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1. Introduction

Throughout the paper by L(X) we denote the distribution of the random
variable X. If random variables X and Y have the same distribution we will
write X

d= Y .
We say that a random variable X is strictly stable if for every positive

numbers a, b there exists a positive number c(a, b) such that

(1) aX + bX ′ d= c(a, b)X,

where X ′ independent copy of X.
It is known ([?, ?]) that for every strictly stable random variable X,

there exists a unique number α ∈ (0, 2], referred to as the index of stability
of X, such that

c(a, b) = α
√

aα + bα.
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If X is a strictly stable random variable with α ∈ (0, 1) and a characteristic
function ϕ(t) = exp{−σα|t|α(1− isign(t) tan(πα

2 ))}, σ ≥ 0, then its density
function is concentrated on (0,+∞) and the Laplace transform of X has the
form Ee−sX = e−aαsα

for s ≥ 0 and aα = σα

cos(πα
2

) .

A strictly stable random variable X is called symmetric stable if its
distribution is symmetric, that is, if X

d= −X. From now on we will use the
notation SαS for a symmetric stable distribution with the corresponding
index of stability α. We will also say that the random variable X has a
symmetric α-stable density function. If a random variable X is SαS, then
its characteristic function is of the form ϕ(t) = e−C|t|α for some C ≥ 0. It
is well known ([?, ?]) that no random variable has a characteristic function
given by the formula ϕ(t) = e−C|t|α for α > 2, C > 0.

For α ∈ (0, 2], let fα,C denote the density function of the SαS distribu-
tion with the characteristic function ϕ(t) = e−C|t|α for some C ≥ 0. By the
Fourier Inversion Formula

fα,C(x) =
1
π

∫ ∞

0
cos(tx)e−C|t|αdt.

Since fα,C(x) = C− 1
α fα,1

(
x

C
1
α

)
for every C > 0, we can restrict our

considerations to the function fα
def
= fα,1.

2. Properties of SαS density function

In this section, we show some properties of the SαS density function. The
explicit formula for this density is known for all α ∈ (0, 2], namely

• for α = 2 the distribution S2S is a symmetric Gaussian distribution
and

f2(x) =
1

2
√

π
e−

x2

4 ,
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• for α = 1 the distribution S1S is the Cauchy distribution:

f1(x) =
1

π(1 + x2)
,

• for α ∈ (0, 1) we have

fα(x) =
1
π

∞∑

k=1

(−1)k−1

k!
Γ(αk + 1) sin

(
αkπ

2

)
|x|−αk−1,

• for α ∈ (1, 2) we have

fα(x) =
1
π

∞∑

k=1

1
k!

Γ
(

k

α
+ 1

)
|x|k−1.

It is easily seen that for α ∈ {1, 2} the function fα has a nice analytical form.
However for α ∈ (0, 1) ∪ (1, 2) the formula of a symmetric α-stable density
function is rather complicated and hence it is difficult to find analytical
properties of fα. In [2] we can find asymptotic expansions and integral
representations of stable densities and in [4] there are plots of them. The
very important property states that for every α ∈ (0, 2] the density function
of an SαS random variable is infinitely differentiable (see [4]). The following
theorem shows the properties of SαS that are intuitive and some others.

Theorem 1. Let α ∈ (0, 2]. The density function fα : IR → [0, +∞) of a
symmetric α -stable distribution with a corresponding characteristic function
ϕ(t) = e−|t|α has the following properties:

(i) f
(2n)
α (x) = f

(2n)
α (−x), f

(2n+1)
α (x) = −f

(2n+1)
α (−x) for every x ∈ IR,

n ∈ IN (we assume f
(0)
α = fα);

(ii) f
(2n)
α (0) = (−1)n

πα Γ(2n+1
α ), f

(2n+1)
α (0) = 0 for every n ∈ IN ;

(iii) if g(x)
def
= fα(

√
x) for x ≥ 0, then g is completely monotonic;

(iv) fα(x) > 0 for every x ∈ IR;
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(v) fα is strictly decreasing on (0,∞);

(vi) there exists only one number y > 0 such that fα is concave on the
interval (0, y) and convex on (y,∞);

(vii) limx→∞ f
(n)
α (x) = 0 for every n ∈ IN .

(viii) Let n, k ∈ IN , n > k.
• If α 6= 2 and n + k = 2l + 1 (n + k = 2l) for some l ∈ IN , then

there exists a number z ≥ 0 such that the function f
(n)
α

f
(k)
α

is strictly

increasing (decreasing) on (z,∞).

• If α = 2 then

f
(n)
2 (x)

f
(k)
2 (x)

=
(
−x

2

)n−k
+ Qn−k(x),

where Qn−k is an algebraic expression of power fewer than n−k.

Proof. The proof of properties (i)-(vii) for the cases α ∈ {1, 2} is a matter
of simple calculations. In (vi) we obtain y =

√
2 for α = 2 and y =

√
3

3 for
α = 1.

Since the proof of these properties can be the same for all α ∈ (0, 2], on
the other hand there is no need to separate these cases. Let α ∈ (0, 2].

The first property is obvious in view of the previous remark.
The second one is obtained out of the property (i), the Fourier Inversion

Theorem and the properties of Gamma distribution, namely

f (2n)
α (0)=

∂2n

∂x2n

1
π

∫ ∞

0
cos(tx)e−|t|

α
dt|x=0

=
(−1)n

π

∫ ∞

0
t2ne−tαdt

=
(−1)n

πα

∫ ∞

0
t

2n+1
α

−1e−tdt =
(−1)n

πα
Γ

(
2n + 1

α

)
.
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In order to see (iii) let us notice that if X is a random variable with the
density function fα, then X

d= Y
√

Θ, where Y is a standard Gaussian ran-
dom variable, for α ∈ (0, 2) a random variable Θ is positive strictly stable
independent of Y with the Laplace transform Ee−sΘ = e−(2s)

α
2 for s ≥ 0

and for α = 2 we have P{Θ = 2} = 1. If we denote L(Θ) = λ then we
obtain

(2) fα(x) =
∫ ∞

0

1√
2πs

e−
x2

2s λ(ds)

and hence

g(x) =
∫ ∞

0

1√
2πs

e−
x
2s λ(ds) for x ≥ 0.

Now it is easily seen that g(2n)(x) > 0 and g(2n+1)(x) < 0 for every x > 0
and n ∈ IN , which implies complete monotonicity of the function g.

From the property (iii) we obtain fα(x) = g(x2) > 0 for every x > 0
and from the property (i) we get (iv).

From (iii) we obtain also that f ′α(x) = 2xg′(x2) < 0 for every x > 0,
which implies (v).

We now show the property (vi). Because of the symmetry of the function
fα(x) we consider only x ≥ 0. From the equation (??) we obtain

√
2πf ′′α(x)=

∫ ∞

0

(
x2

s
− 1

)
s−

3
2 e−

x2

2s λ(ds)

=
∫ x2

0

(
x2

s
− 1

)
s−

3
2 e−

x2

2s λ(ds)−
∫ ∞

x2

(
1− x2

s

)
s−

3
2 e−

x2

2s λ(ds).

Since f ′′α(x) exists for every x ≥ 0, then in the second expression each
of the integrals is finite and takes a nonnegative value for every x ≥ 0.
Moreover, these integrals are monotonic functions of the variable x - the
first is increasing and the other is decreasing. This implies that we can
find only one number y ≥ 0 such that

√
2πf ′′α(x) > 0 for every x > y.



96 G. Mazurkiewicz

Since the α-stable density function is infinitely differentiable in IR, in view
of (v), the point x = 0 is a local maximum of the function fα. This implies
that y must be positive and that

√
2πf ′′α(x) < 0 for every 0 < x < y, which

completes the proof of (vi).
The property (vii) follows from the equality

lim
x→∞xαP{X > x} = cα =





1− α

Γ(2− α) cos
(

1
2πα

) for α 6= 1

1
π

for α = 1

.

For α ∈ (0, 2) we have cα > 0 and for α = 2 there is cα = 0. If x →∞, then
xα →∞ and P{X > x} → 0. Using the de l’Hospital theorem we obtain

(3)

cα = lim
x→∞

P{X > x}
1

xα

H= lim
x→∞

fα(x)
α 1

xα+1

H= lim
x→∞

f ′α(x)
−α(α + 1) 1

xα+2

H= lim
x→∞

f ′′α(x)
α(α + 1)(α + 2) 1

xα+3

H= . . .
H= lim

x→∞
f

(n)
α (x)

(−1)nα(α + 1) . . . (α + n) 1
xα+n+1

,

which means limx→∞ f
(n)
α (x) = 0 for every n ∈ IN .

In order to obtain (viii) for α ∈ (0, 2) we use the equality (??). It
implies that for ε = cα

n−k

(√
α + n + 1−√α + k + 1

)2, 0 < ε < cα, there
exists a number z = z(ε) ≥ 0 such that for every number x > z and for
every n ∈ IN we have

∣∣∣∣
1

Bn
xα+n+1(−1)nf (n)

α (x)− cα

∣∣∣∣ < ε,
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where Bn = α(α + 1) . . . (α + n). This means

0 <
Bn(cα − ε)

xα+n+1
< (−1)nf (n)

α (x) <
Bn(cα + ε)

xα+n+1
for every x > z

and since Bn+1

Bn
= α + n + 1 then for k ∈ IN , n > k, we obtain

−f
(k+1)
α (x)

f
(k)
α (x)

<
(α + k + 1)(cα + ε)

(cα − ε)x
<

(α + n + 1)(cα − ε)
(cα + ε)x

< −f
(n+1)
α (x)

f
(n)
α (x)

.

Hence for x > z we have

−f
(k+1)
α (x)

f
(k)
α (x)

=
(−1)(k+1)f

(k+1)
α (x)

(−1)kf
(k)
α (x)

<
(−1)(n+1)f

(n+1)
α (x)

(−1)nf
(n)
α (x)

= −f
(n+1)
α (x)

f
(n)
α (x)

and since (−1)nf
(n)
α (x) > 0 for every n ∈ IN, then

(−1)n+k+1
(
f (n+1)

α (x)f (k)
α (x)− f (k+1)

α (x)f (n)
α (x)

)
> 0.

Equivalently, if n + k = 2l + 1 for some l ∈ IN , then the function f
(n)
α

f
(k)
α

is

strictly increasing on (z,∞) and if n + k = 2l, then that function is strictly
decreasing.

To see (viii) for α = 2 let us notice that

f
(n)
2 (x) =

(−1)n

2n+1
√

π
e−

x2

4 Hn

(x

2

)
,
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where Hn(x) = (−1)nex2 dn

dxn (e−x2
) is the Hermite polynomial. Using the

property

Hn+1

(x

2

)
= xHn

(x

2

)
−H ′

n

(x

2

)

n− k times we obtain that

Hn

(x

2

)
= Hk

(x

2

)(
xn−k + Qn−k(x)

)
,

which ends the proof.

3. Negative moments of stable distribution

In [4] we can find the very well known property of nonnegative moments of
an α-stable distribution. It states that for every α-stable density function
gα, 0 < α < 2, we have

∫

IR
|x|rgα(x)dx<+∞ for 0 < r < α,

∫

IR
|x|rgα(x)dx=+∞ for r ≥ α.

In the following remarks we give some information about negative moments
of the strictly positive and symmetric α-stable distribution.

Remark 1. If a random variable Θ is positive strictly stable with the
Laplace transform Ee−sΘ = e−(2s)

α
2 for s ≥ 0, α ∈ (0, 2), and with the

density function L(Θ) = λ, then for every r < 0 we have

∫ ∞

0
xrλ(dx) =

2r+1

αΓ(−r)
Γ

(
−2r

α

)
.

Proof. From the properties of the Gamma distribution for r < 0 and x > 0
we obtain that 1

Γ(−r)

∫∞
0 s−r−1e−xsds = xr ([?]), so we can write
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∫ ∞

0
xrλ(dx)=

1
Γ(−r)

∫ ∞

0
s−r−1

∫ ∞

0
e−xsλ(dx) ds

=
1

Γ(−r)

∫ ∞

0
s−r−1e−(2s)

α
2 ds

=
1

Γ(−r)

∫ ∞

0

2r+1

α
u−

2r
α
−1e−udu =

2r+1

αΓ(−r)
Γ

(
−2r

α

)
.

Remark 2. If an SαS random variable X has the density function fα,
α ∈ (0, 2], then

∫

IR
|x|rfα(x)dx=

1
α cos(0.5πr)Γ(−r)

Γ
(
− r

α

)
for − 1 < r < 0,

∫

IR
|x|rfα(x)dx=+∞ for r ≤ −1.

Proof. The symmetry of the function fα allows us to consider only the
case x > 0. Using the same trick as in the proof of the previous remark for
r < 0 we obtain

∫ ∞

0
xrfα(x)dx =

1
Γ(−r)

∫ ∞

0
s−r−1

∫ ∞

0
e−xsfα(x)dx ds.

Consider the random variable ZX, where Z is S1S and X is SαS, Z and
X are independent, then
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EeisZX=
∫

IR
e−|xs|fα(x)dx

=2
∫ ∞

0
e−xsfα(x)dx

=2
∫ ∞

0
e−(xs)α

f1(x)dx.

Using this equality for a nonnegative s we obtain

∫ ∞

0
xrfα(x)dx=

1
Γ(−r)

∫ ∞

0
s−r−1

∫ ∞

0
e−(xs)α

f1(x)dx ds

=
1

Γ(−r)

∫ ∞

0
f1(x)

∫ ∞

0
s−r−1e−(xs)α

ds dx

=
1

αΓ(−r)
Γ

(
− r

α

)∫ ∞

0
xrf1(x)dx

=
1

παΓ(−r)
Γ

(
− r

α

)∫ ∞

0

xr

1 + x2
dx.

The integral
∫∞
0

xr

1+x2 dx is finite only for r ∈ (−1, 1) and then it is equal
π

2 cos(0.5πr) . This ends the proof.
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[2] E. Lukács, Characteristic Functions, Griffin, London 1960.

[3] J.K. Misiewicz and R.M. Cooke, Isotropic sequences of random variables and
stochastic rescaling, Theor. Probability and Math. Statist., Amer. Math. Soc.
2001.

[4] G. Samorodnitsky and M.S. Taqqu, Stable Non-Gaussian Random Processes,
Chapman & Hall, New York 1994.

[5] V.M. Zolotarev, One-dimensional Stable Distributions, Transl. Math. Mono-
graphs 65, Amer. Math. Soc., Providence.

Received 14 July 2004


