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Abstract

In this study, we gave some new explicit expressions and recurrence re-
lations satisfied by single and product moments of k-th lower record values
from Dagum distribution. Next we show that the result for the record values
from the Dagum distribution can be derived from our result as special case.
Further, using a recurrence relation for single moments and conditional ex-
pectation of record values we obtain characterization of Dagum distribution.
In addition, we use the established explicit expression of single moment to
compute the mean, variance, coefficient of skewness and coefficient of kur-
tosis. Finally, we suggest two applications.
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1. Introduction

The Dagum distribution was introduced by Dagum [3] it is also called the inverse
Burr XII distribution. The Burr XII distribution is widely known in various
fields of science, the Dagum distribution is not much popular, perhaps, because
of its difficult mathematical tractability. Dagum proposed his model as income
distribution, its properties have been appreciated in economics and financial fields
and its features have been extensively discussed in the studies of income and
wealth. For more details and its applications on this distribution one may refer
to Kleiber and Kotz [4] and Kleiber [5].
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A random variable X is said to have Dagum distribution if its probability
density function (pdf) is given by

f(x) = αβθx−(θ+1)(1 + αx−θ)−(β+1), x > 0, α, β, θ > 0(1)

and the corresponding cumulative distribution function (cdf) is

F (x) = (1 + αx−θ)−β, x > 0, α, β, θ > 0.(2)

Therefore, in view of (1) and (2), we have

αβθF (x) = x(α+ xθ)f(x).(3)

Here α is the scale parameter, while β and θ are shape parameters. For β = 1,
the above distribution corresponds to the log-logistic distribution. The Dagum
distribution has positive asymmetry, and it is unimodal for βθ > 1 and zero-
modal for βθ ≤ 1. The relation (3) will be used to derive some simple relations
for the single and product moments of kth lower record values from the Dagum
distribution. These recurrence relations will enable one to obtain all the single
and product moments in a simple recursive manner.

The model of record statistics defined by Chandler [12] as a model for suc-
cessive extremes in a sequence of independent and identically distributed (iid)
random variables. This model takes a certain dependence structure into consid-
eration. That is, the life-length distribution of the components in the system may
change after each failure of the components. For this type of model, we consider
the lower record statistics. If various voltages of equipment are considered, only
the voltages less than the previous one can be recorded. These recorded voltages
are the lower record value sequence. Record values are found in many situations
of daily life as well as in many statistical applications. Often we are interested
in observing new records and in recording them for, example, Olympic records
or world records in sport. Record values are used in reliability theory. Moreover,
these statistics are closely connected with the occurrences times of some corre-
sponding nonhomogeneous Poisson process used in shock models. Feller [23] gave
some examples of record values with respect to gambling problems. Resnick [21]
discussed the asymptotic theory of records.

Theory of record values and its distributional properties have been exten-
sively studied in the literature, Ahsanullah [13], Balakrishnan and Ahsanullah
[15, 16, 17], Balakrishnan et al. [18], Grudzień and Szynal [24], Arnold et al.
[1, 2], Kumar [7] and Kumar et al. [8]. Pawlas and Szynal [19, 20] and Saran and
Singh [10] have established recurrence relations for single and product moments
of kth record values from Weibull, Gumbel and linear exponential distribution.
Kumar and Khan [6] are established recurrence relations for moments of kth
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record values from generalized beta II distribution. Kamps [22] investigated the
importance of recurrence relations of order statistics in characterization.

Let {Xn, n ≥ 1} be a sequence of identically independently distributed ran-
dom variables with cdf F (x) and pdf f(x). The jth order statistic of a sample
(X1, X2, . . . , Xn) is denoted by Xj:n. For a fixed k ≥ 1 we define the sequence
{L(k)(n), n ≥ 1} of k−th lower record times of X1, X1 . . . as follows:

L(k)(1) = 1,

L(k)(n+ 1) = min{j > L(k)(n) : Xk:L(k)(n)+k−1 > Xk:j+k−1}.

The sequences {Z(k)
n , n ≥ 1} with Z

(k)
n = Xk:L(k)(n)+k−1, n = 1, 2, . . . , are called

the sequences of kth lower record values of {Xn, n ≥ 1}. For convenience, we

shall also take Z
(k)
0 = 0. Note that k = 1 we have Y

(1)
n = XL(n), n ≥ 1, i.e.,

record values of {Xn, n ≥ 1}.
The joint pdf of kth lower record values Z

(k)
1 , Z

(k)
2 , . . . , Z

(k)
n can be given as

the joint pdf of kth upper record values of {−Xn, n ≥ 1}, Pawlas and Szynal [19]

f
z
(k)
1 ,...,z

(k)
n

(z1, . . . , zn) = kn

(
n−1∏
i=1

f(zi)

F (zi)

)
[F (zn)]k−1f(zn), z1 > z2 > · · · > zn.

In view of above equation, the marginal pdf of X
(k)
L(n), n ≥ 1 is given by

f
X

(k)
L(n)

(x) =
kn

(n− 1)!
[−ln(F (x))]n−1[F (x)]k−1f(x),(4)

and the joint pdf of X
(k)
L(m) and X

(k)
L(n), 1 ≤ m < n, n > 2 is given by

f
X

(k)
L(m)

,X
(k)
L(n)

(x, y) =
kn

(m− 1)!(n−m− 1)!
[−ln(F (x))]m−1

× [−ln(F (y)) + ln(F (x))]n−m−1[F (y)]k−1(5)

× f(x)

F (x)
f(y), x > y, 1 ≤ m < n, n ≥ 2.

Let {Xn, n ≥ 1} be a sequence of iid continuous random variables with cdf F (x)
and pdf f(x). Let XL(n) be the nth lower record values, then the conditional pdf
of XL(n) given XL(m) = x, 1 ≤ m < n in view of (4) and (5), is

fL(n)|L(m)(y|x) =
1

(n−m− 1)!
[−lnF (y) + lnF (x)]n−m−1

f(y)

F (x)
, y < x.(6)
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We shall denote

µ
(r)
L(n):k = E((X

(k)
L(n))

r) =

∫ ∞
−∞

xrf
X

(k)
L(n)

(x)dx, r, n = 1, 2, . . . ,

µ
(r,s)
L(m,n):k = E((X

(k)
L(m))

r, (X
(k)
L(n))

s) =

∫ ∞
−∞

∫ x

−∞
xrysf

X
(k)
L(m)

,X
(k)
L(n)

(x, y)dydx,

1 ≤ m ≤ n− 1 and r, s = 1, 2, . . . ,

µ
(r,0)
L(m,n):k = E((X

(k)
L(m))

r) = µ
(r)
L(m):k, 1 ≤ m ≤ n− 1 and r = 1, 2, . . . ,

µ
(0,s)
L(m,n):k = E((X

(k)
L(n))

s) = µ
(s)
L(n):k, 1 ≤ m ≤ n− 1 and s = 1, 2, . . . .

The paper is organized as follows. Section 2 gives some explicit expressions
and recurrence relations for the single and product moments of kth lower record
values from the Dagum distribution. In Section 3, some explicit expressions
and recurrence relations for product moments of kth lower record values from
Dagum distribution are derived. A characterization of the distribution based
on recurrence relation for single moments and conditional expectation of record
values is established in Section 4. Numerical results are presented in Section 5.
Two applications is provided in Section 6. Section 7 contains a brief conclusion.

2. Relations for single moments

In this section we will derived the explicit expressions and recurrence relations
for single moments of the kth lower record values from the Dagum distribution.
We shall first establish the explicit expression for the single moment of kth lower
record values by the following Theorem.

Theorem 1. For the Dagum distribution given in (2) with fixed parameters
α, β, θ > 0, k, n = 1, 2, . . ., and real r satisfying r

θ + βk > 0, we have

µ
(r)
L(n):k = ϕ(n, α, β, θ, r) = (βk)nαr/θ

∞∑
p=0

(r/θ)(p)

p! [βk + p+ (r/θ)]n
,(7)

where

(t)(p) =

{
t(t+ 1) . . . (t+ p− 1), p = 1, 2, . . .

1, p = 0.

Proof. From (4), we have

µ
(r)
L(n):k =

kn

(n− 1)!

∫ ∞
0

xr[F (x)]k−1[−ln(F (x))]n−1f(x)dx(8)
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=
αr/θ(βk)n

(n− 1)!

∫ 1

0
z(r/θ)+βk−1(1− z)−r/θ[−lnz]n−1dz

=
αr/θ(βk)n

(n− 1)!

∞∑
p=0

(r/θ)(p)

p!

∫ 1

0
z(r/θ)+βk+p−1[−lnz]n−1dz

=
αr/θ(βk)n

(n− 1)!

∞∑
p=0

(r/θ)(p)

p!

∫ ∞
0

e−[(r/θ)+βk+p]w wn−1dw,

where z = [F (x)]1/β and w = −lnz. The result follows from the definition of the
complete gamma function.

Specially, the first moment (mean) of the nth record values is

µL(n):k = µ
(1)
L(n):k = ϕ(n, α, β, θ, 1).

In addition, the variance of L(n) is found to be

σ2L(n):k = µ
(2)
L(n):k − [µ

(1)
L(n):k]

2 = ϕ(n, α, β, θ, 2)− [ϕ(n, α, β, θ, 1)]2.

Remark 2. Setting k = 1 in (7) we deduce the explicit expression for single
moments of lower record values from the Dagum distribution.

Recurrence relations for single moments of kth lower record values from pdf (2)
can be derived in the following theorem.

Theorem 3. Under assumptions of Theorem 1, and convention µ
(0)
L(n):k = 1,

µ
(r)
L(0):k = 0, we have

1

α
µ
(r+θ)
L(n):k =

βθk

r
µ
(r)
L(n−1):k −

(
1 +

βθk

r

)
µ
(r)
L(n):k .(9)

Proof. Integrating (8) by parts taking [F (x)]k−1f(x) as the part to be integrated
and the rest of the integrand for differentiation, we get

µ
(r)
L(n):k = µ

(r)
L(n−1):k −

rkn

k(n− 1)!

∫ ∞
0

xr−1[F (x)]k[−ln(F (x))]n−1dx

= µ
(r)
L(n−1):k −

rkn

k(n− 1)!

∫ ∞
0

xr−1[F (x)]k−1
(
αx+ xθ+1

αβθ

)
× f(x)[−ln(F (x))]n−1dx
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= µ
(r)
L(n−1):k −

rkn

βθk(n− 1)!

{∫ ∞
0

xr[F (x)]k−1f(x)[−ln(F (x))]n−1dx

+
1

α

∫ ∞
0

xr+θ[F (x)]k−1f(x)[−ln(F (x))]n−1dx

}
.

The result follows.

Remark 4. Setting k = 1 in (9) we deduce the recurrence relation for single
moments of lower record values from the Dagum distribution.

The recurrence relations and identities have great significance because they are
useful in reducing the number of operations necessary to obtain a general form
for the function under consideration and they reduce the amount of direct com-
putation, time and labour. This concept is well-established in the statistical
literature, see Arnold et al. [1]. Furthermore, they are used in characterizing dis-
tributions, which is an important area, permitting the identification of population
distribution from the properties of the sample.

3. Relations for product moments

In this section we will derived the explicit expression and recurrence relations for
product moments of the kth lower record values from the Dagum distribution.
We shall first establish the explicit expression for the product moment of kth
lower record values by the following Theorem.

Theorem 5. For the Dagum distribution given in (2) with fixed parameters
α, β, θ > 0, k, n = 1, 2, . . . , and real r and s satisfying s

θ + βk > 0, s+r
θ + βk > 0,

we have

µ
(r,s)
L(m,n):k = (βk)nα(r+s)/θ

∞∑
p=0

∞∑
q=0

(s/θ)(p)

p! q![βk + p+ (s/θ)]n−m

×
(r/θ)(q)

[βk + p+ q + (r + s)/θ]m
.(10)

Proof. From (1.5), we have

µ
(r,s)
L(m,n):k =

kn

(m− 1)!(n−m− 1)!

∫ ∞
0

xr[−ln(F (x))]m−1
f(x)

F (x)
I(x)dx,(11)

where

I(x) =

∫ x

0
ys[−ln(F (y)) + ln(F (x))]n−m−1[F (y)]k−1f(y)dy.(12)
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By setting w = [−ln(F (y)) + ln(F (x))] in (12), we obtain

I(x) = βn−mαs/θ
∞∑
p=0

(s/θ)(p) [F (x)]k+{(s/θ)+p}/β (n−m− 1)!

p![βk + (s/θ) + p]n−m
.

On substituting the above expression of I(x) in (11) and simplifying the resulting
equation, we obtain the result given in (10).

For simplicity, we denote the (1, 1)th moment of µL(m):k and µL(n):k , which
is also called the simple product moment, by µL(m,n):k. The simple product
moments are used for evaluating the covariances, in other words

σL(m,n):k = cov(µL(m):k, µL(n):k) = µL(m,n):k − µL(m):k µL(n):k.

Remark 6. Setting k = 1 in (10) we deduce the explicit expression for product
moments of lower record values from the Dagum distribution.

Making use of (2), we can drive recurrence relations for product moments of kth
lower record values.

Theorem 7. Under assumptions of Theorem 5, we have

1

α
µ
(r,s+θ)
L(m,n):k =

βθk

s
µ
(r,s)
L(m,n−1):k −

(
1 +

βθk

s

)
µ
(r,s)
L(m,n):k.(13)

Proof. Integrating (12) by parts treating [F (y)]k−1f(y) for integration and the
rest of the integrand for differentiation, and substituting the resulting expression
in (11), we get

µ
(r,s)
L(m,n):k = µ

(r,s)
L(m,n−1):k −

skn

(m− 1)!(n−m− 1)!

∫ ∞
0

∫ x

0
xrys−1[−ln(F (x))]m−1

× [−ln(F (y)) + ln(F (x))]n−m−1[F (y)]k
f(x)

F (x)
dydx

= µ
(r,s)
L(m,n−1):k −

skn

(m− 1)!(n−m− 1)!

∫ ∞
0

∫ x

0
xrys−1[−ln(F (x))]m−1

× [−ln(F (y)) + ln(F (x))]n−m−1[F (y)]k−1
(
αy + yθ+1

αβθ

)
f(y)

f(x)

F (x)
dydx

= µ
(r,s)
L(m,n−1):k −

s kn

βθk(m− 1)!(n−m− 1)!

{∫ ∞
0

∫ x

0
xrys

× [−ln(F (x))]m−1[−ln(F (y)) + ln(F (x))]n−m−1[F (y)]k−1
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× f(y)
f(x)

F (x)
dydx+

1

α

∫ ∞
0

∫ x

0
xrys+θ[−ln(F (x))]m−1

× [−ln(F (y)) + ln(F (x))]n−m−1[F (y)]k−1f(y)
f(x)

F (x)
dydx

}
.

The result follows.

As a check, put s = 0 in (10), (13) and use (9), we have µ
(r,0)
L(m,n):k = µ

(r)
L(n):k.

Remark 8. Setting k = 1 in (13), we deduce the recurrence relation for product
moments of lower record values from the Dagum distribution.

4. Characterization

This section contains two characterization Theorems of Dagum distribution based
on recurrence relation for kth lower record values and conditional expectation of
lower record values.

Let L(a, b) stand for the space of all integrable functions on (a, b). A
sequence (hn) ⊂ L(a, b) is called complete on L(a, b) if for all functions g ∈
L(a, b) the condition ∫ b

a
g(x)hn(x)dx = 0, n ∈ N,

implies g(x) = 0 a.e. on (a, b). We start with the following result of Lin [9].

Proposition 9. Let n0 be any fixed non-negative integer, −∞ ≤ a < b ≤ ∞ and
g(x) ≥ 0 an absolutely continuous function with g′(x) 6= 0 a.e. on (a, b). Then
the sequence of functions {(g(x))ne−g(x), n ≥ n0} is complete in L(a, b) iff g(x)
is strictly monotone on (a, b).

Using the above Proposition 9 we get a stronger version of Theorem 3.

Theorem 10. Let X be a non-negative random variable having an absolutely
continuous distribution function F (x) with F (0) = 0 and F (x) > 0 for all x > 0.
Then

1

α
µ
(r+θ)
L(n):k =

βθk

r
µ
(r)
L(n−1):k −

(
1 +

βθk

r

)
µ
(r)
L(n):k(14)

holds for fixed α, β, θ > 0, positive integer k and all positive integer n if and only
if

F (x) = (1 + αx−θ)−β, x > 0.
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Proof. The necessary part follows immediately from equation (9). On the other
hand if the recurrence relation in equation (14) is satisfied, then using equations
(4), we have

kn

(n− 1)!

∫ ∞
0

xr[F (x)]k−1[−ln(F (x))]n−1f(x)dx

=
(n− 1)kn

k(n− 1)!

∫ ∞
0

xr[F (x)]k−1[−ln(F (x))]n−2f(x)dx

− r kn

βθk(n− 1)!

∫ ∞
0

xr[F (x)]k−1[−ln(F (x))]n−1f(x)dx

− r kn

αβθk(n− 1)!

∫ ∞
0

xr+θ[F (x)]k−1[−ln(F (x))]n−1f(x)dx.

(15)

Integrating the first integral on the right hand side of equation (15), by parts, we
get

r kn

k(n− 1)!

∫ ∞
0

xr[F (x)]k−1[−ln(F (x))]n−1
{
F (x)− x

βθ
f(x)− xθ+1

αβθ
f(x)

}
dx = 0.

It now follows from Proposition with g(x) = [−ln(F (x))] that

x(α+ xθ)f(x) = αβθF (x)

or

f(x)

F (x)
=

αβθ

x(α+ xθ)
=
αβθx−(θ+1)

(1 + αx−θ)
.(16)

Integrating both sides of (16), we get∫
f(x)

F (x)
dx =

∫
αβθx−(θ+1)

(1 + αx−θ)
dx.

or

logF (x) = −βlog(1 + αx−θ),

which proves that
F (x) = (1 + αx−θ)−β, x > 0.

Theorem 11. Let X be an absolutely continuous random variable with cdf F (x)
and pdf f(x) on the support (0,∞), then for m < n,

E[XL(n)|XL(m) = x] = α1/θ
∞∑
p=0

(1/θ)(p)

p!(1 + αx−θ)p+1

(
p

β
+

1

βθ
+ 1

)m−n
,(17)
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if and only if
F (x) = (1 + αx−θ)−β, x > 0.

Proof. From (6), we have

E[XL(n)|XL(m) = x] =
1

(n−m− 1)!

∫ x

0
y
[
ln
(F (x)

F (y)

)]n−m−1 f(y)

F (x)
dy

=
α1/θ

(n−m− 1)!

∫ ∞
0

[
(1 + αx−θ)e

t
β − 1

]−1/θ
× tn−m−1e−tdt

=
α1/θ

(n−m− 1)!

∫ ∞
0

(1 + αx−θ)−1/θ e
−t
βθ

×

(
1− e−t/β

1 + αx−θ

)−1/θ
tn−m−1 e−tdt

=
1

(n−m− 1)!

(
α

1 + αx−θ

)1/θ ∞∑
p=0

(1/θ)(p)

p!(1 + αx−θ)p

×
∫ ∞
0

tn−m−1 exp

[
−
(
p

β
+

1

βθ
+ 1

)
t

]
dt, p ≥ β,

where t = ln
(
F (x)
F (y)

)
. The result follows from the definition of the complete

gamma function.
To prove sufficient part, we have from (6) and (17)

1

(n−m− 1)!

∫ x

0
y[−ln(F (y)) + ln(F (x))]n−m−1f(y)dy = F (x)Hn−m(x),(18)

where

Hn−m(x) = α1/θ
∞∑
p=0

(1/θ)(p)

p!(1 + αx−θ)p+1

(
p

β
+

1

βθ
+ 1

)m−n
.

Differentiating (18) both sides with respect to x, we get

1

(n−m− 2)!

∫ x

0
y[−ln(F (y)) + ln(F (x))]n−m−2

f(x)

F (x)
f(y)dy

= f(x)Hn−m(x) + F (x)H ′n−m(x),

f(x)

F (x)
=

H ′n−m(x)

[Hn−m−1(x)−Hn−m(x)]
=

αβθ

x(α+ xθ)
,

which proves that
F (x) = (1 + αx−θ)−β, x > 0.
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5. Numerical results

Here, we investigate how the moments of lower record values from the Dagum
distribution vary with respect to α, β and θ. The recurrence relations obtained in
the preceding sections allow us to evaluate the means, variances and covariances
of all order statistics for all sample sizes in a simple recursive manner and can be
used for various inferential purposes; for example, they are useful in determining
BLUEs of location/scale parameters and best linear unbiased predictors (BLUPs)
of censored failure times. More details on BLUEs and BLUPs based on order
statistics can be seen in (Balakrishnan and Cohen [14], Arnold et al. [1]).

In Table 1 we have computed the values of first four moments for r = 1(1)4,
θ = 2(1)5 and α, β = 1, 2. From Table 1, one can see that the moments are
decreasing with respect to n. In Table 2 we have computed the variances for
θ = 3(1)5, α, β = 1, 2 and different values of n. We can see that variances are
decreasing with respect to n and θ but increasing with respect to α and β. Table
3 shows the coefficients of skewness and coefficient of kurtosis.

Table 1. First four moments of lower records.

r = 1, θ = 2 r = 1, θ = 3
α = 1 α = 2 α = 1 α = 2

n β = 1 β = 2 β = 1 β = 2 β = 1 β = 2 β = 1 β = 2
1 1.48440 2.18374 2.09926 3.08828 1.19098 1.57591 1.50054 1.98552
2 0.60662 1.03430 0.85789 1.46271 0.67084 0.98272 0.84521 1.23816
3 0.34486 0.67698 0.48771 0.95739 0.45858 0.74511 0.57778 0.93879
4 0.21422 0.48870 0.30295 0.69112 0.33029 0.59960 0.41614 0.75545
5 0.13779 0.36811 0.19486 0.52058 0.24283 0.49536 0.30595 0.62412
6 0.09010 0.28356 0.12742 0.40102 0.18024 0.41499 0.22709 0.52285
7 0.05942 0.22132 0.08403 0.31300 0.13443 0.35049 0.16937 0.44159
8 0.03937 0.17415 0.05567 0.24629 0.10051 0.29750 0.12663 0.37483
9 0.02615 0.13776 0.03698 0.19483 0.07525 0.25334 0.09481 0.31918
10 0.01740 0.10936 0.02460 0.15466 0.05638 0.21618 0.07104 0.27237

r = 1, θ = 4 r = 1, θ = 5
α = 1 α = 2 α = 1 α = 2

n β = 1 β = 2 β = 1 β = 2 β = 1 β = 2 β = 1 β = 2
1 1.10292 1.37284 1.31160 1.63259 1.06449 1.27384 1.22278 1.46325
2 0.72221 0.97246 0.85886 1.15646 0.76090 0.97097 0.87404 1.11535
3 0.54159 0.79156 0.64406 0.94133 0.60350 0.82418 0.69324 0.94673
4 0.42136 0.67239 0.50108 0.79961 0.49240 0.72321 0.56562 0.83075
5 0.33257 0.58212 0.39550 0.69226 0.40621 0.64411 0.46662 0.73989
6 0.26423 0.50907 0.31422 0.60539 0.33680 0.57821 0.38688 0.66418
7 0.21062 0.44780 0.25047 0.53253 0.27992 0.52142 0.32155 0.59896
8 0.16817 0.39533 0.19998 0.47013 0.23294 0.47153 0.26758 0.54165
9 0.13439 0.34980 0.15982 0.41599 0.19398 0.42718 0.22282 0.49070
10 0.10745 0.30999 0.12778 0.36864 0.16158 0.38744 0.18561 0.44505
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r = 2, θ = 3 r = 2, θ = 4
α = 1 α = 2 α = 1 α = 2

n β = 1 β = 2 β = 1 β = 2 β = 1 β = 2 β = 1 β = 2
1 2.01912 3.23328 3.20516 5.13250 1.48440 2.18374 2.09926 3.08828
2 0.58229 1.13446 0.92433 1.80085 0.60662 1.03430 0.85789 1.46271
3 0.27452 0.63544 0.43578 1.00870 0.34486 0.67698 0.48771 0.95739
4 0.14788 0.41093 0.23474 0.65231 0.21422 0.48870 0.30295 0.69112
5 0.08391 0.28250 0.13320 0.44843 0.13779 0.36811 0.19486 0.52058
6 0.04881 0.20053 0.07748 0.31832 0.09010 0.28356 0.12742 0.40102
7 0.02877 0.14503 0.04566 0.23023 0.05942 0.22132 0.08403 0.31300
8 0.01708 0.10613 0.02711 0.16847 0.03937 0.17415 0.05567 0.24629
9 0.01018 0.07826 0.01616 0.12423 0.02615 0.13776 0.03698 0.19483
10 0.00608 0.05800 0.00966 0.09207 0.01740 0.10936 0.02460 0.15466

r = 2, θ = 5 r = 3, θ = 4
α = 1 α = 2 α = 1 α = 2

n β = 1 β = 2 β = 1 β = 2 β = 1 β = 2 β = 1 β = 2
1 1.28688 1.78113 1.69805 2.35021 2.42946 4.02799 4.08585 6.77424
2 0.63966 0.99817 0.84404 1.31710 0.58310 1.20732 0.98066 2.03047
3 0.40620 0.71424 0.53598 0.94244 0.24975 0.62309 0.42002 1.04791
4 0.27551 0.55037 0.36354 0.72622 0.12542 0.38105 0.21094 0.64085
5 0.19178 0.43812 0.25306 0.57810 0.06700 0.25030 0.11268 0.42095
6 0.13513 0.35482 0.17830 0.46818 0.03686 0.17066 0.06200 0.28701
7 0.09580 0.29025 0.12641 0.38299 0.02060 0.11892 0.03465 0.20000
8 0.06814 0.23892 0.08991 0.31525 0.01162 0.08400 0.01954 0.141287
9 0.04856 0.19745 0.06407 0.26053 0.00658 0.05987 0.01107 0.10069
10 0.03464 0.16361 0.04570 0.21588 0.00374 0.04293 0.00630 0.07220

r = 3, θ = 5 r = 4, θ = 5
α = 1 α = 2 α = 1 α = 2

n β = 1 β = 2 β = 1 β = 2 β = 1 β = 2 β = 1 β = 2
1 1.76714 2.74222 2.67849 4.15643 2.74017 4.62814 4.77091 8.05807
2 0.58776 1.08776 0.89088 1.64874 0.58767 1.25990 1.02320 2.19361
3 0.29883 0.64923 0.45294 0.98404 0.23736 0.61816 0.41327 1.07628
4 0.17033 0.43883 0.25817 0.66514 0.11432 0.36545 0.19904 0.63629
5 0.10154 0.31289 0.15390 0.47425 0.05893 0.23359 0.10261 0.40670
6 0.06183 0.22943 0.09372 0.34776 0.03138 0.15548 0.05464 0.27071
7 0.03807 0.17103 0.05771 0.25923 0.01701 0.10598 0.02961 0.18452
8 0.02359 0.12880 0.03576 0.19522 0.00931 0.07331 0.01620 0.12765
9 0.01467 0.09764 0.02223 0.14800 0.00512 0.05121 0.00892 0.08917
10 0.00914 0.07435 0.01385 0.11270 0.00283 0.03601 0.00493 0.06270
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Table 2. Variances of lower records.

θ = 3
α = 1 α = 2

n β = 1 β = 2 β = 1 β = 2
1 0.600687 0.749788 0.953540 1.190210
2 0.132264 0.168721 0.209950 0.267810
3 0.064224 0.080251 0.101950 0.127373
4 0.038789 0.051410 0.061568 0.081605
5 0.024944 0.037118 0.039595 0.058904
6 0.016324 0.028313 0.025910 0.044948
7 0.010699 0.022187 0.016974 0.035228
8 0.006978 0.017624 0.011075 0.027972
9 0.004517 0.014079 0.007171 0.022354
10 0.002901 0.011266 0.004613 0.017885

θ = 4
α = 1 α = 2

n β = 1 β = 2 β = 1 β = 2
1 0.267967 0.299050 0.378965 0.422930
2 0.085033 0.088622 0.120250 0.125310
3 0.051540 0.050413 0.072897 0.071288
4 0.036676 0.036592 0.051869 0.051744
5 0.027187 0.029246 0.038440 0.041356
6 0.020283 0.024408 0.028686 0.034523
7 0.015059 0.020795 0.021295 0.029412
8 0.011089 0.017864 0.015678 0.025268
9 0.008089 0.015400 0.011438 0.021782
10 0.005854 0.013266 0.008272 0.018765

θ = 5
α = 1 α = 2

n β = 1 β = 2 β = 1 β = 2
1 0.153741 0.158462 0.202859 0.209109
2 0.060691 0.055387 0.080094 0.073094
3 0.041988 0.034967 0.055398 0.046142
4 0.033052 0.027337 0.043614 0.036074
5 0.026773 0.023242 0.035326 0.030663
6 0.021696 0.020493 0.028624 0.027045
7 0.017445 0.018371 0.023016 0.024237
8 0.013879 0.016579 0.018311 0.021865
9 0.010932 0.014967 0.014421 0.019744
10 0.008532 0.013500 0.011249 0.01781



38 D. Kumar

Table 3. Coefficients of skewness and kurtosis based on lower record values.

Coefficient of skewness
α = 1 α = 2

n β = 1 β = 2 β = 1 β = 2
1 1.160521 1.103942 1.160632 1.103571
2 0.580742 0.844494 0.579866 0.843099
3 0.349731 0.447952 0.350413 0.447455
4 0.352642 0.277884 0.352095 0.276578
5 0.430523 0.211948 0.429243 0.213247
6 0.533212 0.194638 0.535022 0.197633
7 0.645364 0.212851 0.647810 0.212017
8 0.765715 0.237504 0.768017 0.240633
9 0.882758 0.276343 0.881751 0.281873
10 0.997347 0.318764 0.999092 0.323542

Coefficient of kurtosis
α = 1 α = 2

n β = 1 β = 2 β = 1 β = 2
1 4.782052 3.882246 4.781325 3.882445
2 4.128797 4.888647 4.131847 4.894499
3 3.228035 3.745018 3.226523 3.753257
4 3.000637 3.297152 3.003395 3.313524
5 2.974357 3.098906 2.991363 3.091831
6 3.082535 2.368889 3.076892 2.996861
7 3.299072 2.337784 3.271439 2.941616
8 3.535337 1.492047 3.492471 2.928391
9 3.790521 1.295355 3.837180 2.908994
10 4.176110 1.341425 4.212107 2.938245

6. Application

In this Section we suggest some application based on moments discussed in Sec-
tion 2.

(i) Estimation: The moments of record values given in Section 2 can be used
to obtain the best linear unbiased estimates (BLUEs) of the scale parameters of
the Digum distribution

f(x) = αβθx−(θ+1)(1 + αx−θ)−(β+1), x > 0, α, β, θ > 0.(19)

This type of work have been done by Sultan and Moshref [11].

(ii) Characterization: The Dagum distribution given in (2) can be character-
ization by using recurrence relation and conditional expectation of record value
as Theorem 10 and Theorem 11, respectively.



k-th record values from Dagum distribution ... 39

7. Conculding remarks

Some new explicit expressions and recurrence relations for single and product
moments of kth lower record values from the Dagum distribution are established.
In addition the single moments are calculated for some choices of the parameters.
Further, characterization of this distribution has also been obtained on using a
recurrence relation for single moments and conditional expectation of the record
value. The relation between our results and some other results in literature are
listed below:

1. When β = 1 we deduce

µ
(r)
L(n):k = knαr/θ

∞∑
p=0

(r/θ)(p)

p! [k + p+ (r/θ)]n
,

1

α
µ
(r+θ)
L(n):k =

θk

r
µ
(r)
L(n−1):k −

(
1 +

θk

r

)
µ
(r)
L(n):k,

µ
(r,s)
L(m,n):k = knα(r+s)/θ

∞∑
p=0

∞∑
q=0

(s/θ)(p)

p! q![k + p+ (s/θ)]n−m

×
(r/θ)(q)

[k + p+ q + (r + s)/θ]m
,

1

α
µ
(r,s+θ)
L(m,n):k =

θk

s
µ
(r,s)
L(m,n−1):k −

(
1 +

θk

s

)
µ
(r,s)
L(m,n):k.

Which are the explicit expression and recurrence relations of the single and prod-
uct moments of lower record values from log-logistic distribution.

2. The recurrence relations for the single and product moments of record values
can be used to calculate the different moments for any order and sample size in
a simple regressive manner. The recurrence relations reduce the round off error
for calculating the moments compare with the numerical integration techniques.
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