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Abstract

Some sufficient conditins for tightness of continuous stochastic
processes is given. It is verified that in the classical tightness sufficient
conditions for continuous stochastic processes it is possible to take a
continuous nondecreasing stochastic process instead of a deterministic
function one.

1. Introduction

Given a seperable metric space (X, ρ) denote by P(X) the set of all prob-
ability measures on (X,β(X)), where as usual β(X) is a Borel σ-algebra
on (X, ρ). We call a subset Λ ⊂ P(X) tight if for every ε > 0 there is
a compact set K ⊂ X such that P (K) ≥ 1 − ε for every P ∈ Λ. Let
P = (Ω,F , P ) be a complete probability space and let CT = C([0, T ], Rm).
We shall consider CT as a measurable space with its Borel σ-algebra
β(CT ). A continuous m- dimensional stochastic process x = (xt)0≤t≤T on
P can be equivalently defined as (F , β(CT ))-measurable random function
x : Ω → CT . For such continuous process we define its distribution on
β(CT ) in the usual way by (Px−1)(A) = P (x−1(A)) for every A ∈ β(CT ).
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Having given a sequence (xn)∞n=1 of continuous stochastic processes xn : Ω →
CT we say that (xn)∞n=1 is tight ([2, 3]) if and only if a sequence (P (xn)−1)∞n=1

of its distributions is tight. It is known ([3], Theorem I.4.3) that a sequence
(xn)∞n=1 is tight if there are positive numbers γ, α, β and M such that for
every n = 1, 2, ... one has E|xn

0 |
γ ≤ M and E|xn

t − xn
s |

α ≤ M |t − s|1+β.
There are some weaker sufficient conditions for tightness of sequences of
continuous stochastic processes. It is proved ([1], Theorem II.12.3) that a
sequence (xn)∞n=1 of continuous processes xn : Ω → CT is tight if a sequence
(xn

0 )∞n=1 of m- dimensional random variables xn
0 : Ω → R

m is tight and there
are numbers γ ≥ 0 and α > 1 and a nondecreasing continuous function
F : [0, T ] → R such that for every n = 1, 2, ... one has

P ({|xn
t − xn

s | ≥ λ}) ≤
1

λγ
|F (t) − F (s)|α

for s, t ∈ [0, T ] and a positive number λ. We shall show that the above
result holds true if instead of a function F there is a real-valued continuous
nondecreasing stochastic process (Γ(t))0≤t≤T such that E[Γ(T )−Γ(0)] < ∞
and

P ({|xn
t − xn

s | ≥ λ}) ≤
1

λγ
E |Γ(t) − Γ(s)|α

for s, t ∈ [0, T ] and a positive number λ. The proof of such type result is
obtained by modifications of the procedures given in ([1], Theorem II.12.1–
Theorem II.12.3). To begin with let us introduce some adding notations.
Having given a probability space P and random variables ξi : Ω → R

m for
i = 1, ..., n let us define Sk = ξ1 + ... + ξk for k = 1, ..., n and S0 = 0. Then
let Mn = max0≤k≤n |Sk| and M

′

n = max0≤k≤n (min {|Sk|, |Sn − Sk|}). It is
clear that M

′

n ≤ Mn and Mn ≤ M
′

n + |Sn| a.s. Therefore, for every λ > 0
we have

(1) P ({Mn ≥ λ}) ≤ P
({

M
′

n ≥ λ/2
})

+ P ({|Sn| ≥ λ/2}) .

2. Auxilary results

We shall prove here some auxilary results that are needed in the proof of
the main result of the paper.
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Proposition 1. Let γ ≥ 0 and α > 1/2 be given and suppose there are

positive random variables u1, ..., un such that E (
∑n

l=1 ul)
2α < ∞ and

(2) P ({|Sj − Si| ≥ λ, |Sk − Sj| ≥ λ}) ≤
1

λ2γ
E (ui+1 + ... + uk)

2α

is satisfied for 0 ≤ i ≤ j ≤ k ≤ n and every λ > 0. Then there is a number

Kγ,α such that for every positive λ one has

(3) P
({

M
′

n ≥ λ
})

≤
Kγ,α

λ2γ
E (u1 + ... + un)2α .

Proof. Let δ = 1/(2γ+1). We have 2δ
[

1/22αδ + 1/Kδ
]

≤ 1 for sufficiently
large K > 0. We shall show that (3) is satisfied if K satisfies the above
inequality and K ≥ 1. It can be verified ([1], Theorem II.12.1) that the
minimal number K satisfying the above inequality is given by

Kγ,α =

[

1

21/(2γ+1)
−

(

1

21/(2γ+1)

)2α
]−(2γ+1)

.

The proof of (3) we get by the induction procedure with respect to n. For
n = 1 the inequality (3) is trivial. Let n = 2. Immediately from (2) for
K ≥ 1 it follows

P
({

M
′

2 ≥ λ
})

= P ({min [|S1|, |S2 − S1|] ≥ λ})

≤
1

λ2γ
E (u1 + u2)

2α ≤
K

22γ
E (u1 + u2)

2α

for λ > 0. Assume now that (3) is satisfied for any positive integer k < n.
We shall show that it is also satisfied for k = n. Let υ = E (u1 + ... + un)2α,
υ0 = 0 and υh = E (u1 + ... + uh)2α with 1 ≤ h ≤ n. We can assume that
υ > 0. We have υh−1 ≤ υh. Then 0 ≤ υ1/υ ≤ υ2/υ ≤ ... ≤ υn−1/υ ≤ 1.
Therefore [0, 1] =

⋃n
h=1 [υh−1/υ, υh/υ]. By virtue of the assumption α > 1/2

we have 1/22α ∈ [0, 1]. Therefore, there is 1 ≤ h ≤ n such that υh−1/υ ≤
1/22α ≤ υh/υ. Similarly as in [1] we define U1, U2, D1 and D2 by setting
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U1 = max
0≤j≤h−1

min {|Sj|, |Sh−1 − Sj|} ,

U2 = max
h≤j≤n

min {|Sj − Sh||, |Sn − Sj |} ,

D1 = min {|Sh−1|, |Sn − Sh−1|} , D2 = min {|Sh|, |Sn − Sh|} .

Let us observe that for 1 ≤ h ≤ n, taken above, we have υh−1 ≤ (22α −
1)υ/22α and zh+1 ≤ (22α − 1)υ/22α, where zh+1 = E(uh+1 + ... + un)2α.
Indeed, we have υh−1 ≤ υ/22α ≤ (22α − 1)υ/22α. Furthermore

υh

υ
+

zh+1

υ
=

E
[

(u1 + ... + uh)2α + (uh+1 + ... + un)2α
]

υ

≤
E [(u1 + ... + uh) + (uh+1 + ... + un)]2α

υ
= 1

and 1−υh/υ ≤ 1−1/22α = (22α−1)/22α. Therefore, zh+1 ≤ (22α−1)υ/22α.
Let us observe that (2) will be satisfied if we take h − 1 instead of n. Since
h − 1 < n then we can assume that (3) is satisfied for random variables
ξ1, ..., ξh−1 and u1, ..., uh−1. Hence and the above inequalities we obtain

P ({U1 ≥ λ}) ≤
K

λ2γ
E (u1 + ... + uh−1)

2α ≤
K(22α − 1)

22αλ2γ
υ.

Similarly, taking in (2) indexes h ≤ i ≤ j ≤ n, we shall only consider
random variables ξh+1, ..., ξn and uh+1, ..., un and we can assume that (3) is
satisfied for these random variables because n−h < n. Hence and the above
inequalities we obtain

P ({U2 ≥ λ}) ≤
K

λ2γ
E (uh+1 + ... + un)2α ≤

K(22α − 1)

22αλ2γ
υ.
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Next, by (2) we have

P ({D1 ≥ λ}) ≤
1

λ2γ
E (u1 + ... + un)2α =

υ

λ2γ

and

P ({D2 ≥ λ}) ≤
υ

λ2γ
.

Let us observe that in particular cases: h = 1 and h = n the above
inequalities are trivial, respectively. Similarly as in ([1], Theorem II.12.1)
we can verify that M

′

n ≤ max[U1 + D1, U2 + D2] and therefore

(4) P
({

M
′

n ≥ λ
})

≤ P ({U1 + D1 ≥ λ}) + P ({U2 + D2 ≥ λ}) .

On the other hand we have

(5) P ({U1 + D1 ≥ λ}) ≤ P ({U1 ≥ λ0}) + P ({D1 ≥ λ1})

≤

[

1

λ2α
0

K(22α − 1)

22α
+

1

λ2α
1

]

υ

for positive numbers λ0 and λ1 such that λ = λ0 +λ1. It can be verified ([1],
Theorem II.12.1) that for positive numbers C0, C1, λ, δ and γ such that
δ = 1/(2γ + 1) we have

min
λ0+λ1=λ

[

C0

λ2γ
0

+
C1

λ2γ
1

]

=
1

λ2γ
1

[

Cδ
0 + Cδ

1

]1/δ
,

where minimum is taken over all positive numbers λ0 and λ1 such that
λ0 + λ1 = λ. Therefore (5) implies

P ({U1 + D1 ≥ λ}) ≤
υ

λ2γ

[

(

K(22α − 1)

22α

)δ

+ 1

]1/δ

.
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In a similar way we obtain

P ({U2 + D2 ≥ λ}) ≤
υ

λ2γ

[

(

K(22α − 1)

22α

)δ

+ 1

]1/δ

.

Therefore (4) implies

P
({

M
′

n ≥ λ
})

≤
2υ

λ2γ

[

(

K(22α − 1)

22α

)δ

+ 1

]1/δ

.

For α > 1/2 and sufficiently large K ≥ 1 satisfying 2δ[1/22αδ + 1/Kδ] ≤ 1
we have

[

(

K(22α − 1)

22α

)δ

+ 1

]1/δ

≤ K.

Indeed, we have

[

(

22α − 1

22α

)δ

+
1

Kδ

]

→

(

22α − 1

22α

)δ

as K → ∞. Therefore for sufficiently large K ≥ 1 we get

[

(

K(22α − 1)

22α

)δ

+ 1

]1/δ

= K

[

(

22α − 1

22α

)δ

+
1

Kδ

]1/δ

≤ K.

Then for such sufficiently large K ≥ 1 we finally obtain

P
({

M
′

n ≥ λ
})

≤
Kγ,α

λ2γ
E (u1 + ... + un)2α

with Kγ,α = 2K.
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Proposition 2. Let γ ≥ 1 and an integer α > 1 be given and suppose there

are random variables ξi : Ω → R
m and ui : Ω → R

+ for i = 1, ..., n such that

E(u1 + ... + un)α < ∞ and

(6) P ({|Sj − Si| ≥ λ}) ≤
1

λγ
E(ui+1 + ... + uj)

α

for every λ > 0 and 0 ≤ i < j ≤ n. Then there is a positive number K
′

γ,α

such that

(7) P ({Mn ≥ λ}) ≤
K

′

γ,α

λγ
E (u1 + ... + un)α

Proof. Taking into accaunt inequalities P (E1∩E2) ≤ [P (E1)]
1/2[P (E2)]

1/2

and xy ≤ (x + y)2 for E1, E2 ∈ F and x, y ∈ R, we can easly see that (6)
implies

P ({|Sj − Si| ≥ λ, |Sk − Sj| ≥ λ})

≤ [P ({|Sj − Si| ≥ λ})]1/2 [P ({|Sk − Sj| ≥ λ})]1/2

≤
1

λγ/2



E





∑

i<l≤j

ul





α



1/2

·
1

λγ/2



E





∑

j<l≤k

ul





α



1/2

≤
1

λγ
E









∑

i<l≤j

ul





α

+





∑

j<l≤k

ul





α

 ≤
2

λγ
E





∑

i<l≤j

ul +
∑

j<l≤k

ul





α

=
1

λγ
(ui+1 + ... + uk)

α .

Then the assumption (2) of Proposition 1, with γ/2 and α/2 instead of γ
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and α, respectively is satisfied. Therefore, by virtue of Proposition 1, we
obtain

P
({

M
′

n ≥ λ
})

≤
K̃

λγ
E (u1 + ... + un)α

with K̃ = Kγ/2,α/2. On the other hand (6) implies

P ({|Sn| ≥ λ}) ≤
1

λγ
E (u1 + ... + un)α .

Hence and (1) we obtain

P ({Mn ≥ λ}) ≤
K

′

γ,α

λγ
E (u1 + ... + nn)α

with K
′

γ,α = 2γ
(

K̃ + 1
)

.

3. Tightness of continuous processes

We shall prove now the main result of the paper

Theorem 3. A sequence (xn)∞n=1 of continuous m- dimensional stochastic

processes xn = (xn(t))0≤t≤T on a probability space P = (Ω,F , P ) is tight if

for every ε > 0 there is a number a > 0 such that P (|xn(0)| > a) ≤ ε for

n ≥ 1 and there are γ ≥ 0, an integer α > 1 and a continuous nondecreasing

stochastic process (Γ(t))0≤t≤T on P such that E[Γ(T ) − Γ(0)] < ∞ and

(8) P ({|xn(t) − xn(s)| ≥ λ}) ≤
1

λγ
E |Γ(t) − Γ(s)|α

for every n ≥ 1, λ > 0 and s, t ∈ [0, T ].

Proof. For simplicity we consider the case T = 1. By virtue of ([1], Theorem
II.8.3) it is enough only to verify that for every ε > 0 and η > 0 there is a
δ ∈ (0, 1) such that δ−1 is an integer and
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(9)
∑

j<δ−1

P

({

sup
jδ≤s≤(j+1)δ

|xn(s) − xn(jδ)| ≥ ε

})

≤ η

for every n ≥ 1. Fix for n ≥ 1 and j ≥ 1. For a positive integer k consider
m- dimensional random variables ξj

1, ..., ξ
j
k defined by

ξj
i = xn

(

jδ +
i

k
δ

)

− xn

(

jδ +
i − 1

k
δ

)

for i = 1, ..., k. Immediately from (8) it follows that (6) is satisfied with

uj
l = Γ

(

jδ +
l

k
δ

)

− Γ

(

jδ +
l − 1

k
δ

)

for l = 1, 2, ..., k, because we have

P ({|Sj − Si| ≥ λ})

= P

({∣

∣

∣

∣

xn

(

jδ +
i

k
δ

)

− xn

(

jδ +
j

k
δ

)∣

∣

∣

∣

≥ λ

})

≤
1

λγ
E

∣

∣

∣

∣

Γ

(

jδ +
i

k
δ

)

− Γ

(

jδ +
j

k
δ

)∣

∣

∣

∣

α

=
1

λγ
E





∑

i<l≤j

[

Γ

(

jδ +
l

k
δ

)

− Γ

(

jδ +
l − 1

k
δ

)]





α

=
1

λγ
E
(

uj
i+1 + ... + uj

j

)α
.
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Therefore, by virtue of Proposition 2 we get

P

({

max
0≤i≤k

∣

∣

∣

∣

xn

(

jδ +
i

k
δ

)

− xn (jδ)

∣

∣

∣

∣

≥ ε

})

≤
K

′

γ,α

εγ
E (u1 + ... + uk)

α

=
K

′

γ,α

εγ
E [Γ ((j + 1)δ) − Γ (jδ)]α .

Similarly as in ([1], Theorem II.12.3), by continuity of xn, hance it follows

P

({

sup
jδ≤s≤(j+1)δ

|xn (s) − xn (jδ)| ≥ ε

})

≤
K

′

γ,α

εγ
E [Γ ((j + 1)δ) − Γ (jδ)]α .

Therefore

∑

j<δ−1

P

({

sup
jδ≤s≤(j+1)δ

|xn (s) − xn (jδ)| ≥ ε

})

≤
K

′

γ,α

εγ
E







Λα

∑

j<δ−1

[Γ ((j + 1)δ) − Γ (jδ)]







,

where

Λα =

[

max
j<δ−1

|Γ ((j + 1)δ) − Γ (jδ)|

]α−1

.
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Hence it follows

∑

j<δ−1

P

({

sup
jδ≤s≤(j+1)δ

|xn (s) − xn (jδ)| ≥ ε

})

≤
K

′

γ,α

εγ
E [Λα (Γ (1) − Γ (0))] ,

because
∑

j<δ−1 [Γ ((j + 1)δ) − Γ (jδ)] ≤ Γ(1) − Γ(0) a.s. By the
continuity of a stochastic process Γ = (Γ(t))0≤t≤1 and the assumption
α > 1 we get limδ→0 Hα(ω) = 0 for a.e. ω ∈ Ω, where Hα(ω) =
sup0≤t≤1 [Γ(t + δ)(ω) − Γ(t)(ω)]α−1 for ω ∈ Ω. Hence, by the properties
of Γ, it follows that limδ→0 E [Hα (Γ(1) − Γ(0))] = 0. But Λα ≤ Hα a.s.
Then

∑

j<δ−1

P

({

sup
jδ≤s≤(j+1)δ

|xn (s) − xn (jδ)| ≥ ε

})

≤
K

′

γ,α

εγ
E [Hα (Γ (1) − Γ (0))] .

Therefore for every η > 0 there is δ > 0 such that δ−1 is a positive integer
and for every n ≥ 1 one has

∑

j<δ−1

P

({

sup
jδ≤s≤(j+1)δ

|xn (s) − xn (jδ)| ≥ ε

})

≤ η.

Then (9) is satisfied for every n ≥ 1, which togather with the tightness of a
sequence (xn(0))∞n=1, implies the tightness of (xn)∞n=1.
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