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Abstract

The statistics of generalized F tests are quotients of linear combi-
nations of independent chi-squares. Given a parameter, θ, for which
we have a quadratic unbiased estimator, θ̃, the test statistic, for the
hypothesis of nullity of that parameter, is the quotient of the positive
part by the negative part of such estimator. Using generalized polar
coordinates it is possible to obtain selective generalized F tests which
are especially powerful for selected families of alternatives.
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We build both classes of tests for the orthogonal and associated
mixed models. The associated models are obtained adding terms to
the orthogonal models.

Keywords: selective generalized F tests, generalized polar coordi-
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1. Introduction

Generalized F tests were introduced by Michalski and Zmyślony (1996)
and (1999), first for variance components and later for linear combina-
tions of parameters in mixed linear models. The statistics of these tests
are the quotients of the positive by the negative parts of quadratic unbiased
estimators.

To obtain selective generalized F tests for the fixed effects part of mixed
models generalized polar coordinates are used, (see Nunes and Mexia, 2004).
The statistic of these tests is the statistic of the generalized F tests for the
same hypothesis coupled with a vector of central angles. In this way it is
possible to increase the test power for the selected family of alternatives.
This possibility had already been considered for the usual F tests (see Dias,
1994). Moreover both F and selective F tests have been considered for
balanced cross-nesting models (see Fonseca et al., 2003, and Nunes et al.,

2006).
The distributions of the test statistics of generalized and selective genera-

lized F tests have been studied (see Fonseca et al., 2002, and Nunes and
Mexia, 2006).

In what follows we consider generalized and selective generalized F tests
for orthogonal mixed models. In this way we extend the results of Nunes
et al., (2006) for balanced cross-nesting models. We will obtain interest-
ing monotonicity properties that enable us to consider the extension of our
results to associated models. These models are obtained adding terms to
the orthogonal mixed models. Actually such extension has already been
considered (see Nunes and Mexia 2006), for balanced cross-nesting.

The next section is divided into two subsections, on distributions and
algebraic model structure. The results presented in this section will be used
in the study, first of generalized and then of selective generalized F tests,
for orthogonal mixed models.
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2. Preliminary results

2.1. Distributions

The vectors in this section will have k components, those of 1 [p
i
] being equal

to 1 [0 except the i-th which is 1] and q
i

= 1 − p
i
, i = 1, ..., k. Moreover

uov will be the vector with components uivi, i = 1, ..., k, and χ2
g,δ will be

a chi-square with g degrees of freedom and non-centrality parameter δ. We
will only consider independent chi-squares.

With h < k let Fh(.|a, g, δ) be the distribution of

(2.1) =h(a, g, δ) =

h∑

i=1

aiχ
2
gi,δi

k∑

i=h+1

aiχ
2
gi,δi

.

In Nunes and Mexia (2006) it was shown that

(2.2)

Fh(z|a, g, δ)

= e

−
1

2

k∑

i=1

δi +∞∑

j1=0

...

+∞∑

jk=0

k∏

i=1

(
δi
2

)ji

k∏

i=1

ji!

Fh

(
z|a, g + 2j, 0

)
.

Consider the `-th component of the non-centrality parameter vector δ, δ`,
we can rewrite the previous expression as

(2.3) Fh

(
z|a, g, δ

)
= e−

δ`
2

+∞∑

j=0

(
δ`

2

)j

j!
Fh

(
z|a, g + 2jp

`
, q

`
δ
)
.
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Besides this we have

(2.4)





Pr




h∑

i=1

aiχ
2
gi,δi

k∑

i=h+1

aiχ
2
gi,δi

<

h∑

i=1

aiχ
2
gi,δi

+ ai′χ
2
2

k∑

i=h+1

aiχ
2
gi,δi




= 1, i′ = 1, ..., h

Pr




h∑

i=1

aiχ
2
gi,δi

k∑

i=h+1

aiχ
2
gi,δi

>

h∑

i=1

aiχ
2
gi,δi

k∑

i=h+1

aiχ
2
gi,δi

+ ai′χ
2
2




= 1, i′ = h+ 1, ..., k

,

and since the second fractions will have distribution Fh(.|a, g + 2p
i′
, δ), i′ =

1, ..., k, we have

(2.5)





Fh(z|a, g + 2(j + 1)p
i′
, δ) < Fh(z|a, g + 2jp

i′
, δ),

j = 0, ..., i′ = 1, ..., h

Fh(z|a, g + 2jp
i′
, δ) < Fh(z|a, g + 2(j + 1)p

i′
, δ)

j = 0, ..., i′ = h+ 1, ..., k

.

Now

(2.6)

∂Fh(z|a, g, δ)

∂δi′
=

1

2
e−

δ
i′

2

+∞∑

j=0

(
δi′

2

)j

j!

(
Fh

(
z|a, g + 2(j + 1)p

i′
, q

i′
δ
)
− Fh

(
z|a, g + 2jp

i′
, q

i′
δ
))
,
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so

(2.7)





∂Fh(z|a, g, δ)

∂δi′
< 0, i′ = 0, ..., h

∂Fh(z|a, g, δ)

∂δi′
> 0, i′ = h+ 1, ..., k

.

Let us now assume that δi, i = 1, ..., k, to be realizations of the non-negative
random variables Vi, i = 1, ..., k, components of V , with distribution GV

and moment generation function λV . We put

(2.8) λ
<j>

V (u) =
∂j1+...+jkλV (u)
∏k

i=1
∂uji

i

,

and point out that λV (u) is defined whenever u ≤ 0.

The distribution of =h(a, g, V ) will be

Fh(z|a, g, λV )

=

∫
+∞

0

...

∫
+∞

0

e

−
1

2

k∑

i=1

vi

+∞∑

j1=0

...

+∞∑

jk=0

k∏

i=1

(vi

2

)ji

k∏

i=1

ji!

Fh(z|a, g + 2j, 0)dGV (v)(2.9)

=
+∞∑

j1=0

...
+∞∑

jk=0

λ<j>
(
−1

2
1
)

k∏

i=1

(2jiji!)

Fh(z|a, g + 2j, 0).
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It is also easy to see that, if Pr(V > 0) = 1,

(2.10)





Fh(z|a, g, λV ) < Fh(z|a, g, λq
i
V ), i = 1, ..., h

Fh(z|a, g, λV ) > Fh(z|a, g, λq
i
V ), i = h+ 1, ..., k

,

since the i-th component of q
i
V will be null while the corresponding

component of V will be positive with probability one.

2.2. Models structure

In this section we will use commutative Jordan algebras, CJA. These are lin-
ear spaces constituted by symmetric matrices that commute and containing
the squares of their matrices. Seely (1971) showed that for any CJA A there
exists one and only one basis, the principal basis pb(A) of A, constituted by
pairwise orthogonal projection matrices.

If Q = pb(A) ={Q1, ..., Q`}, given an orthogonal projection matrix Q ∈

A, we will have Q =
∑`

j=1
ajQj but, since Q is idempotent and the Q1, ..., Q`

are pairwise orthogonal, aj = 0 or aj = 1, j = 1, ..., `. Thus any orthogonal
projection matrix belonging to a CJA will be the sum of all or part of the
matrices in the principal basis.

Let us now consider symmetric matrices M1, ...,Mw belonging to a CJA
A1 contained in another CJA A2. With pb(Au) ={Qu,1, ..., Qu,`u

}, u = 1, 2
we will have

(2.11) Mi =

`u∑

j=1

bu,i,jQu,j, i = 1, ..., w, u = 1, 2,

as well as

(2.12) Q1,j =
∑

j′∈ϕj

Q2,j′ , j = 1, ..., `1,

where the ϕ1, ..., ϕ`1 are pairwise disjunct sets. If we put Bu = [bu,i,j],
u = 1, 2, we see that the columns of B2 with indexers in a set ϕj , j = 1, ..., `1,
are equal. Thus rank(B1) = rank(B2). Moreover, if
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(2.13) Bu =



Bu,1,1 0

Bu,2,1 Bu,2,2


 , u = 1, 2,

where Bu,1,1 has m rows and tu columns, so that Bu,2,1 will have w−m rows
and also tu columns and Bu,2,2 w −m rows and `u − tu columns, u = 1, 2.
We also will have rank(B1,1,1) = rank(B2,1,1) rank(B1,2,1) = rank(B2,2,1)
and rank(B1,2,2) = rank(B2,2,2). Thus the row vectors of B1,2,2, are linearly
independent if and only if the row vectors of B2,2,2 are linearly independent.
As we shall see this observation will be important.

Let us consider a normal mixed model

(2.14) Y =

m∑

i=1

Xiβi
+

w∑

i=m+1

Xiβ̃i
,

where β
1
, ..., β

m
are fixed and the β̃

m+1
, ..., β̃

w
are normal, independent with

null mean vectors and variance-covariance matrices σ2
i Ici

, i = m + 1, ..., w.

Many times Xw = In and β̃
w

= e, an error vector. Then Y will be normal
with mean vector

(2.15) µ =

m∑

i=1

Xiβi

and variance-covariance matrix

(2.16) Σ/(Y ) =

w∑

i=m+1

σ2
iMi,

where Mi = XiX
>
i , i = 1, ..., w. This model is orthogonal when the matrices

Mi commute.

Now, see Schott (1997, pg 157), the matrices Mi, i = 1, ..., w,
commute if and only if they are diagonalized by an orthogonal matrix P .
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Thus if the model is orthogonal, M1, ...,Mw ∈ V(P ) with V(P ) the family
of matrices diagonalized by P which is a CJA. So, the model is orthogonal
if and only if the matrices M1, ...,Mw belong to a CJA. Since intersecting
CJA gives CJA there will be a minimal CJA Ȧ = A(M) containing M =
{M1, ...,Mw}, the CJA generated by M . With Q̇ = {Q̇1, ..., Q̇ ˙̀} = pb(Ȧ)
we have

(2.17) Mi =

˙̀∑

j=1

ḃi,jQ̇j, i = 1, ..., w.

Now the space Ω spanned by µ is the range space of

(2.18)

m∑

i=1

Mi =
∑

j∈D

(
m∑

i=1

ḃi,j

)
Q̇j,

with D= {j :
∑m

i=1
ḃi,j 6= 0}. Thus the orthogonal projection matrix T on

Ω will be

(2.19) T =
∑

j∈D

Q̇j.

We can always reorder the matrices in pb(Ȧ) to get D= {1, ..., ḋ}. Then,
since the matrices Mi, i = 1, ..., w, are positive semi-definite,

ḃi,j = 0, j = ḋ+ 1, ..., ˙̀, i = 1, ...,m,

and so

(2.20) Ḃ =



Ḃ1,1 0

Ḃ2,1 Ḃ2,2


 .
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As we saw, if for another CJA containing M , we have

(2.21) Mi =
k∑

j=1

bi,jQj, i = 1, ..., w,

we will have

(2.22) B =



B1,1 0

B2,1 B2,2




and the row vectors of B2,2 are linearly independent if and only if the row
vectors of Ḃ2,2 are linearly independent.

We then have bi,j = 0, j = d+ 1, ..., k; i = 1, ...,m, and

(2.23) Σ/(Y ) =
w∑

i=m+1

σ2
i

k∑

j=1

bi,jQj =
k∑

j=1

γjQj ,

with

(2.24) γj =
w∑

i=m+1

bi,jσ
2
i .

Putting γ(1) = (γ1, ..., γd), γ(2) = (γd+1, ..., γk) and σ2 = (σ2
m+1, ..., σ

2
w) we

have

(2.25)





γ(1) = B>
2,1σ

2

γ(2) = B>
2,2σ

2

,
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and, since the column vectors of B>
2,1 are linearly independent, we will have

(2.26)





σ2 =
(
B>

2,2

)+

γ(2)

γ(1) = B>
2,1

(
B>

2,2

)+

γ(2)

,

where (B>
2,2)

+ is the Moore-Penrose inverse of B>
2,2.

Let now the row vectors of Aj constitute an orthonormal basis for the
range space of Qj, then Qj = A>

j Aj and AjA
>
j = Igj

, with gj = rank(Qj),
j = 1, ..., k. We may assume that the observations vector spans Rn so that∑k

j=1
A>

j Aj =
∑k

j=1
Qj = In. Then with

(2.27)





η
j

= Ajµ, j = 1, ..., k

η̃
j

= AjY , j = 1, ..., k
,

we will have η
j

= 0, j = d+ 1, ..., k, and

(2.28)





µ =

d∑

j=1

A>
j ηj

Y =

k∑

j=1

A>
j η̃j

.

These expressions show the central part that vectors η
1
, ..., η

d
[η̃

1
, ..., η̃

k
] play

in our model.

3. Generalized F tests

We start by obtaining sufficient and complete statistics. Since the Qj, j =
1, ..., k, are pairwise orthogonal projection matrices we will have
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(3.1) Σ/(Y )−1 =

k∑

j=1

1

γj
Qj =

k∑

j=1

1

γj
A>

j Aj,

so that, with Sj = ‖η̃
j
‖2, j = d+ 1, ..., k,

(Y − µ)>Σ/(Y )−1(Y − µ) =
k∑

j=1

‖η̃
j
− η

j
‖2

γj

=
d∑

j=1

‖η̃
j
− η

j
‖2

γj
+
Sj

γj
.(3.2)

Using the factorization theorem and the fact the normal distribution belongs
to the exponential family with, for these models, a parametric space that
contain open sets, we establish the first part of the thesis of

Theorem 1. The η̃
1
, ..., η̃

d
and Sd+1, ..., Sk constitute a sufficient complete

statistic. Moreover the η̃
1
, ..., η̃

d
, γ̃(2) with components γ̃j =

Sj

gj
, j = d +

1, ..., k, σ̃2 = (B>
2,2)

+γ̃(2) and γ̃(1) = B>
2,1(B

>
2,2)

+γ̃(2) will be UMVUE.

Proof. The second part of the thesis follows from the first part and from
the theorem of Blackwell-Lehman-Scheffé.

Now we can put

(3.3) σ2
i =

∑

j∈ϕ+

i

bi,jγj −
∑

j∈ϕ−

i

bi,jγj , i = m+ 1, ..., w,

with ϕ+

i ∪ ϕ−

i ⊆ {d + 1, ..., k}. Thus the positive and the negative parts of

an unbiased estimator for σ2
i will be

∑
j∈ϕ+

i
bi,j

Sj

gj
and

∑
j∈ϕ−

i
bi,j

Sj

gj
and the

statistic for testing
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(3.4) H0 : σ2
i = 0, i = m+ 1, ..., w,

will be

(3.5) = =

∑

j∈ϕ+

i

bi,j
Sj

gj

∑

j∈ϕ−

i

bi,j
Sj

gj

=

∑

j∈ϕ+

i

bi,jγj

gj
χ2

gj

∑

j∈ϕ−

i

bi,jγj

gj
χ2

gj

.

The orthogonal model

(3.6) Y =

k∑

j=1

A>
j η̃j

has associated models given by

(3.7) Y a = Y + Y p,

where

(3.8) Y p =

k∑

j=1

A>
j Zj .

The Z1, ..., Zk being independent of the η̃
1
, ..., η̃

k
. We take

(3.9) Vj =
1

γj
‖Zj‖

2, j = 1, ..., k,

and represent by Gi the joint distribution of the Vj with j ∈ ϕ+

i ∪
ϕ−

i , i = m + 1, ..., w. With hi = ](ϕ+

i ), ki − hi = ](ϕ−

i ), ai the vec-
tor of the coefficients for the positive and the negative parts of the es-
timator and g

i
the vector of number of degrees of freedom, the distri-

bution of = for the orthogonal model be Fhi
(.|ai, gi

), i = m + 1, ..., w.
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When we go over to the associated models we get the distribution
Fhi

(.|ai, gi
, Gi), i = m + 1, ..., w. Our results of Section 2.1 show

that the effects of the Zj , j = 1, ..., hi, is to ”increase” the test statis-
tic possibly leading to pseudo-significant results. Moreover the effect of
Zj , j = hi + 1, ..., ki, will be to ”decrease” the statistic leading to loss of
power.

Likewise if we go to the fixed effects part, and given

(3.10) ψ = Wη
j
, j = 1, ..., d,

we have the UMVUE ψ̃ = Wη̃
j
, j = 1, ..., d.

Moreover we want to test

(3.11) H0 : ψ = ψ
0
.

Since ψ̃ will be normal with mean vector ψ and variance-covariance matrix

WAjΣ/(Y )A>
j W

> = γjWW>,

the quadratic form

U =
(
ψ̃ − ψ

0

)>(
WW>

)+(
ψ̃ − ψ

0

)

will be (see Mexia 1990), the product by γj of χ2
g,δ0

with g = rank(W )

and

(3.12) δ0 =
1

γj

(
ψ − ψ

0

)>(
WW>

)+(
ψ − ψ

0

)
.
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WhenH0 holds, δ0 = 0, and if the row vectors ofW are linearly independent,
WW> will be positive definite so (WW>)+ = (WW>)−1 and the hypothesis
may be rewritten as

(3.13) H0 : λ = 0,

with λ = δ0γj . In what follows we will restrict ourselves to this case.
Now

(3.14) E(U) = gγj + λ

and for γj we have the UMVUE

(3.15) γ̃j =
∑

v∈ϕ+

j

cj,vγ̃v −
∑

v∈ϕ−

j

cj,vγ̃v,

where ϕ+

j ∪ ϕ−

j ⊆ {d+ 1, ..., k} and the cj,v an element of B>
2,1(B

>
2,2)

+.

Thus for λ we have the quadratic unbiased estimator

(3.16) λ̃ =


U + g

∑

v∈ϕ−

j

cj,v
Sv

gv


−


g

∑

v∈ϕ+

j

cj,v
Sv

gv


 .

So we will have the test statistic with distribution Fhj
(.|a, g, δ0p

1
), where

a has components γj , gcj,v
γv

gv
, v ∈ ϕ−

j and gcj,v
γv

gv
, v ∈ ϕ+

j while the com-

ponents of g will be g, gv , v ∈ ϕ−

j and gv, v ∈ ϕ+

j and hj = ](ϕ−

j ) + 1.
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Since in the test statistic

(3.17) F =

U + g
∑

v∈ϕ−

j

cj,v
Sv

gv

g
∑

v∈ϕ+

j

cj,v
Sv

gv

only the term U may have non null centrality parameters, from our results
in Section 2.1, it follows that this test will be strictly unbiased.

If we go over to associated models we can reason as above to show that:

• the Zj′ , with j′ ∈ ϕ−

j , ”increase” the statistics leading, possibility, to
situations of pseudo-significance;

• the Zj′ , with j′ ∈ ϕ+

j , ”degrease” the statistics leading to a loss of test
power.

Moreover, if we replace η̃
j

by η̃
j
+ Zj we will have, with ψ

0
= Wη

0
,

U =
(
η̃

j
+ Zj − η

0

)>
W>

(
WW>

)−1

W
(
η̃

j
+ Zj − η

0

)

so when H0 holds and δ0 = 0, the perturbations Z j may lead to pseudo-
significant results.

4. Selective generalized F tests

To obtain selective F tests we use generalized polar coordinates. Let
ψ have s components. Given a point in Rs with cartesian coordinates
(x1, ..., xs), and generalized polar coordinates (r, θ1, ..., θs−1), we will have
r = ‖x‖ and

xj = r`j(θ),

where θ = (θ1, ..., θs−1) and
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(4.1)





`1(θ) = cos θ1 · · · cos θs−1

...
`j(θ) = cos θ1 · · · cos θs−j sin θs−j+1, j = 2, ..., s− 1
...
`s(θ) = sin θ1

.

For the central angles we have the bounds

(4.2)





−π
2
≤ θj ≤

π
2

; j = 1, ..., s − 2

0 ≤ θs−1 < 2π

,

which define the domain D of variation of the central angles.

Given x the corresponding vector of the central angles will be θ(x).

The use of generalized polar coordinates enables us to obtain tests for
alternatives

(4.3) H1 : ψ = ψ
1

to

(4.4) H0 : ψ = ψ
0

such that, θ(ψ
1
− ψ

0
) ∈ D1⊂ D.

In the previous section we presented a statistic F for the (non-selective)
generalized F test for H0. Now , when H0 holds F is independent of

Θ = θ
(
ψ̃ − ψ

0

)

(see Nunes and Mexia, 2004) thus we now use as test statistic the pair
(F ,Θ), rejecting H0 when F> f and Θ ∈ D1. The test level will be the
product of Fhj

(f |a, g), (see Nunes and Mexia, 2004),
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Pr
(
Θ ∈ D1|H0

)

=
2−1Γ

(s
2

)

πs/2

∫

D1

...

∫
cos θs−2

1
, ..., cos θs−2

s−1∏

j=1

dθj.

Many times, when ψ = η
j
, θ(x) ∈ D1 if and only if the gj components satisfy

` order relations. Since η̃
j
− η

j
will be normal with null mean vector, when

H0 holds, and variance-covariance matrix γjIgj
we will have

Pr
(
Θ ∈ D1|H0

)
=

`!

gj !
.

Going over to the associated models, we will assume only perturbations Z j ,

j = d + 1, ..., k, so that ψ̃ will have the same distribution as before and F
will continue to be independent from Θ when H0 holds. We can now reasons
as before to see that:

• the Zj′ , with j′ ∈ ϕ−

j , ”increase” the test statistic leading, possibility,
to pseudo-significance;

• the Zj′, with j′ ∈ ϕ+

j , ”degrease” the test statistic originating loss of
test power.
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[3] M. Fonseca, J.T. Mexia and R. Zmyślony, Estimators and Tests for Variance

Components in Cross Nested Orthogonal Designs, Discussions Mathematicae,
Probability and Statistics 23 (2003), 175–201.

[4] J.T. Mexia, Best linear unbiased estimates, duality of F tests and the Scheffé
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