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Abstract

This paper deals with an application of regression analysis to the
regulation of the blood-sugar under diabetes mellitus. Section 2 gives a
description of Gram-Schmidt orthogonalization, while Section 3
discusses the difference between Gauss-Markov estimation and Least
Squares Estimation. Section 4 is devoted to the statistical analysis
of the blood-sugar during the night. The response change of blood-
sugar is explained by three variables: time, food and physical activity
(”Bewegung”). At the beginning of the section it is shown that the
proposed method was very successful in 2007.
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1. Introduction

Diabetes mellitus is a disease where the glucosis-content of the blood
does not automatically decrease to a ”normal” value between 70 mg/dl
and 120 mg/dl (3,89 mmol/l and 6,67 mmol/l) between perhaps
one hour (or two hours) after eating. Several instruments can be
used to arrive at a relative low increase of the glucosis-content.
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Besides drugs (oral antidiabetica, insulin) the blood-sugar content can mainly
be influenced by

(i) eating, i.e., consumption of the right amount of food at the right time,

(ii) physical training (walking, cycling, swimming).

In a recent paper the author has performed a regression analysis on the
influence of eating during the night. The result was that one ”bread-unit”
(12g carbon-hydrats) increases the blood-sugar by about 50 mg/dl, while
one hour after eating the blood-sugar decreases by about 10 mg/dl per
hour. By applying this result-assuming its correctness - it is easy to eat
the right amount during the night and to arrive at a fastening blood-sugar
(glucosis-content) in the morning of about 100 mg/dl (5,56 mmol/l).

In this paper we try to incorporate some physical exercise into the model.
For every day a number is specified describing the physical activity during
the past day. Mostly it consists of the kilometers walked during the past
day. It turns out that the estimated regression coefficient associated with
the physical exercise is negative. Unfortunately it is not significant. At the
beginning of the night it is of moderate magnitude but in the morning it is
very small.

The paper starts in the next two sections with some mathematical top-
ics, namely Gram-Schmidt orthogonalization, Gauss-Markov theorem and
its application to the estimation of regression coefficients. Then the linear
model for the description of the behaviour of glucosis during the night is
formulated and some empirical data from 2008 are analyzed. A concluding
remark concerns the application of the results and the empirical outcome of
the corresponding method.

2. Gram-Schmidt orthogonalization

Given vectors x1, . . . , xk of the inner-product vector-space V with in-
ner product (x, y) the following task arises: Determine orthogonal vectors
q1, . . . , qk such that span{x1, . . . , xi} = span{q1, . . . , qi}, i = 1, 2, . . . , k .
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From the representation

xi =
i
∑

j=1

λj qj(1)

we get (xi, qj) = λj(qj, qj) and hence λj is arbitrary if qj = 0 and λj =
(xi, qj)/(qj , qj) if qj 6= 0. Thus

xi =
i
∑

j=1,qj 6=0

(xi, qj)

(qj, qj)
qj(2)

and

qi =



xi −
i−1
∑

j=1,qj 6=0

(x, qj)

(qj, qj)
qj





(qi, qi)

(xi, qi)
(3)

if (xi, qi) 6= 0. Therefore

qi =
(

xi − Pspan{q1,...,qi−1}xi

) (qi, qi)

(xi, qi)

=
(

P{q1,...,qi−1}⊥xi

) (qi, qi)

(xi, qi)
,(4)

where PMy denotes the orthogonal projection of y ∈ V onto the linear
subspace M cV . Since trivially

P{q1,...,qi−1}⊥xi ⊥ q1, . . . , qi−1(5)

it follows that.
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Theorem 2.1. Let q0 = 0 and qi = P{q0,...,qi−1}⊥xi, i = 1, . . . , k. Then
qi, i = 1, . . . , k form on orthogonal system of vectors such that
span{q1, . . . qi} = span{x1, . . . , xi}, i = 1, . . . , k.

Proof. From q0 = 0 it follows that q1 = x1 and span{q1} = span{x1}.
If span{x1, . . . , xi−1} and span{q1, . . . , qi−1} coincide then it follows that
qi = xi − Pspan{q1,...,qi−1}xi = xi − Pspan{x1,...,xi−1}xi ∈ span{x1, . . . , xi} and
xi = qi + Pspan{q1,...,qi−1}xi ∈ span{q1, . . . , qi}. Orthogonality follows from
the symmetry of the inner product.

Moreover (xi, qi) = (xi − Pspan{q1,...,qi−1}xi, qi) = (qi, qi) and (xj , qi) =
(qj , qi) = 0 if i > j.

3. Gauss-Markov theorem, estimation of regression

coefficients

Consider a linear model

Ey ∈ L Cov y = Q,(1)

where y is a n-dimensional random vector and L is a linear subspace of
the n-dimensional vector-space V .

The Best Linear Unbiased Estimators (BLUE) or Gauss-Markov
Estimators (GME) in this model is a linear mapping Gy from V to V
such that Gy is an unbiased estimator of Ey (i.e., Gl = l for all l ∈ L)
and Gy possesses smallest Covariance-matrix among all linear unbiased es-
timators of Ey.

Theorem 3.1 (Gauss-Markov). Gy is BLUE of Ey in the model Ey ∈
L, Cov y = Q iff

(i) Gy = y ∀ y ∈ L,

(ii) GQy = 0 if y ∈ L⊥ (Gy is the projection onto L along QL⊥).
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Proof. Drygas (1970), page 55. Besides this theorem another Gauss-
Markov theorem is important. It concerns the estimation of a simple
parametric function (a,Ey).

Theorem 3.2 (Gauss-Markov). (a, y) is BLUE of (Ey, c) iff

(i) a − c ∈ L⊥,

(ii) Qa ∈ L.

Such an estimator always exists.

Proof. From L ∩ QL⊥ = {0} it follows that L⊥ + Q−1(L) = V .

Therefore for given c ∈ V, c = b + a, Qa ∈ L and b ∈ L⊥. Since
(c − a) = b ∈ L⊥ it follows that (a, y) is an unbiased estimator of (c, Ey)
and Qa ∈ L. Let a1 ∈ V an alternative element of V such that c−a1eL

⊥,
i.e., (a1, y), is an unbiased estimator of (a,Ey). Then

(Qa1, a1) = Var(a1, y) =
(

Q(a1 − a) + a, (a1 − a) + a)
)

=
(

Q(a − a1), (a − a1) + (Qa, a) + 2(Qa, (a − a1)
)

.

(2)

The letter expression vanishes since Qa ∈ L and a−a1 = (a−c)−(a1−c) ∈
L⊥. Thus

(Qa1, a1) =
(

Q(a − a1), (a − a1)
)

+ (Qa,Qa) ≥ (Qa, a)(3)

with equality iff
(

Q(a − a1), (a − a1)
)

= 0, i.e., Q(a1 − a) = 0 or Qa1 =
Qa ∈ L.
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This Proof is essential a linear version of the Lehmann-Scheffé theorem which
says that an estimator (a, y) is BLUE iff (a, y) is uncorrelated with any
unbiased estimator (d, y) of 0. (d, y) (Schmetterer, 1966, p. 332) is an
unbiased estimator of 0 iff d ∈ L⊥ and we get the condition (Qa, d) =
0 ∀d ∈ L⊥, i.e., Qa ∈ L⊥⊥ = L. This approach is discussed in some detail
in Sengupta/Jammalamadaka (2003).

We want to apply this theorem to the estimation of βk in the case where

L = {Xβ = x1β1 + x2β2 + . . . + xkβk},(4)

where X = (x1, . . . , xk). The case where the estimation of (l, β), l ∈ R
k

is desived can be reduced to this case as follows. Let l1, . . . , lk−1 be an
orthogonal basis of (l)⊥ and lk = l. Then

Xβ =

k
∑

i=1

Xli(li, li)
−1(li, β)(5)

as can easily be verified for β = li, i = 1, . . . , k. Let

zi = Xli(li, li)
−1, γi = (li, β).(6)

Then Xβ =
k
∑

i=1
ziγi and the estimation of γk is desired.

Thorem 3.3. Let G1y be the BLUE of Ey in the model Ey ∈ im(X1), X1 =
(x1, . . . , xk−1) such that im(G1) ⊆ im(X1). Then if

W = Q + cXX ′(7)
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c ≥ 0 such that im(X) ⊆ im(W ) it follows that (a, y) is BLUE of βk iff

Wa = λ(I − G1)xk(8)

for some λ ∈ R and (a, xk) = 1.

Proof. (a, y) is an unbiased estimator of βk = (ek, β), ek = (0, . . . , 0, 1)′,
the k-th unit-vector iff (a,Xβ) = (β, ek) for all β ∈ R

k. If we let β = ei,
the i-th unit-vecor, i = 1, . . . , k − 1 then (a, xi) = 0 and if we let β = ek

then (a, xk) = 1.

The optimality condition of Theorem 3.2 tells us that

Qa ∈ L, i.e., Qa = a1 + µxk,(9)

where a1 ∈ im(X1) and µ ∈ R. This is equivalent to

Wa = a2 + µ1xk,(10)

where a2 ∈ im(X1) and µ1 ∈ R. Since a ∈
(

im (X1)
)⊥

it follows that

G1Wa = 0(11)

and

Wa = (I − G1)Wa = (I − G1)(a2 + µ1xk) = µ1(I − G1)xk.(12)

The question now arises how the equation Wa = µ1(I − G1)xk can be
solved. One attempt may be
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a =
W−(I − G1)xk

(xk,W−(I − G1)xk)
,(13)

where W− is a g-inverse W, i.e., WW−W = W .

This formula is indeed correct if

(i) W− is n.n.d and W−(I − G1) is symmetric

and

(ii) xk /∈ im(X1).

If xk ∈ im(X1) then βk is not estimable. Indeed, then Xl1 = 0 for some
l1 = (l11, . . . , l1k)

′ and l1k 6= 0. But (l1, l) = l1k 6= 0 and l = ek /∈ im(X ′),
i.e., (β, ek) = βk is not estimable.

If W− = W+, the Moore-Penrose inverse of W and

G1 = X1(X
′
1W

+X1)
+X ′

1W
+,

then W +G1 is symmetric, W + is n.n.d and im(G1) ⊆ im(X1), (I − G1)
′

W−(I − G1) = W−(I − G1)(I − G1) = W−(I − G1). It follows that the
dedominator in (12) is equal to

(

(I − G1)xk, W+(I − G1)xk

)

.(14)

This expression ranishes iff W +(I − G1)xk = 0 or WW +(I − G1)xk =
(I −G1)xk = 0 or xk ∈ im(X1). This is just the case when βk = (β, ek) is
not estimable.
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The question is now to compute a in (12). If Q = I, then orthogonal-
izing x1, . . . , xk by the Gram-Schmidt orthogonaliziation procedure yields
qk = (I −G1)xk In the general case the most elegant approach is to change
the inner product to (x, y)0 = (x,W +y). Then Cov y = I with respect to
this inner product and again the Gran-Schmnidt orthogonalization proce-
dure yields to the desired estimator.

(

See Drygas (2008)
)

.

Perhaps also βk−1, . . . , β1 are to be estimated. One way is to change
indices. This is not a very economic approach. From

xj =

j
∑

i=1

(xj , qi)

(qi, qi)
qi(15)

it follows that

X = QR,(16)

Q = (q1 . . . qk), R =

(

(xj , qi)

(qi, qi)

)

.(17)

The decomposition is called QR-decomposition. Since (xj , qi) = 0 if i > j
and (xi, qi) = (qi, qi) it follows that R is an upper triangular matrix with
diagonal elements equal to one. In Drygas (2008) it has been show that the
BLUE of β̂ can be obtained by solving the equation

Rβ̂ = α̂ = (α̂1, . . . , α̂k),(18)

where

α̂i =
(qi, y)

(qi, qi)
.(19)
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Since R is upper triangular, the equation Rβ̂ = α̂ can succesively be solved
beginning with β̂k.

There is an alternative more statistical approach to solve this problem.
Since

E(y − xkβk) =
k−1
∑

i=1

xiβi(20)

the BLUE of βk−1 in this model is given by

(qk−1, y − xkβk)

(qk−1, qk−1)
= β̃k−1.(21)

Unfortunately βk is unknown. But if we replace in (20) βk by its BLUE
β̂k the assertion concerning the expectation is still correct. The assention
is now that

(qk−1, y − xkβ̂k)

(qk−1, qk−1)
= β̂k−1(22)

is BLUE of βk−1. Since β̂k is BLUE of βk there exist a vector ak ∈ im(X)

such that β̂k = (ak, y).

Thus

(23)

β̂k−1 =
(qk−1, y) − (qk−1, xk)(ak, y)

(qk−1, qk−1)

=
(qk−1 − (qk−1, xk)ak, y)

(qk−1, qk−1)
.
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Since qk−1 − (qk−1, xk)ak ∈ im X, this estimator is the BLUE of βk−1.

Theorem 3.4. Let β̂i, β̂i+1, . . . , β̂k be the BLUE of βi, βi+1, . . . , βk, where
i ≥ 2.

β̂i−1 =

(

qi−1,

(

y −
k
∑

j=i

xj β̂j

))

(qi−1, qi−1)

is BLUE of βi−1.

Proof. Since

E



y −

k
∑

j=i

xj β̂j



 =

i−1
∑

j=1

xjβj

and qi−1 = xi−1 − Pspan{x1,...,xi−2}xi−1 it follows that

E



qi−1, y −

k
∑

j=i

xjβ̂j



 = βi−1(qi−1, xi−1) = βi−1(qi−1, qi−1).

Hence β̂i−1 is an unbiased estimator of βi−1.

Since β̂j is BLUE of βj it follows that there is an element aj ∈ im(X)

such that β̂j = (y, aj).
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Thus

β̂i−1 =



qi−1 −

k
∑

j=i

(qi−1, xj) aj , y





(qi−1, qi−1)
= (ai−1, y).(24)

Since ai−1 ∈ im(X), the theorem is proved.

Theorem 3.4 shows the difference between Gauss-Markow estimation and
Least Squares Estimation. While it is possible to find a GME/BLUE of a
linear function (l, β) by Least Squares we can only obtain an estimator of
the whole vector β. A minimization of

Q = (y − x1β1 − . . . xkβk, y − x1β1 − . . . − xkβk)(25)

with respect to β1 would yield

β̂1 =

(

y −
k
∑

i=2

βixi, x1

)

(x1, x1)
if x1 6= 0.(26)

If x1 = 0, then β̂1 can be chosen arbirary Plugging β̂1 into (23) yields

Q =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

y −
(x1, y)

(x1, x1)
x1 −

k
∑

i=2

βi

(

xi −
(xi, x1)

(x1, x1)
x1

)

)∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

.(27)

Now the minimization process can be continued and it is possible to find
the least squares estimators by mathematical induction.
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Remark 3.5. There is also an easy approach for obtaining the least
squares estimator without using the QR-decomposition. The minimizer of
‖ y − Xβ ‖2 is the orthogonal projection of y onto im(X), i.e.,

Xβ̂ = Pim(X)y.(28)

Let Xβ̂ = x1β̂1 + . . . + xkβ̂k. This is orthogonal projection if

(y − Xβ̂, a) = 0 ∀a ∈ im(X).(29)

By taking a = Xβ, the normal equations X ′Xβ̂ = X ′y are obtained. (29)
is, however, correct if it valid for a basis of im(X). If x1, . . . , xm are linear
independent and form a basis of im(X), then by choosing a = x1, . . . , xm

the equations

X ′
1Xβ = X ′

1y(30)

is obtained, where x1 = (x1, . . . , xm). Now if we replace {x1, . . . , xm} by
{q1, . . . , qm}, an orthogonal basis of span{x1, . . . , xm} then

(y − Xβ̂, qi) = 0, i = 1, . . . ,m,(31)

is the necessary and sufficient condition for the Least Squares Estimators.
Since (xj , qi) = δij(qi, qi) for j ≤ i it follows that we arrive at the triangular
equation system

y − xmβ̂m −

k
∑

j=m+1

βj(xj, qm) = 0(32)
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or



y −

k
∑

j=m+1

βjxj , qm



 = β̂m(qm, qm)(33)

and

(34)



y −
m
∑

j=i+1

β̂jxj −
k
∑

j=m+1

βjxj, qi





= β̂i(qi, qi), i = m − 1, . . . , 1.

We see that βm+1, . . . , βk are completely arbitrary. An unique solution is
only available if m = k.

4. Statistical analysis of diabetes mellitus

This section is devoted to the study of the behaviour of blood-sugar during
the night. The following strategy is followed to control the blood-sugar and
to arrive at a ”near normal” value in the morning:

The blood-sugar is measured in the evening just before bedtime. If
the blood-sugar is above 150 mg/dl (8,32 mmol/l) nothing is eaten. If
the value is 100 mg/dl (5,55 mmol/l) or below then one bread-unit (BE)
(12g Carbon-hydrats) is eaten. If the value is between 100 mg/dl (5,55
mmol/l) and 150 mg/dl (8,32 mmol/l) then a smaller amount is eaten. For
example if the value is 120 mg/dl (6,66 mmol/l), then 0,6 BE are eaten
(linear interpolation). The blood-sugar is again measured during the night
at perhaps 2 a.m. or 3 a.m. and it is assumed that the following is ap-
proximately correct: one bread-unit increases the blood-sugar within one
hour by about 50 mg/dl (2,77 mmol/l). After this hour the blood-sugar
decreases by about 10 mg/dl (0,55 mmol/l) per hour. As an example
consider the following situation (1.10.2008): At 2.11. a.m. a value of 93
mg/dl (5,16 mmol/l) is measured. The decision was now to eat 0,8 BE.
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According to the assumption made before the blood-sugar increases to 133
mg/dl (7,38 mmol/l) and will arrive at about 6.11. a.m. at a value of 103
mg/dl (5,72 mmol/l). The actual value at 7,24 a.m. was 108 mg/dl (5,99
mmol/l).

My diabetic career began in 1974 just at the end of the era Nixon. The
fastening value was 230 mg/dl (12,76 mmol/l). The proposed therapy con-
sisted of taking one tablet of a very well known sulfonylurea both in the
morning and in the evening. A physician at another place declared that a
tablet should not be taken in the evening unless some food is eaten during
the night. Since the winter-term 1974/1975 I worked at the University of
Frankfurt am Main. I decided to consult the endocrinologist Karl Schöffling
at the Klinikum of the Johann Wolfgang Goethe-Universität. Concerning
the tablets he declared:

”Man soll nicht mit Kanonen auf Spatzen schießen.”

As a consequence of this statement the food-strategy was changed according
the principle ”Eat the right at the right time.” Drugs were only occasionally
taken until 1982/83. After a new visit in the clinic of Karl Schöffling 1
mg of a not so well known sulfonylurea was taken in the morning. This
medication remained valid for a long time until 1994. Karl-Heinz Usadel,
the successor of Karl Schöffling at the chair for endocrinology at the JWG-
Universität, now increased the sulfonylurea to 3 mg per day. 2 mg should
be taken in the morning, 1 mg in the evening. The latter proposal was very
surprising to me. The explanation was that the opinion about the drugs
has changed. Also during the night insulin is needed. There was, however,
no change concerning the food that should be consumed in the evening. Up
to now it is recommended that the patient should eat one bread-unit (12 g
carbon-hydrats) just before bedtime.

It is a rather contradictory approach to take simulatanmeusly mea-
sures against both high and low blood-sugar values. This can’t be cor-
rect. At least the amount of food consumed just before bedtime should
depend on the blood-sugar at this time. In this way I arrived at the (100,
150)-rule. Together with the (10,50)-rule applied during the night an op-
timal fastening value can be obtained in the morning besides some excep-
tional situations (flight, sickness etc.) The drugs in the evening are fixed.
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They are not subject to any change. Besides 1 mg of a very well known
third generation sulfonylurea, 1 mg of a sensitizer and 250 mg of a bigunaid
is taken. The following table shows the successfulness of the method.

Table 1. Fastening Glucosis 2007 (every 8th day).

117 102 114 83 90 105 126 111 91 89 90 98 123

118 94 110 70 108 94 95 95 100 100 147 95 93

85 98 123 101 119 104 97 97 99 100 127 151,5 102

101 103 115,5 102 126 115

Mean m = 105, 369565 . . ., Standard-Deviation (SD) s = 15, 16884, s(46) =
15, 003056 Computed HbA1c = (m + 86)/33, 3 = 5, 7468339.

In a recent paper
(

Drygas (2008)
)

the author has studied the behaviour
of glucosis during the night. The following models were formulated:

(I) y/(t − D) = α + βx/(t − D) + ε,(1)

(II) y = α(t − D) + β(x) + γ.(2)

Here y is the difference of the glucosis-values either between night-time and
the evening of the past day or between the morning-time and the night-time.
x is the amount of food consumed in the evening of the past day and during
the night, respectively. t is the time passed between the two measurements
in the night and in the morning, respectively. D = I{x>0}, i.e., D = 1, if
something is eaten and 0 otherwise. α and β are regression parameters
and ε and γ, respectively are the disturbance termes.
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The stochastic assumptions are

E(ε) = 0, E(γ) = 0, E(εε′) = σ2I, E(γγ′) = σ2
0I.(3)

The estimated parameters were as follows:

Table 2. Estimated regression coefficients.

α β

Evening/Night I −8, 159 99, 6107

Evening/Night II −10, 3167 105, 68752

Night Morning I −11, 2354 47, 0156

Night Morning II −8, 8415 32, 724

It is supposed that these results support the (10, 50)-hypothesis.

The idea behind the models is that the blood-sugar increases by about
β mg/dl within one hour and decreases thereafter by about −α mg/dl per
hour.

In this paper we want to extend this model by the inclusion of physical
exercise during the past day. It was observed that the case of intensive phys-
ical activity during the past day the glucosis-content was very low during
the night.

The new model is

y = α(t − D) + βx + γB + ε,(4)

where B (”Bewegung”) measures the amount of physical activity during the
past day. As already mentioned in the introduction B mostly consists of
the kilometers of walking performed during the past day. The data are as
follows:
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.
D

r
y
g
a
s

Evening / Night y = α(t − D) + βx + γB + ε, D = I{x>0}

Date y t t-D x B

1. 11./12.4.08 -52 3,52 2,52 1,0 10
2. 12./13.4.08 + 11 4,83 3,83 0,5 7
3. 13./14.4.08 + 27 4,98 3,98 1,0 7
4. 14./15.4.08 - 21 3,3 3,3 0 3
5. 15./16.4.08 -53 5,8 4,8 0,2 9
6. 16./17.4.08 +9 3,25 2,25 0,5 3
7. 17./18.4.08 -33 4,57 4,57 0 6
8. 18./19.4.08 +31 5,2 4,2 0,8 6
9. 19./20.4.08 +9 2,72 2,72 0 4

10. 20./21.4.08 -79 4,95 4,95 0 1

Mean m −15, 1 3,712 0,4 5,6
σ = σ9 37,9720006 0,9711711 0,4189935 2,836273

9σ2
g =

10
∑

i=1

(zi − z̃)2 12976, 914 8, 48856 1, 58 72, 4

(z, z) = 9σ2
g + 102

m 15257 146, 278 3, 18 386

y = a4 + b4B, y = −16, 925414 + 0, 3259668B, r = 0, 0243 476
y = −30, 188608 +37, 721519x, r = 0.4162289

(y, z) −111, 561 −0, 8 −822
(B, z) 208, 17 28, 6
(x, z) 13, 86

q1 = x, q2 = (t − D)− (t−D,x)
(x,x) x, q3 = B − (B,x)

(x,x) x − (B,q2)
(q2,q2)

q2

(qi, qi) −668, 59321 3, 18 47, 55042
(qi, y) 85, 869321 −0, 8 −164, 5260714

y = α̂(t − D)+ β̂x + ε̂ = −7, 786171(t− D) + 33, 68431x + ε̂

y = α̃(t − D)+ β̃x + γ̃B + ε̃ = −4, 4209447(t− D) + 50, 15828x− 3, 460034B + ε̃
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The measures of determination are as follows:

(5)

R̂2 =
1

(y, y)

(

(q1, y)2

(q1, q1)
+

(q2, y)2

(q2, q2)

)

=
1

15257

(

0, 64

3, 18
+

(668, 59321)2

85, 869321

)

= 0, 34129 . . .

R2 =
1

15257

(q3, y)2

(q3, q3)
+ R̂2 = 0, 3785 . . .(6)

Thus the explanation of the data via both models is still very poor.
Moreover, the coefficient γ̃ is not significant, i.e., the hypothesis γ = 0
can not be rejected in the case of a normal distribution of y.
The test-statistic is

γ̃
(

Var (γ̃)
) 1

2

=
γ̃(q3, q3)

1

2

σ
,(7)

which follows a normal distribution N(0, 1). Since σ is unknown it will be
replaced by an estimator σ̃. This estimator is obtained from

σ̃2 = s2 =
1

7

(

1 − R̃2
)

(y, y) = 1354, 5753 =
(

36, 804528
)2

.(8)

The test-statistic is therefore
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H

.
D

r
y
g
a
s

Night / Morning y = α(t − D) + βx + γB + ε, D = I{x>0}

Date y t t-D x B

1. 12.4.08 +13 5,2 4,2 0,8 10
2. 13.4.08 -34 3,62 3,62 0 7
3. 14.4.08 -25 5,23 4,23 0,2 7
4. 15.4.08 - 37 5,75 4,75 0,2 3
5. 16.4.08 + 4 2,97 1,97 0,4 9
6. 17.4.08 -21,5 5,43 4,43 0,25 3
7. 18.4.08 -31 4,45 4,45 0 6
8. 19.4.08 -31 3,33 3,33 0 6
9. 20.4.08 -38,5 4,92 4,92 0 4

10. 21.4.08 -14 3,75 2,75 0,14 1

Mean m −21, 5 3, 865 0, 199 5, 6
σ = σ9 17, 559423 0, 9418451 0, 2507965 2, 836273

∑10
i=1(zi − z)z = 9σ2

9 2775 7, 98365 0, 5660899 2, 836273
(z, z) = 9σ2

g + 10m2 7397, 5 157, 3659 0, 9621 386

(y, z) −906, 445 −7, 735006 −962, 5
(β, z) 14, 49 211, 33
(x, z) 7, 4365

q1 = x, q2 = (t − D) − (t−D,x)
(x,x) x, q3 = B − (B,x)

(x,x) x − (B,q2)
(q2,q2)q2

(qi, qi) 99, 467772 0, 9621 68, 57568
(qi, y) −846, 36015 −7, 735 −0, 81453

y = a1 + b1x = −38, 821274 + 61, 91595x, r = 0, 8843288
y = a2 + b2B = −40, 179558 + 3, 3356354B, r = 0, 538786

y = α̃(t − D)+ β̂x + ê = −8, 508882(t− D) + 57, 968077x + ê

y = α̃(t − D)+ β̃x + γ̃B + ẽ = −8, 4970268(t− D) + 58, 15905x− 0, 0118778B + ẽ
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t7 =
γ̃(q3, q3)

1

2

s
=

γ̃ · 6, 8956523

36, 804528
= −0, 6482678 . . .(9)

This value is not significant for a t-distribution with 7 degrees of freedom.

The coefficient of B is very small and clearly not significant. The mea-
sures of determination are

R̂2 =
1

(y, y)

(

(q1, y)2

(q1, q1)
+

(q2, y)2

(q2, q2)

)

= 0, 9735159

and

R2 = R̂2 +
(q3, y)2

(q3, q3)

1

(y, y)
= 0, 97351720785,

respectively.
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