a robust
point of [robust point to] the set [x̄ +Kλ(ξ0, ρ)] ∩X.

Proof. Since T (X, x̄) = T (intX, x̄) and intKλ(ξ0, ρ) 6= ∅ and convex
(hence, robust) we get from Lemma 6.24 that ∀ε > 0, ∀ρ > 0 : ∅ 6=
int[x̄ + Kε(ξ0, ρ)] ∩ intX ⊂ int([x̄ + Kε(ξ0, ρ)] ∩ X). For each such ε < λ
we have ∅ 6= intKε(ξ0, ρ) ⊂ Kε(ξ0, ρ) ⊂ Kλ(ξ0, ρ) and intKε(ξ0, ρ) ⊂ εB.
Hence, in each ε-ball x̄+εB of x̄ there are interior points of [x̄+Kλ(ξ0, ρ)]∩X;
i.e., x̄ is a robust point of [x̄ +Kλ(ξ0, ρ)] ∩X if x ∈ X; or a robust point to
[x̄ +Kλ(ξ0, ρ)] ∩X if x ∈ clX \X.

Definition 6.28. (MFCQ) Let X and T be nonempty subsets of normed
spaces, x ∈ X and t ∈ B(x). Furthermore, let

I0 := {i ∈ I | hi (x̄, t̄) = 0}

represent the active index set of B(x). We say that the (MFCQ) is satisfied
at (x, t) iff

(i) hi is Frechet-differentiable at (x̄, t̄) for each i ∈ I0 and hi is continuous
at (x̄, t̄) for each i ∈ I \ I0;

(ii) there are vectors ξ0 ∈ T (X, x̄) and η0 ∈ T (T, t̄) such that, for each
i ∈ I0,

Dxhi (x̄, t̄) ξ0 + Dthi (x̄, t̄) η0 < 0.
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Theorem 6.29. Suppose, X and T are nonempty subsets of normed spaces,
X is robust, X × T ⊂ W , W is an open set, h : W → Rp and B : X ⇒ T is
a set-valued map defined by

B(x) = {t ∈ T | hi(x, t) ≤ 0,∀i ∈ I := {1, 2, . . . , p}}.

If the (MFCQ) is satisfied at all (x, t) ∈ {x̄} × B(x̄), then B(·) is lower
robust at x̄.

Proof. We show that for an arbitrary ε > 0 the pre-image B−1(Vε(t̄)) of
the neighborhood Vε(t̄) = (t̄ + εB) ∩ T is a semi-neighborhood of x̄, where

B−1 (Vε (t̄)) =
⋃

t∈Vε(t̄)

{x ∈ X | hi (x, t) ≤ 0,∀i ∈ I } .

By the continuity and linearity of the derivative (Dxh(x̄, t̄) , Dth(x̄, t̄)), there
are positive radii ρx and ρt such that for all i ∈ I0

Dxhi (x̄, t̄) ξ + Dthi (x̄, t̄) η < 0

for each λ > 0 and each (ξ, η) ∈ Kλ(ξ0, ρx)×Kλ(η0, ρt). The Taylor approx-
imation of hi at (x̄, t̄) for i ∈ I0

hi(x, t) = hi(x̄, t̄) + Dxhi(x̄, t̄) (x− x̄) + Dthi(x̄, t̄) (t− t̄) + o(x− x̄, t− t̄)

yields radii ε > γx, γt > 0 such that for all (ξ, η) ∈ Kγx(ξ0, ρx)×Kγt(η0, ρt)

hi(x̄ + ξ, t̄ + η) < 0

holds and the continuity of hi, for i ∈ I \ I0, yields radii ε > βx, βt > 0 such
that for all (ξ, η) ∈ βxB× βtB again the inequality

hi(x̄ + ξ, t̄ + η) < 0

is satisfied. It then follows that

B−1(Vε(t̄)) ⊃ B−1((t̄ + min(γt, βt)B) ∩ T ) ⊃ (x̄ + [Kγx(ξ0, ρx) ∩ βxB]) ∩X

= (x̄ +Kmin(γx,βx)(ξ0, ρx)) ∩X.

Hence, by Lemma 6.27, x̄ is a robust point of (x̄ + Kmin(γx,βx)(ξ0, ρx)) ∩X
which implies that B−1(Vε(t̄)) is a semi-neighborhood of x̄.
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Remark 6.30. If the (MFCQ) is satisfied separately with respect to x at
x ∈ X, for all t ∈ B(x); i.e., there is ξ ∈ Rn such that

Dxhi(x, t)ξ < 0, ∀i ∈ I0,∀t ∈ B(x),

then this implies again only the robustness of B(·) at x. However, if the
(MFCQ) is satisfied separately with respect to t for all t ∈ B(x̄), then,
as it is well-known, B(·) turns out to be lower-semi-continuous at x̄, since
Kγx(ξ0, ρx) can be replaced by the full neighborhood x̄ + γxB.

Next we try to give a similar characterization for set-value maps defined
with an infinite system. Thus, in the following, we suppose that X,Y, T are
nonempty subsets of normed spaces, B : X ⇒ T is a set-valued map and
the set-valued map M : X ⇒ Y is defined by

M(x) = {y ∈ Y | G(y, x, B(x)) ≤ 0} ,

where G(y, x, Q) ≤ 0 means that G(y, x, t) ≤ 0 for all t ∈ Q for a subset Q
of T . We use further the active index set

E(x, y) = {t ∈ T | G(y, x, t) = 0} ⊂ T.

Definition 6.31. We say the (EMFCQ) is satisfied for the system

G(y, x, B(x)) ≤ 0

with respect to Y ×X at (ȳ, x̄) iff
1. there is some τ > 0 such that G(·, ·, ·) is F-differentiable at (ȳ, x̄, t)

with respect to (y, x), the remainder property is satisfied uniformly in
t on a compact subsets of T and G(ȳ, x̄, ·), DyG(ȳ, x̄, ·), DxG(ȳ, x̄, ·) are
continuous at all t ∈ (E(ȳ, x̄) + τB) ∩ (B(x̄) + τB) ∩ T ;

2. there are directions η0 ∈ T (Y, ȳ), ξ0 ∈ T (X, x̄) such that for all t ∈
E(ȳ, x̄) ∩B(x̄)

DyG (ȳ, x̄, t) η0 + DxG (ȳ, x̄, t) ξ0 < 0.

Theorem 6.32. Suppose the robust subset X, the nonempty subset Y and
the nonempty, compact subset T are supplied with topologies induced from
normed spaces including X,Y and T respectively. Suppose G : Y ×X×T →
R is continuous and B : X ⇒ T is upper semi-continuous on X and the
defining system

G(y, x, B(x)) ≤ 0, x ∈ X, y ∈ Y
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of the set-valued map M : X ⇒ Y satisfies the (EMFCQ) with respect to
Y ×X at (y, x̄) for all y ∈ M(x̄). Then M(·) is lower robust at x̄.

Proof. Let first B(x̄) 6= ∅. We show that for an arbitrary ε > 0 the
pre-image M−1(Vε(ȳ)) of the neighborhood Vε(ȳ) = (ȳ + εB) ∩ Y , for an
arbitrary ȳ ∈ M(x̄), is a semi-neighborhood of x̄. We have

M−1(Vε(ȳ)) =
⋃

y∈Vε(ȳ)

{x ∈ X | G(y, x, B(x)) ≤ 0}.

The (EMFCQ) implies the existence of directions η0 ∈ T (Y, ȳ), ξ0 ∈ T (X, x̄)
such that for all t ∈ E(ȳ, x̄) ∩B(x̄)

DyG(ȳ, x̄, t)η0 + DxG(ȳ, x̄, t)ξ0 < 0

holds.

By the continuity and linearity of the derivative (DyG(ȳ, x̄, t), DxG(ȳ, x̄, t)),
the continuity of (DyG(ȳ, x̄, ·), DxG(ȳ, x̄, ·)) and the compactness of E(x̄, ȳ)∩
B(x̄) there are positive radii ρy, ρx, δ < τ such that

DyG(ȳ, x̄, t)η + DxG(ȳ, x̄, t)ξ < 0

for each λ > 0, each (η, ξ) ∈ Kλ(ξ0, ρy)×Kλ(η0, ρx) and each t ∈ ((E(ȳ, x̄)+
δB) ∩ (B(x̄) + δB)) ∩ T . Because of the upper semi-continuity of B(·) and
the compactness of T and B(x) there is a σ(δ) > 0 such that

B(x) ⊂ (B(x̄) + δB) ∩ T(3)

for all x ∈ X ∩ (x̄ + σB) (which is a relative open set in X). The Taylor
approximation of G at (ȳ, x̄, t)

G(y, x, t) = G(ȳ, x̄, t) + DyG(ȳ, x̄, t)(y − ȳ)

+ DxG(ȳ, x̄, t)(x− x̄) + o(y − ȳ, x− x̄, t)

and the continuity properties with respect to t and the uniform remainder
property in t yields radii ε > γy, γx > 0 such that for all (η, ξ) ∈ Kγy(η0, ρy)×
Kγx(ξ0, ρx) and for all

t ∈ ((E(ȳ, x̄) + δB) ∩ (B(x̄) + δB)) ∩ T
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the following inequality holds:

G(ȳ + η, x̄ + ξ, t) < 0.

The set-valued map (y, x) 7−→ E(y, x) is closed because of the continuity
of G on Y × X × T and the compactness of T implies the upper semi-
continuity (cf. Hogan [11]). Hence, there is ε > µ(δ) > 0 such that for all
(y, x) ∈ ((ȳ + µB) ∩ Y )× ((x̄ + µB) ∩X)

E(y, x) ⊂ E(ȳ, x̄) + δB.

Thus, using (3), we have

[(E(ȳ, x̄) + δB) ∩ (B(x̄) + δB)] ∩ T ⊃ E(y, x) ∩B(x)

for all (y, x) ∈ ((ȳ + µB) ∩ Y ) × ((x̄ + µB) ∩ X). So far we have proved
that the inverse map of the active constraints contains the intersection of the
semi-neighborhood Kγx(ξ0, ρx) and the neighborhood [(x̄+min{σ, µ}B)∩X]
of x̄.

The complement C of ((E(ȳ, x̄)+δB)∩(B(x̄)+δB))∩T with respect to
cl(B(x̄)+δB)∩T is a compact set in T (note that cl(B(x̄)+δB)∩T ⊃ B(x)).
Here is G(ȳ, x̄, t) < 0; i.e., G is non-active at (x̄, ȳ, t) for an arbitrary t ∈ C.
Hence, for all t ∈ C and some βy > 0, σ > βx > 0 we have, by the continuity
of G, that

G(y, x, t) < 0

for all (y, x) ∈ ((ȳ + βyB) ∩X)× ((x̄ + βxB) ∩ Y ). It follows

M−1(Vε(ȳ)) ⊃ M−1((ȳ + min(γy, βy, µ)B) ∩ Y )

⊃ (x̄ + [Kγx(ξ0, ρx) ∩ βxB ∩ µB]) ∩X

= (x̄ +Kmin(γx,βx,µ)(ξ0, ρx)) ∩X.

Hence, by Lemma 6.27, x is a robust point of (x̄ +Kmin(γx,βx,µ)(ξ0, ρx))∩X
which implies that M−1(Vε(ȳ)) is a semi-neighborhood of x̄.

Furthermore, if B(x̄) = ∅, then there is a neighborhood U of x̄ such
that B(x) = ∅ for all x ∈ U . It follows immediately that M(x̄) ≡ Y on U .
This even implies the continuity of M(·) at x̄.
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Remark 6.33. In the same manner as for the finite case, we get again lower
robustness if we have the (EMFCQ) being satisfied separately with respect
to x ∈ X, for all y ∈ M(x̄); and the lower semi-continuity if we have the
(EMFCQ) being satisfied separately with respect to y for all y ∈ M(x̄). In
both proofs, the compactness of B(x) plays an important role.

Remark 6.34. Both Theorems 6.29 and 6.32 can be extended to piecewise
upper semi-continuous set-valued maps B(·). Taking that {Xk}k∈J is a
robust partition of the robust set X, we demand the assumptions of the
theorems to hold true for each component Xk with respect to its relative
topology. Naturally, we have to take the tangential cones with respect to
Xk and not with respect to X. For instance, in Theorem 6.32, the piecewise
upper semi-continuity of B(·) with the validity of the regularity condition
(EMFCQ) on each Xk imply that M(·) is piecewise lower robust. Hence,
M(·) will be lower robust (see Theorem 4.20). Note that in this case, the
regularity separately in t (Theorem 6.29) or in y (Theorem 6.32) does not
yield lower semi-continuity, but at least lower robustness (see Theorem 4.20).

Using a right hand-side perturbation of the defining system of M(·), Klatte
and Henrion [15] have shown the equivalence of (EMFCQ) and metric-
regularity, which in turn implies the r-regularity. This equivalence requires
the lower semi-continuity of B(·). Under such instances, M(·) will be lower
semi-continuous. However, for us the upper semi-continuity of B(·) along
with a weaker form (EMFCQ) (Definition 6.31) is enough to derive the lower
robustness of M(·). Indeed, it would have been very interesting to find out
the relation between r-regularity (of Definition 6.19) and the (EMFCQ)
(Definition 6.31). But, this has been left out for a future research activity.

Furthermore, for set-valued maps with a given structure we have explic-
itly considered inequality constraints. However, when equality constraints
are assumed to be present one may need certain stronger regularity condi-
tions to guarantee the corresponding robustness properties.

In many instances, the upper semi-continuity (upper robustness) of a
set-valued map of the form

B(x) = {t ∈ T | hi(x, t) ≤ 0}

follows easily, if we demand that T is a compact set and hi, i = 1, . . . , p, are
continuous. In this respect, the uniform lower robustness (Definition 6.9)
and the r-regularity (Definition 6.10) assumptions of Proposition 6.11 will
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become superfluous. In any case, one may need to note that the validity of
continuity properties on partitioning sets imply robustness on the whole.

7. Conclusion

Before we wind up we need to note that:
Given a function f : X → R and a set valued map M : X−→→Y with

X being a second countable and Y a separable spaces, then upper robust
functions have a dense set of upper semi-continuity; a lower robust set-
valued map has a dense set of lower semi-continuity, etc. These yield the
most vital property for numerical computations; namely, approximatability.

With respect to both functions and set-valued maps we have shown that
continuity (robustness) properties on partitioning sets imply robustness on
the whole.

Marginal functions are useful, for instance, in the stability analysis of
optimization problems, in the study of multilevel optimization problems, in
the characterization of the feasible set of a generalized semi-infinite opti-
mization problems, etc. In particular, they could be used to define penalty
functions for certain optimization problems (cf. [1] and [2]). However, under
general assumptions, they are usually discontinuous. Hence, robust analysis
of marginal functions is a new and a general approach to these functions.

We considered set-valued maps with given structures defined through
only inequality systems; i.e., excluding equality constraints. The presence of
equality constraints is believed to create theoretical difficulties, since robust
sets are required to have non-empty interiors.

Klatte and Henrion [15] have shown that metric regularity is equivalent
to a strong form of (MFCQ), from which follows that M(·) is lower semi-
continuous. However, we used here the upper semi-continuity of B(·) along
with the weaker (MFCQ) (Definition 6.28) to guarantee the lower robustness
of M(·). The relationship between the (MFCQ) (Definition 6.28) and the
r-regularity (Definition 6.19) still remains to be found and it.

8. Summary of definitions and results

Based on the suggestion of our Referee we have compiled a review of the
main issues and definitions into a tabular form.
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X, Y , T topological spaces

Set: A ⊂ X

A open: A = int A

A robust: cl A = cl int A Def. 2.1

U neighborhood of x̄ x̄ ∈ int U

S semi-neighborhood (SNH) of x̄ x̄ ∈ S ∩ cl int S

Function: f : X → Y

continuous: f−1(open) = open

robust: f−1(open) = robust Definition 3.1

Functional: f : X → R
lower semi continuous (l.s.c.): [f > c] = open p. 563 in [6]

lower robust (l.r.): [f > c] = robust Def. 2.14

upper semi continuous (u.s.c.): [f < c] = open p. 563 in [6]

upper robustness (u.r.): [f < c] = robust Def. 2.10

SVM: M : X ⇒ Y

(Set-Valued lower semi continuous (l.s.c.): M−1(open) = open Def. 1.4.1/Prop.
Map) 1.4.4 in [4]

lower robust (l.r.): M−1(open) = robust Def. 4.1

upper semi continuous (u.s.c.): M+(open) = open Def. 1.4.2/Prop.
1.4.4 in [4]

upper robust (u.r.): M+(open) = robust Def. 4.5

ε-l.s.c. at x̄ if for all x ∈ Uε(x̄) M(x̄) ⊂ M(x) + εB Def. 6 in [3]

ε-l.r. at x̄ if for all x ∈ SNHε(x̄) M(x̄) ⊂ M(x) + εB Def. 4.11

ε-u.s.c. at x̄ if for all x ∈ Uε(x̄) M(x) ⊂ M(x̄) + εB Def. 5 in [3]

ε-u.r. at x̄ if for all x ∈ SNHε(x̄) M(x) ⊂ M(x̄) + εB Def. 4.8

SVM: M : M(x) M : M(x)
X ⇒ Y X ⇒ Y

ε-l.s.c. ⇒ l.s.c. p. 45 in [3] ε-u.s.c. ⇐ u.s.c. p. 45 in [3]

ε-l.s.c. ⇐ l.s.c. compact p. 45 in [3] ε-u.s.c. ⇒ u.s.c. compact p. 45 in [3]

ε-l.r. ⇒ l.r. Prop. 4.12 ε-u.r. ⇐ u.r. Prop. 4.9

ε-l.r. : l.r. compact Ex. 4.13 ε-u.r. ⇒ u.r. compact Prop. 4.10

ϕ(x) := infy∈M(x) ψ(x, y)

Marginal functional ϕ : X → R
M(x) M ψ ϕ

l.s.c. u.s.c. =⇒ u.s.c. Theorem 4 in [3]

l.r. u.s.c. =⇒ u.r. Theorem 5.1

l.s.c. u.r. =⇒ u.r. left to the reader (see Remark 5.9)

compact u.s.c. l.s.c. =⇒ l.s.c Theorem 5 in [3]

compact u.r. l.s.c. =⇒ l.r. Corollary 5.8

compact u.s.c. l.r. =⇒ l.r. left to the reader
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B(x) := {t ∈ T | hi(x, t) ≤ 0 , i = 1, 2, . . . , r}
SVM B by finite B : X ⇒ T h(x, ·) h(·, t) h(·, ·)

inequalities

lower semi Slater or sqc u.s.c. Theorem 12
continuity: in [11]

lower Slater or sqc one u.r./ Cor. 6.5,
robustness: others u.s.c. Prop. 6.6

upper semi T compact u.s.c. Theorem 3.2.1
continuity: in [5]

upper uniform l.r., Prop. 6.11
robustness: r-regular

B : X ⇒ T MFCQ h(·, ·)
for h ≤ 0

lower semi in t cont. Remark 6.30
continuity:

lower in (x, t) cont. Theorem 6.29
robustness: or in x

M(x) := {y ∈ Y | G(y, x, t) ≥ 0 ∀t ∈ B(x)}
SVM M by infinite M : X ⇒ Y G G(·, x, t) B(·)

inequalities

lower B(x) compact u.s.c. Slater or γ-sqc u.r. Prop. 6.18
robustness:

M : X ⇒ Y G EMFCQ B(·)
for G ≥ 0

lower semi T compact cont. in y u.s.c. Prop. 1.2.8
continuity: in [1]

lower T compact cont. in (y, x) or in x u.s.c. Theorem 6.32
robustness:

Robust partition: X =
Sm

k=1 Xk, Xk robust and pairwise disjoint

SVM: M : X ⇒ Y or
Functional f : X → R
l.s.c. (u.s.c.) on Xk ; l.s.c. (u.s.c.) on X
in relative topology

l.r. (u.r.) on Xk ⇒ l.r. (u.r.) on X Theorem 4.20
in relative topology

piecewise l.s.c. (u.s.c.) ⇒ l.r. (u.r.) on X Theorem 4.14
in relative topology or Theorem 4.15

Last, but not least, we would like to express our utmost indebtedness and
thankfulness to our anonymous referee for the several valuable hints and
suggestions that he/she forwarded to us.
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