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Abstract
Meta-analysis is a standard statistical method used to combine the

conclusions of individual studies that are related and the results of
single study alone can not answered to deal with issues. The data are
summarized by one or more outcome measure estimates along with
their standard errors.

The multivariate model and the variations between studies are not
considered in most articles.

Here we discuss multivariate effects models: a multivariate fixed
effects model and a multivariate random effects model.
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1. Introduction

Meta-analysis is a statistical method put in the context of mixed likelihood
methods to estimate all relevant parameters [3].

In the medical literature, meta-analysis is usually applied to the results
of clinical trials, but we present a theory, the application of which is not
only limited to clinical trials.

Methods for meta-analysis of summary data are discussed in Section 2
and Section 3. The statistical methods are generally based on standard fixed
or random effects models. In Section 4, we discuss results in medical trials.
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Section 5 examines the application of the methods. The collection consists of
seven studies, each examines the efficacy of three medicines in the treatment
of hypertension. The medicines include the same component in different
amount. In each study the number of patients whom medicines or a control
drug did not help is recorded. To calculate the example we use SAS PROC.

2. The fixed effects model

Suppose that in each of m studies there are measures on k response variables
for each subject (see Table 1).

Table 1.

Study 1 Study 2 . . . Study m

Y11 Y21 . . . Ym1

Y12 Y22 . . . Ym2

...
...

...
...

Y1k Y2k . . . Ymk

Let

Yj =




Y1j

Y2j
...

Ymj


 , j = 1, 2, . . . , k,

and denote the estimated outcome measure by

µ =




µ1

µ2
...

µm


 .

A general model is then specified by

Yj = µ + ej ,
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where

ej =




e1j

e2j
...

emj




indicate the error of the summary statistic and we assume that for a given
i = 1, 2, . . . , m, eij are supposed to be independent with mean zero and
variance σ

2(j)
ii , eij ∼ N(0, σ

2(j)
ii ), but ej are dependent for different j, j =

1, 2, . . . , k.
This means that the estimated effect size Yj , j = 1, 2, . . . , k, is normally

distributed with the mean µ and variance

Σj =




σ
2(j)
11 σ

2(j)
12 . . . σ

2(j)
1m

σ
2(j)
21 σ

2(j)
22 . . . σ

2(j)
2m

...
...

...
...

σ
2(j)
m1 σ

2(j)
m2 . . . σ

2(j)
mm




, j = 1, 2, . . . , k.

Let Sj , j = 1, 2, . . . , k, denote the estimator of Σj . Then, the estimator
of µ is a simple weighted average of Yj , with the weights proportional to
Ωj = S−1

j . Hence

µ̂ =




k∑

j=1

Ωj



−1

k∑

j=1

ΩjYj

and ˆV ar(µ̂) = Ω−1, where Ω =
k∑

j=1
Ωj .

When Σj is assumed known, the estimator µ̂
∣∣Σ ∼ N(µ,Σ−1)

(adequately to one-dimensional model [1], [4]) and the statistic to testing
H0 : µ = µ0 is (µ̂− µ0)

′Ω (µ̂− µ0) ∼
H0

χ2
m.
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3. The random effects model

Assume, that Y1, Y2, . . . ,Yk, are not equal, but are m-normally
distributed. This gives the following model

Yj = Xj + εj , Xj = µ + ξj ,

where for a given i, i = 1, 2, . . . , m εij and ξij , j = 1, 2, . . . , k, are indepen-
dent and normally distributed N(0, σ2(j)

ii ), N(0, σ2(i)
ξ ), respectively. Hence

Yj = µ + εj + ξj and Yj ∼ N(0,Σj + Σξ), where

Σξ =




σ
2(1)
ξ 0 . . . 0

0 σ
2(2)
ξ . . . 0

...
...

...
...

0 0 . . . σ
2(m)
ξ




.

Then, the optimal weights are equal

Tj =
(
Σj + Σξ

)−1
, j = 1, 2, . . . , k

and T =
k∑

j=1

Tj .

The best unbiased estimator has the form (under known Tj)

µ̃ =




k∑

j=1

Tj



−1

k∑

j=1

TjYj

with V ar(µ̃) = T−1. The estimator µ̃ ∼ N(µ,T−1) and the statistic to
testing H0 : µ = µ0 is (µ̃− µ0)

′T (µ̃− µ0) ∼
H0

χ2
m.
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3.1. Method of Moments

In a traditional random effects meta-analysis we usually use the method of
moments based on the estimator of Σξ.

The unbiased estimator of σ
2(i)
ξ (DerSimonian and Laird (1986) [2]) is

σ̄
2(i)
ξ =

ωi

ω2
i −

k∑
j=1

ω2
ij





k∑

j=1

ωij


Yij −

k∑

j=1

ωijYij

ωi




2

− (k − 1)



 ,

where ωij = 1

σ
2(j)
ii

, ωi =
k∑

j=1
ωij , i = 1, 2, . . . , m.

In practice, ωij is unknown. We replace σ
2(j)
ii by σ̂

2(j)
ii , j = 1, 2, . . . , k,

and we obtain the reference unbiased estimator of σ
2(i)
ξ with the realization

σ̃
2(i)
ξ . Since the estimator σ̃

2(i)
ξ can become negative with positive probabil-

ity, σ̃
2(i)
ξ is substituted by the truncated estimator σ̂

2(i)
ξ = max{0, σ̃

2(i)
ξ }.

Note that Q
(i)
hom =

k∑
j=1

ω̂ij(Yij − µ̂i)2 is approximately χ2
k−1-distributed.

Hence

E
(
Q

(i)
hom

)
= k − 1 + σ

2(i)
ξ




k∑

j=1

ω̂ij −
k∑

j=1

ω̂2
ij

/ k∑

j=1

ω̂ij


 .

Suppose that σ̄
2(i)
ξ is obtained by solving

q
(i)
ω̂ = k − 1 + σ̄

2(i)
ξ




k∑

j=1

ω̂ij −
k∑

j=1

ω̂2
ij

/ k∑

j=1

ω̂ij



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giving

σ̄
2(i)
ξ =

q
(i)
ω̂ − (k − 1)

k∑
j=1

ω̂ij −
k∑

j=1
ω̂2

ij

/ k∑
j=1

ω̂ij

.

According to DerSimonian and Laird the random weights are

T̂j =
(
Σ̂j + Σ̂ξ

)−1
, and T̂ =

k∑

j=1

T̂j , j = 1, 2, . . . , k.

The estimator of µ is then given by

µ̆ = T̂−1
k∑

j=1

T̂jYj .

3.2. Method of Maximum Likelihood (ML)
This is a method for estimating variance components in a general linear
model. This is considered as an alternative to the DerSimonian and Laird
method.

The standard random effects model has the form Yj = µ + εj + ξj , j =
1, 2, . . . , k, where εij and ξij are independent for a given i. Hence Yj ∼
N(µ,Σj +Σξ). We assume that σ

2(j)
ii is treated as known and constant. For

a given i, i = 1, 2, . . . ,m the log - likelihood function is

log L
(
µi, σ

2(i)
ξ

)
= −1

2

k∑

j=1

log
(
2π

(
σ

2(j)
ii + σ

2(i)
ξ

))
− 1

2

k∑

j=1

(Yij − µi)2

σ
2(j)
ii + σ

2(i)
ξ

,

µi ∈ R, σ
2(i)
ξ ≥ 0.

We want to find the maximum likelihood estimators µ̂ml and σ̂2
ξml.
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We obtain

µ̂(i)
m =

k∑

j=1

Yij

σ̂
2(j)
ii + σ̂

2(i)
ξm

/ k∑

j=1

1

σ̂
2(j)
ii + σ̂

2(i)
ξm

,

σ̂
2(i)
ξm =

k∑

j=1

(
Yij − µ̂

(i)
m

)2
− σ̂

2(j)
ii

(
σ̂

2(j)
ii + σ̂

2(i)
ξm

)2

/ k∑

j=1

1(
σ̂

2(j)
ii + σ̂

2(i)
ξm

)2 .

The ML estimator of µ
(i)
ml and σ

2(i)
ξml is the solution to

(
µ̂

(i)
ml, σ̂

2(i)
ξml

)
=





(
µ̂

(i)
ml, σ̂

2(i)
ξml

)
, σ̂

2(i)
ξml > 0

(µ̂i, 0), σ̂
2(i)
ξml ≤ 0

.

The solution must be obtained iteratively. In this paper, the iterations are
initialized with σ̂

2(i)
ξm = σ̂

2(i)
ξ + 0.01, and SAS PROC MIXED is used. The

estimator of µ is then given by

µ̆ml = T̂−1
ml

k∑

j=1

T̂(ml)
j Yj ,

where

T̂(ml)
j =

(
Σ̂j + Σ̂ξml

)−1
, j = 1, 2, . . . , k,

and

T̂ml =
k∑

j=1

T̂(ml)
j .

3.3. Method of Restricted Maximum Likelihood (REML)
Let the overall effect µ be diverse between Y1, Y2, . . . , Yk. Recall that the
standard effects model has Yj ∼ N(µ,Σj + Σξ). We want to maximize the
following function for a given i, i = 1, 2, . . . , m



84 I. Janicka

log L
(
µi, σ

2(i)
ξ

)
∝

k∑

j=1



log

(
σ

2(j)
ii + σ

2(i)
ξ

)
+

(Yij − µi)2

σ
2(j)
ii + σ

2(i)
ξ



 +

+ log




k∑

j=1

1

σ
2(j)
ii + σ

2(i)
ξ


 , µi ∈ R, σ

2(i)
ξ ≥ 0.

The REML estimators of µi and σ
2(i)
ξ are the solution to

µ̂(i)
r =

k∑

j=1

Yij

σ̂
2(j)
ii + σ̂

2(i)
ξr

/ k∑

j=1

1

σ̂
2(j)
ii + σ̂

2(i)
ξr

,

σ̂
2(i)
ξr =

k∑

j=1

k
k−1

(
Yij − µ̂

(i)
r

)2
− σ̂

2(j)
ii

(
σ̂

2(j)
ii + σ̂

2(i)
ξr

)2

/ k∑

j=1

1(
σ̂

2(j)
ii + σ̂

2(i)
ξr

)2 .

We find the estimators µ̂
(i)
r and σ̂

2(i)
ξr iteratively. The iterations are initialized

with σ̂
2(i)
ξr = σ̂

2(i)
ξ +0.01, and SAS PROC MIXED is used in this paper. The

estimator of µ is then given by

µ̆reml = T̂−1
reml

k∑

j=1

T̂(reml)
j Yj ,

where

T̂(reml)
j =

(
Σ̂j + Σ̂ξreml

)−1
, j = 1, 2, . . . , k

and

T̂reml =
k∑

j=1

T̂(reml)
j .
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4. Results of medical trials

Meta-analysis is usually used to clinical trails. Then data are usually
received from binary trials. We can use the following table.

Table 2. Columns 2-4 show the sample sizes, f
(.)
ij + s

(.)
ij = n

(.)
ij . Column 5

gives the proportion p
(.)
ij =

f
(.)
ij

n
(.)
ij

.

Procedure Number Number Number cases
disease cases no disease cases

A f
(A)
ij s

(A)
ij n

(A)
ij p

(A)
ij =

f
(A)
ij

n
(A)
ij

B f
(B)
ij s

(B)
ij n

(B)
ij p

(B)
ij =

f
(B)
ij

n
(B)
ij

f
(.)
ij s

(.)
ij n

(.)
ij

The estimator of Yij , j = 1, 2, . . . , k, for given i, i = 1, 2, . . . ,m is

µ̂ij =
f
(A)
ij

n
(A)
ij

− f
(B)
ij

n
(B)
ij

with the variance υ
(j)
ii =

f
(A)
ij s

(A)
ij

n
(A)

ij3

+
f
(B)
ij s

(B)
ij

n
(B)

ij3

(see Table 2).

The log-odds method has OR = p(A)

1−p(A) /
p(B)

1−p(B) = p(A)(1−p(B))

(1−p(A))p(B) . Hence,

µ̂ij = ln (ORij) = ln

(
f

(A)
ij s

(B)
ij

f
(B)
ij s

(A)
ij

)
, j = 1, 2, . . . , k.

The corresponding within-trial, computed from the inverse of the matrix of
second derivatives of the log - likelihood, is

σ̂
2(j)
ii = ˆvar (ln (ORij)) =

1

f
(A)
ij

+
1

s
(A)
ij

+
1

f
(B)
ij

+
1

s
(B)
ij

,

which is also known as Woolf’s formula.
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Since µ̂i is normally distributed and µ̂lj and µ̂sj are dependent for l 6=
s, l, s = 1, 2, . . . ,m, we can calculate the correlation between vectors




µ̂l1

µ̂l2

...

µ̂lk




and




µ̂s1

µ̂s2

...

µ̂sk




from

rls =

k∑
j=1

(
µ̂lj − ¯̂µ(l)

) (
µ̂sj − ¯̂µ(s)

)

√
k∑

j=1

(
µ̂lj − ¯̂µ(l)

)2
k∑

j=1

(
µ̂sj − ¯̂µ(s)

)2

,

where ¯̂µ(l) = 1
l

k∑
j=1

µ̂lj .

5. Examples and comparison of methods

To illustrate the above methods we make use of data: the efficacy of three
medicines in the treatment of hypertension (see Table 3). The medicines
include the same component in different amount. We use SAS PROC.

Table 3. Columns show the sample sizes and observed proportions.

Study Treatment 1 Treatment 2 Treatment 3 Control

f
(A)
1j n

(A)
1j p

(A)
1j f

(A)
2j n

(A)
2j p

(A)
2j f

(A)
3j n

(A)
3j p

(A)
3j f

(B)
1j n

(B)
1j p

(B)
1j

1 44 716 0.0615 33 669 0.0493 46 721 0.0638 56 710 0.0789

2 94 730 0.1288 26 581 0.0448 56 667 0.0840 59 415 0.1422

3 51 576 0.0885 44 774 0.0569 31 545 0.0569 68 587 0.1158

4 121 742 0.1631 89 689 0.1292 59 712 0.0829 114 733 0.1555

5 44 754 0.0584 23 376 0.0612 45 541 0.0832 58 770 0.0753

6 32 341 0.0938 46 456 0.1009 41 452 0.0907 29 311 0.0933

7 151 991 0.1524 120 887 0.1353 131 886 0.1479 149 1000 0.1490
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From the studies we receive the log-odds ratio and estimated variances
(see Table 4).

Table 4. Columns give the log-odds ratio and variance estimates for each
of the studies.

µ̂1j = σ̂2
1j = µ̂2j = σ̂2

2j = µ̂3j = σ̂2
3j =

ln OR1j ˆvar (lnOR1j) ln OR2j ˆvar (lnOR2j) ln OR3j ˆvar (ln OR3j)

1 -0.2683 0.04360 -0.5009 0.05126 -0.2283 0.04261

2 -0.1145 0.03197 -1.2635 0.06002 -0.5924 0.03925

3 -0.2992 0.03815 -0.7765 0.04073 -0.7758 0.05084

4 0.0564 0.02026 -0.2164 0.02329 -0.7121 0.02887

5 -0.2734 0.04278 -0.2233 0.06496 0.1077 0.04288

6 0.0070 0.07252 0.0871 0.06221 -0.0304 0.06485

7 0.0263 0.01570 -0.1125 0.01752 -0.0091 0.01685

The multivariate fixed effects method and tree multivariate random
effects methods have all been used to combine these data. Below we have
estimated values of µ and its variation. For the random effects methods
the estimate of σ

2(1)
ξ is equal 0 and estimates of σ

2(2)
ξ and σ

2(3)
ξ are

larger than 0.

The estimates from the fixed effects model are:

µ̂ =




−0.13726

−0.31386

−0.2967


 and ˆV ar(µ̂) =




0.00927 1.48882 0.14624

1.48882 0.0864 2.07132

0.14624 2.07132 0.00995


 .

When we use the random effects model we receive the following estimates.
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(1) DerSimonian and Laird:

µ̆ =




−0.13718

−0.26403

−0.29704


 and ˆV ar(µ̆) =




0.00749 0.76561 0.07894

0.76561 0.14427 0.58201

0.07894 0.58201 0.02311


 .

(2) ML:

µ̆ml =




−0.13714

−0.28285

−0.2982


 and ˆV ar(µ̆ml) =




0.00754 0.78287 0.08583

0.78287 0.13035 0.64466

0.08583 0.64466 0.02005


 .

(3) REML:

µ̆reml =




−0.13759

−0.27627

−0.29749


 and ˆV ar(µ̂reml) =




0.00747 0.720 0.07972

0.720 0.13197 0.55238

0.07972 0.55238 0.02275


 .

6. Conclusions

In this paper, we have considered and combined several estimators for the
common mean µ. Here, one example was used. As we see, different estima-
tion methods can lead to proportionally the same results.

In practice, we often need methods for multivariate model but for sim-
plification calculation variation between studies is ignored.
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