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Abstract

When we apply stacked regression to classification we need only
discriminant indices which can be negative. In many situations, we
want these indices to be positive, e.g., if we want to use them to
count posterior probabilities, when we want to use stacked regression
to combining classification. In such situation, we have to use least
squares regression under the constraint βk ≥ 0, k = 1, 2, . . . ,K. In
their earlier work [5], LeBlanc and Tibshirani used an algorithm given
in [4]. However, in this paper we use a more general algorithm given
in [6].
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1. Introduction

Wolpert [7] presented an interesting idea of combining classifiers known as
”stacked generalization”. He was not searching for the best classifier in
the set of all classifiers but their linear combination. Since each single one
has some advantages, their combination is reasonable. Wolpert’s proposal
was translated into the language of the statistics by Breiman [2]; he called
it ”stacked regression”. Then LeBlanc and Tibshirani [5] used it to con-
struct a combined classifier in discriminant analysis. A combined classifier
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is a linear combination of estimated posterior probabilities; coefficients of
this combination are estimated by the stacked regression. These coefficients
may be negative and so may discriminant indices. Very often we need pos-
terior probabilities, so we can use another method to estimate regression
coefficients.

Suppose that a training sample z = (z1, . . . , zN ) has been collected
by sampling a population P consisting of K subpopulations or classes
G1, . . . , GK . The ith observation in z is a pair denoted by zi = (xi, yi)
where xi is a p-dimensional feature vector and yi is the label for recording
class membership. The corresponding pair for an unclassified observation
is denoted by z0 = (x0, y0). In this case x0 is observed but the class label
y0 is unobserved. The object of classification is to construct a classification
rule for predicting the membership of an unclassified feature vector x0 ∈ P .
An automated classifier can be viewed as a method of estimating the
posterior probability of membership in Gk. The classification rule assigns
x0 to the group with the largest posterior probability estimate. We denote
the posterior probability of membership in Gk by

pk(x0) = P (y0 = k|x0), k = 1, 2, . . . ,K.

Let us assume that we have c different classifiers. An estimate of pk(x0)
obtained by jth classifier is denoted by

p̂j
k(x0), k = 1, 2, . . . ,K; j = 1, 2, . . . , c.

Stacked regression is a generalization of the sum rule. We have c classifiers
and K classes so we have Kc estimates which are arranged in the vector:

p̂(x0) =
(
p̂1
1(x0), . . . p̂1

K(x0), . . . , p̂c
1(x0), . . . , p̂c

K(x0)
)′

.

These estimates are being arranged to the stack as rows of the P matrix.
Let uh be a vector having a 1 in the ith position if the observation falls in
class h and 0 otherwise, so
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ui,h =

{
1, if yi = h,

0, if yi 6= h.

The stacked regression model has the form:

uh = Pβh + εh,

where βh is a Kc× 1 vector of unknown stacked regression coefficients and
εh a N -vector of errors assumed to follow a normal distribution with mean
zero and common covariance matrix. Least squares estimate of β̂h can be
obtained by solving the following equation:

P′Pβh = P′uh

with respect to βh.
Estimates of posterior probability received from the classifiers are summed

up to one, so

∀j = 1, 2, . . . , c,
K∑

k=1

p̂j
k = 1.

Hence columns of the P matrix are undergoing c linear constraints, P is not
a full column rank and P′P is a singular matrix. We can use the Moore -
Penrose generalized inverse of the matrix P′P denoted by (P′P)+ and

β̂h = (P′P)+P′uh.

Given the estimates β̂1, . . . , β̂K we classify x0 using the scalar product:

û0,h = p̂′(x0)β̂h.

We are choosing the group with the largest values of û0,h. These scalar
products are called discriminant indices because they are not summing up
to one.
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2. Stacked regression with restrictions

In many situations we want discriminant indices to be nonnegative, e.g., if
we intend to use them as a posterior probability. We can replace negative
values by 0 and calculate probabilities with the followig formula:

ũ0,h =
û0,h

K∑
j=1

û0,j

, h = 1, 2, . . . ,K.

The values ũ0,h are posterior probabilities.
On the other hand, we can use restricted regression. LeBlanc and Tib-

shirani [5] used an algorithm from [4]. We used a model proposed by Touten-
burg and Roeder [6]. This model is more general than the model proposed
in [5] and if we choose a large value of p in this algorithm we can obtain
values of parameters as in the model described by Lawson and Hanson [4].
Our experiments suggest that p = 5 is sufficient. On the other hand, in
stacked regression we do not need positive values of βh parameters to re-
ceive positive values of discriminant indices. Experiments suggests that is
better to choose smaller values for the p parameter.

Assuming there is prior information that the coefficients satisfy the in-
terval constrains

rLi ≤ rUi .

Toutenburg and Roeder [6] considered a procedure giving lower bounds for
the probabilities of βi ∈ [rLi , rUi ], i = 1, . . . , k (in our application, taking
p = 5, the lower bounds will equal 96%, as we shall see). Then the constrains
will be expressed as the following stochastic restrictions

r = β + v,

where v is a random vector with mean 0 and the covariance matrix (4p2H)−1,
H being a k× k diagonal matrix with principal elements (rUi − rLi)

−2, and
the components of r are (rLi + rUi)/2. Thus, for the linear model

Y = Xβ + ε,
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where Y is a T -vector of observations on the dependent variable, X – a T×k
full rank matrix of observations on k independent variables, β – a k-vector
of coefficients and ε is a T -vector with distribution N(0, σ2W) (W known,
σ2 unknown), we get the mixed regression estimator (MRE):

β̂ =
(
X′W−1X + 4p2σ2H

)−1(
X′W−1y + 4p2σ2Hr

)
.

Toutenburg and Roeder [6] showed that β̂ is unbiased.
Now we apply this method to stacked regression. We know that P

matrix is not a full column rank, so it does not fulfill the assumption in the
model. Fortunately, we can modify it. When we create the P matrix, we
are using all posterior probabilities and this creates difficulties. We do not
have to use all the probabilities because the last one is a linear combination
of previous probabilities. In this way, we are reducing the P matrix to
N × (Kc − c) matrix P1. This matrix is a full column rank and we can
use it.

Now we can formulate a model for stacked regression with restrictions:

uh = P1βh + εh,

where uh is an N -vector of observations on the dependent variable, P1 is
a N × c(K − 1) full rank matrix of observations on independent variables,
βh – a c(K − 1)-vector of coefficients and εh is an N -vector with distribu-
tion N(0, σ2

hW)(W known, σ2
h unknown). Under our specifications we can

formulate constraints in the interval [0, a]. Hence

0 ≤ βhi ≤ a, i = 1, 2, . . . , c(K − 1).

We have

r =
a

2
1,

H = a−2I

and

β̂h =
(
P
′
1W

−1P1 + 4p2σ2
ha−2I

)−1(
P
′
1W

−1uh + 2p2σ2
ha−11

)
.
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Hence in the stochastic model we have:

E(v) = 0,

V ar(v) =
a2

4p2
I,

E(r) = βh,

V ar(r) =
a2

4p2
I.

By Chebyshev inequality we have:

P
(
|ri − βhi| ≤ a

2

)
≥ 1− 1

p2
.

We can change the constraints but the dependent variable is 0 or 1 so es-
timations will be in the [0, 1] interval. Chaturvedi and Wan [3] proposed
using the following estimator of σ2

h :

σ̂2
h =

u
′
h

(
W−1 −W−1P1

(
P
′
1W

−1P1

)−1
P
′
1W

−1
)
uh

N − c(K − 1)
.(1)

We used the estimator (1) but the results were not good. The efficiency of
regression with restrictions was comparable with the efficiency of regression
without restrictions since we got estimators σ̂2

h ≈ 0.

As an alternative, since W is unknown, we took

W = I,

thus obtaining

β̂h =
(
PT

1 P1 + 4p2σ̂2
hI

)−1(
PT

1 uh + 2p2σ̂2
h1

)
,(2)



Stacked regression with restrictions 109

where

σ̂2
h =

uT
h

(
I−P1

(
PT

1 P1

)−1
PT

1

)
uh

N − c(K − 1)
.

3. Experiments

We have made experiments on real data sets. As individual methods we
used the linear discriminant analysis (lda), quadratic discriminant analysis
(qda) and J-nearest neighbors method for J = 2, 4, 6 (J-nn). Information
about the datasets are presented in Table 1. More information we can find
in [1].

Table 1. Information about datasets.

Name Number of Number of Number of Number of

features classes instances in classes all instaces

beetles 2 3 21,21,22 64

blood 3 4 20,20,20,20 80

chemistry 3 4 12,14,11,8 45

crude-oil 5 3 7,11,38 56

fish 4 3 12,12,12 36

football 6 3 30,30,30 90

hayes 5 3 51,51,30 132

iris 4 3 50,50,50 150

irradiation 3 4 6,14,15,10 45

risk 2 3 30,28,29 87

school 2 3 31,28,26 85

thyroid 5 3 150,35,30 215

turtles 6 2 24,24 48

wave 21 3 37,43,45 125

wine 13 3 59,71,48 178
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To compare stacked regression and stacked regression with restrictions we
have carried out experiments. In Table 2 we have results of this comparison.
In the first column we have names of dataset, in the second the error rate
(in %) for stacked regression and in columns 3–7 we have the error rate for
stacked regression with restrictions, whereas in the last column there is p
for which we have the smallest error rate for restricted regression. We used
the bootstrap technique to estimate the error rate.

Table 2. Comparison of regressions.

Name Stacked Stacked regression with restrictions p

regression p = 1 p = 2 p = 3 p = 4 p = 5

beetles 2.92 2.19 2.82 3.69 4.57 4.69 1

blood 78.27 83.28 85.77 86.46 87.32 87.68 0

chemistry 73,37 68.82 68.93 69.26 69.49 70.03 1

crude-oil 18.05 14.07 17.18 19.86 20.97 21.84 2

fish 54.27 49.25 46.34 47.43 47.48 47.55 2

football 43.53 41.23 38.55 38.62 39.21 39.67 1

hayes 38.21 37.32 39.18 40.08 41.29 42.23 1

iris 2.86 2.53 3.27 3.56 3.66 3.70 2

irradiation 73.64 68.68 67.95 68.52 68.80 68.84 1

risk 1.82 0.94 1.01 1.01 1.01 10.1 1

school 8.43 7.52 7.92 9.23 11.26 12.56 1

thyroid 4.18 3.87 5.14 6.22 6.72 6.92 1

turtles 19.75 17.47 16.43 17.19 17.30 17.31 2

wave 45.35 44.73 39.73 32.09 29.11 28.30 5

wine 2.17 1.27 1.20 1.63 1.81 1.93 2

mean 31.12 29.54 29.43 29.66 30.00 30.29
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Experimental results with the bootstrap error estimator show that all but
one p stacked regression with restrictions give less mean error rate than
stacked regression. Only for one dataset ”blood” - restricted regression in-
creases the error rate. This method gives us 3.17% reduction of the error
rate if we compare stacked regression with stacked regression with restric-
tions for the best p. It gives reduction of a relative error rate by about
17.34%.

It is interesting how to decrease the percentage of negative values of β̂hi

coefficients and indices uhi. Experimental results are presented in Table 3
and Table 4.

Table 3. Percentage of negative values of β̂hi.

Name Stacked Stacked regression with restrictions

regression p = 1 p = 2 p = 3 p = 4 p = 5

beetles 46.71 24.31 15.73 8.98 3.02 0.71

blood 48.85 29.38 13.93 6.35 2.55 0.50

chemistry 48.78 24.35 7.98 1.85 0.50 0.20

crude-oil 46.27 21.29 8.93 3.82 1.29 0.04

fish 46.53 22.18 5.69 0.71 0.13 0.00

football 45.82 30.00 14.67 5.47 0.89 0.18

hayes 45.60 34.22 18.93 9.91 6.89 2.76

iris 44.67 32.18 15.64 8.31 2.09 0.31

irradiation 48.38 20.45 8.48 3.73 2.35 1.08

risk 46.49 27.07 13.11 5.56 2.09 0.27

school 47.87 31.64 11.42 3.24 0.62 0.04

thyroid 42.58 27.82 18.36 9.33 4.62 1.69

turtles 42.30 23.50 5.50 0.90 0.00 0.00

wave 43.51 23.91 17.29 4.58 1.20 0.18

wine 44.44 35.51 19.56 7.33 2.71 0.84

mean 45.92 27.19 13.01 5.34 2.06 0.59
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Table 4. Percentage of negative values of uhi.

Name Stacked Stacked regression with restrictions

regression p = 1 p = 2 p = 3 p = 4 p = 5

beetles 39.81 0.09 0.00 0.00 0.00 0.00

blood 24.49 0.27 0.00 0.00 0.00 0.00

chemistry 32.51 0.87 0.00 0.00 0.00 0.00

crude-oil 29.44 7.61 0.20 0.00 0.00 0.00

fish 30.62 1.02 0.00 0.00 0.00 0.00

football 24.07 2.16 0.00 0.00 0.00 0.00

hayes 21.22 5.45 0.07 0.00 0.00 0.00

iris 36.88 0.01 0.00 0.00 0.00 0.00

irradiation 34.57 3.14 0.03 0.00 0.00 0.00

risk 34.05 0.00 0.00 0.00 0.00 0.00

school 31.50 1.72 0.00 0.00 0.00 0.00

thyroid 28.11 1.36 0.01 0.00 0.00 0.00

turtles 21.55 0.00 0.00 0.00 0.00 0.00

wave 36.21 5.57 0.00 0.00 0.00 0.00

wine 36.28 1.61 0.11 0.00 0.00 0.00

mean 30.75 2.06 0.03 0.00 0.00 0.00

As expected the percentage of negative values β̂hi decreases quite fast and
for p = 5 we have only 0.59% negative values. We can see that for p = 3 we
do not have negative values of uhi and for p = 2 we have only 0.03%.

4. Conclusion

We can see that stacked regression with restrictions has some advantages:
• it gives a smaller error rate,

• we do not have to use the generalized Moore - Penrose inverse of
matrix,
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• we have positive values of uhi so we can use them to count posterior
probabilities.

It appears that the best choice of p is 1 or 2. For these values we have the
smallest error rate and the percentage of positive values of uhi is enough.
We can see that for p = 1 the percentage of negative values is decreasing
from 30.75% to 2.06%.
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