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Abstract
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1. Introduction

Let y and z be two stochastic vectors with values in Rk and Rl, respectively,
such that E(y) = ν, E(z) = ρ and

(1.1) D
(

y
z

)
= Σ

exist. Here E(·) and D(·) denote the mean vector and the dispersion
matrix, respectively. Assume that we have independent observations
xg = (y

′
g, z

′
g)
′
, g = 1, . . . , n, on x = (y

′
,z

′
)
′
. The corresponding n× (k + l)

data matrix will be denoted by X = (xgj), j = 1, . . . , k + l. Thus X can be
written as

X =




x
′
1

...

x
′
n




=




y′1 z′1
...

...

y′n z′n


 .

In the following we are interested in estimating the Kronecker and inner
products of the mean vectors ν and ρ on the basis of the data matrix X.

Let us denote the common mean of y and z by µ, i.e., µ = (ν ′, ρ′)′.
Introducing the matrices J1 = (Ik,0kl) and J2 = (0lk, I l) we obtain

(1.2) ρν ′ = J2µµ′J
′
1 .

Since ν ⊗ ρ = vec(ρν ′) and in case k = l, ν ′ρ = tr(ρν ′), where vec(·)
and tr(·) denote the vec– and the trace–operator, respectively, it appears
reasonable to develop reliable estimators for µµ′ first.

2. Estimation of µµ′

Define the sample mean of the j–th column of the data matrix X as

x̄j =
1
n

n∑

g=1

xgj ,
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j = 1, 2, . . . , k + l. The corresponding vector of sample means is

x̄ = (x̄1, . . . , x̄k+l)′

which alternatively can be expressed as

(2.1) x̄ =
1
n

n∑

g=1

xg =
1
n

X ′1In ,

where 1In is the n× 1 vector of ones.
As E(x̄) = µ and also E(xg) = µ, g = 1, . . . , n, candidate estimators

for µµ′ could be

R = x̄x̄′ =
1
n2

X ′1In1I
′
nX

and

S =
1
n

n∑

g=1

xgx
′
g =

1
n

X ′X .

Now we have

(2.2) E(R) = D(x̄) + E(x̄)E(x̄)′ =
1
n
Σ + µµ′

and

(2.3) E(S) =
1
n

n∑

g=1

[D(xg) + E(xg)E(xg)′] = Σ + µµ′ .

Hence both estimators of µµ′ are biased. The first estimator, R = x̄x̄′,
however, is asymptotically unbiased.

Using the generalized jackknife procedure (cf. Gray and Schucany,
1972), we obtain as an unbiased estimator for µµ′:



210 H. Neudecker and G. Trenkler

T =
1

n− 1
(nR− S)

=
1

n− 1

(
1
n

X ′1In1I
′
nX − 1

n
X ′X

)

=
1

n(n− 1)
X ′(1In1I

′
n − In)X .

By using (2.2) and (2.3), we can easily verify that T is unbiased for µµ′,
indeed.

Let us now assume that vecX ′ is multinormally distributed, i.e.,

(2.4) vecX ′ ∼ N(1In ⊗ µ, In ⊗Σ)

(see Section 1). This can be reexpressed as

vecX ′ ∼ N(vecM ′, U ⊗ V ) ,

where M ′ = µ1I
′
n , U = In and V = Σ.

From Ghazal and Neudecker (2000), Corollary 1, we know that the
dispersion matrix of vecSA, where SA = X ′AX and A is an n×n–matrix,
is given by

(2.5)

D(vecSA) = (trA′UAU)V ⊗ V + M ′A′UAM ⊗ V

+V ⊗M ′AUA′M + Kpp{(trAUAU)V ⊗ V

+V ⊗M ′A′UA′M + M ′AUAM ⊗ V } ,

where p = k + l.
Here Kpp denotes the commutation matrix of the type p2 × p2

(cf. Magnus and Neudecker, 1988, Ch. 3).
By letting A = 1

n2 1In1I
′
n , A = 1

n In and A = 1
n(n−1) (1In1I

′
n − In)

we get the following result.
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Theorem 1. Let vecX ′ be multinormally distributed as in (2.4). Then we
have

(i) D(vecR) = 1
n(Ip2 + Kpp) ( 1

nΣ⊗Σ + Σ⊗ µµ′ + µµ′ ⊗Σ),

(ii) D(vecS) = 1
n (Ip2 + Kpp)(Σ⊗Σ + Σ⊗ µµ′ + µµ′ ⊗Σ),

(iii) D(vecT ) = 1
n(Ip2 + Kpp) ( 1

n−1 Σ⊗Σ + Σ⊗ µµ′ + µµ′ ⊗Σ).

Proof.

(i) Letting A = 1
n2 1In1I

′
n, from (2.5) it follows that

D(vecR) = 1
n2 Σ⊗Σ + 1

n µµ′ ⊗Σ + 1
n Σ⊗ µµ′ + Kpp ( 1

n2 Σ⊗Σ
+ 1

n Σ⊗ µµ′ + 1
n µµ′ ⊗Σ)

which yields (i).

(ii) If A = 1
n In, from (2.5) we get

D(vecS) = 1
n Σ⊗Σ + 1

n µµ′ ⊗Σ + 1
n Σ⊗ µµ′ + Kpp ( 1

n Σ⊗Σ
+ 1

n µµ′ ⊗Σ + Σ⊗ 1
n µµ′)

which implies (ii).

(iii) Let now A = 1
n(n−1) (1In1I

′
n − In), in (2.5).

Then
D(vecT ) = 1

n(n−1) Σ⊗Σ+ 1
n Σ⊗µµ′+ 1

n µµ′⊗Σ+Kpp ( 1
n(n−1) Σ⊗Σ

+ 1
nΣ⊗ µµ′ + 1

n µµ′ ⊗Σ)
so that (iii) follows.

3. Estimation of the Kronecker product

Since
ν ⊗ ρ = vec(ρν ′) = vec(J2µµ′J

′
1) = (J1 ⊗ J2)vecµµ′

(cf. Magnus and Neudecker, 1988, p. 30), using the results of the preceding
section, we have available three estimators of ν ⊗ ρ, namely
Rν⊗ρ = (J1 ⊗ J2)vecR, Sν⊗ρ = (J1 ⊗ J2)vecS and T ν⊗ρ = (J1 ⊗
J2)vecT .
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In accordance with (1.1) let us write

D



y

z


 = Σ =




Σ11 Σ12

Σ
′
12 Σ22




such that Σ11 = D(y),Σ22 = D(z) and Σ12 = Cov(y, z). Let us now
calculate the expected values of the preceding three estimators of ν⊗ρ. By
(2.2) we get

E(Rν⊗ρ) = (J1 ⊗ J2)vecE(R) =
1
n

vecΣ
′
12 + ν ⊗ ρ .

Similarly we get

E(Sν⊗ρ) = vecΣ
′
12 + ν ⊗ ρ

and

E(T ν⊗ρ) = ν ⊗ ρ .

Hence T ν⊗ρ is an unbiased estimator for ν ⊗ ρ. Both Rν⊗ρ and Sν⊗ρ are
biased estimators for ν ⊗ ρ, the former being asymptotically unbiased.

Since by Theorem 1 the dispersion matrices D(R),D(S) and D(T ) are
known, the dispersion matrices of Rν⊗ρ, Sν⊗ρ and T ν⊗ρ are obtainable
from the identities

D(Rν⊗ρ) = (J1 ⊗ J2)D(vecR)(J
′
1 ⊗ J

′
2),

D(Sν⊗ρ) = (J1 ⊗ J2)D(vecS)(J
′
1 ⊗ J

′
2)

and

D(T ν⊗ρ) = (J1 ⊗ J2)D(vecT )(J
′
1 ⊗ J

′
2).

4. Estimation of the inner product

Let us assume that the mean vectors µ and ρ have the same dimension,
i.e., k = l. Since the inner product ν ′ρ of ν and ρ equals tr(ρν ′), by (1.2)
it is reasonable to estimate ν ′ρ by tr(J2µ̂µ′J

′
1), where µ̂µ′ is one of the

estimators R, S or T . Hence we obtain three estimators
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(4.1) Rν′ρ = tr(J2RJ
′
1),

(4.2) Sν′ρ = tr(J2SJ
′
1)

and

(4.3) T ν′ρ = tr(J2TJ
′
1) .

From (2.2), (2.3) and the fact that T is unbiased for µµ′ it follows that

E(Rν′ρ) =
1
n

trΣ12 + ν ′ρ,

E(Sν′ρ) = trΣ12 + ν ′ρ

and
E(T ν′ρ) = ν ′ρ .

Using the identity tr(ABC) = (vecI)′(C ′ ⊗ A)vecB (cf. Magnus and
Neudecker, 1988, p. 31), the dispersion matrices of the three estimators
of ν ′ρ are given by

D(Rν′ρ) = (vecI)′(J1 ⊗ J2)D(vecR)(J
′
1 ⊗ J

′
2)vecI,

D(Sν′ρ) = (vecI)′(J1 ⊗ J2)D(vecS)(J
′
1 ⊗ J

′
2)vecI,

D(T ν′ρ) = (vecI)′(J1 ⊗ J2)D(vecT )(J
′
1 ⊗ J

′
2)vecI

and since vecABC = (C ′ ⊗A)vecB:

D(Rν′ρ) = a′D(vecR)a,

D(Sν′ρ) = a′D(vecS)a,
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D(T ν′ρ) = a′D(vecT )a ,

where a = vec(J
′
2J1).

5. Concluding remarks

In Sections 2, 3 and 4 we assumed that x̃ := vecX ′ is multinormally
distributed with E(x̃) = 1In⊗µ and D(x̃) = In⊗Σ. Under this assumption
it is well-known that the statistics x̄ from (2.1) and

Σ̂ =
1

n− 1

[
Σn

g=ixgx
′
g − nx̄x̄′

]

=
1

n− 1

[
X ′X − 1

n
X ′1In1I

′
nX

]

=
1

n− 1
X ′

(
In − 1

n
1In1I

′
n

)
X

are complete sufficient statistics for (µ,Σ), cf. Anderson (1984, p. 78).
It is easy to see that

T = x̄x̄′ − 1
nΣ̂ .

Hence, since T is unbiased for µµ′, T is the best unbiased estimator for µµ′,
i.e., any other unbiased estimator of µµ′ has a dispersion matrix exceeding
that of T by a nonnegative definite matrix (see Giri, 1996, Sec. 5.2). In a
similar fashion the estimators T ν⊗ρ and T ν′ρ are best.
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