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Abstract

Under the assumptions of an open portfolio, i.e., considering that
a policyholder can transfer his policy to another insurance company
and the continuous arrival of new policyholders into a portfolio which
can be placed into any of the bonus classes and not only in the
”starting class”, we developed a model (Stochastic Vortices Model) to
estimate the Long Run Distribution for a Bonus Malus System. These
hypothesis render the model quite representative of the reality.

With the obtained Long Run Distribution, a few optimal bonus
scales were calculated, such as Norberg’s (1979), Borgan, Hoem’s and
Norberg’s (1981), Gilde and Sundt’s (1989) and Andrade e Silva’s
(1991).

To compare our results, since this was the first application of the
model, we used the Classic Model for Bonus Malus and the Open Model
developed by Centeno and Andrade e Silva (2001).

The results of the Stochastic Vortices and the Open Model
are highly similar and quite different from those of the Classic Model.
Besides this the distribution of policyholders in the various bonus
classes was derived assuming that the entrances followed adequate
stochastic models.
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1. Introduction

The Bonus Malus Systems play a fundamental role in automobile insurance.
Since automobile insurance holds a significant part of the non-life business
of many companies, and considering the enormous and still growing
competitiveness of the market, the Bonus Malus System should be
efficient, penalizing to bad drivers and simultaneously competitive. Due
to market competitiveness, it is well known that, at least in Portugal,
many policyholders transfer their policy to another insurance company,
seeking lower premiums or higher discounts.

The study of Bonus Malus Systems in automobile insurance aims
at finding rating systems that adjust the premium paid by the insured
according to his driving experience. Unfortunately, in Portugal, the transfer
of information between insurers is not efficient, which allows the rotation of
policyholders which, after a claim participation during an annuity, leave
their insurer and buy another policy at a competitor declaring that this will
be his first insurance policy, thus managing to escape the penalization of the
premium: he can be treated as a free claim policyholder by his next insurer.
Consequently, the policyholders in the aggravated classes tend to transfer
their policy to another insurer.

Another aspect taken into consideration is the fact that every year there
are new policyholders, not all of whom are placed in the pre-defined ”starting
class”. In many cases, usually due to comercial goals, discounts are given
to new policyholders. In other cases, when the insurance company requests
the Tariff Certificate, the new policyholders are in a aggravated class. So,
we find that it should not be assumed, as it is in classic models, that all
policyholders start in the same class.

Assuming that the Portuguese situation may apply to other countries,
we tried to develop a model that took all these aspects into consideration.
The Stochastic Vortices Model is such an alternative approach to the usual
model for Bonus Malus Systems, since it allows the subscription and the
annulment of policies in the portfolio and, in that way, renders it more
realistic.

Stochastic Vortices offer useful models in a great variety of situations
in which the irreducible Markov chains of discrete parameter fail. These
situations correspond to open populations in which there are entrances and
departures. When the population is divided into sub-populations and the
transition probabilities between sub-populations are invariant, these sub-
populations can be considered as the transient states of a homogenous
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Markov chain. As we shall see, under quite general assumptions in the
entrances, the limit state probabilities are obtained. The fact that the
population is taken as open, renders this kind of models much more
realistic than classic models based on a closed population occupying
the states of an irreducible Markov chain. The limit state probabilities
correspond to the long run distribution.

Using a Portuguese data set, we applied the model, obtaining the cor-
respondent long run distribution. Afterwards, we estimated some optimal
bonus scales, such as Norberg’s (1979), Borgan, Hoem and Norberg’s (1981),
Gilde and Sundt’s (1989) and Andrade e Silva’s (1991).

Since this was the first application of the model, we compared our results
with the Classic Model (Closed Model) for Bonus Malus Systems and also
with the Open Model developed by Centeno and Andrade e Silva (2001).
The results of the Stochastic Vortices Model and the Open Model are highly
similar.

After presenting the model and the data in Sections 2 and 3, Section 4
is devoted to results.

2. Model presentation

2.1. Stochastic vortices

Our model applies to populations divided into sub-populations which
correspond to the transient states of homogeneous Markov chains. Every
element entering the population will, after a finite time span, go into a final
absorbing state and cease to belong to the population.

State probabilities will be the probabilities of a randomly chosen element
in the population, belonging to the different sub-populations. As we shall
see, under quite general conditions, these state probabilities will converge
to limit state probabilities. Thus, in our model, the long run distribution
will be constituted by the limit state probabilities. As to the study of the
performance of the Bonus Malus Systems (BMS) this long run distribution
may be used in just the same way as when an alternative model is used.

We point out that:

• the state probabilities will be proportional to the mean values of the
dimension of the sub-populations;

• in the application to BMS we start by considering transition
probabilities which depend on a parameter λ. This parameter will
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have a structural distribution F . Thus, we will have to obtain first
a λ dependent long run distribution and then decondition it to
get the unconditional long run distribution which we use in the
performance analysis.

2.1.1. Transition Matrices

As said above, besides s transient states, as much as the sub-populations,
there will be a final absorbing state. In the applications to BMS we are led
to consider the transient states as constituting a communication class, but
our treatment does not require this assumption. Moreover, parameter λ will
refer to the distribution of the number of claims. In the portfolio we are
going to study, this parameter is unidimensional but the final deconditioning
can also be carried out for a vector of parameters. We also point out that
transition steps will correspond to years, and that the origin of time (t = 0)
will be the beginning of the year in which the portfolio has begun.

Let K1,λ be the s × s matrix of one step transition between transient
states. The full one step transition matrix will be

(1) PT,λ =
(

K1,λ ~q s
1,λ

~0
′s 1

)

the last line corresponding to the absorbing state. The components of ~q s
1,λ

are the probabilities for the policyholders in the s classes quitting after one
year.

Note that, if we add the elements of a row of K1,λ with the correspondent
component of ~q s

1,λ, the sum will have to equal 1. In fact, at the end of an
annuity, the policyholder either remains in the portfolio, occupying the class
foreseen in the transition rules or annuls his policy, leaving the Company.

We now establish

Lemma 1. The n steps transition matrix will be:

P
(n)
T,λ =

(
Kn,λ ~q s

n,λ
~0
′s 1

)

with:

Kn,λ = Kn
1,λ,
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~q s
n,λ =

n−1∑

j=0

Kj
1,λ · ~q s

1,λ.

Proof. Since the Markov chain is homogeneous we will have P
(n)
T,λ = Pn

T,λ

and the thesis is easily established through mathematical induction once it
is observed that

Kn,λ = K1,λ ·Kn−1,λ = K1,λ ·Kn−1
1,λ ,

~q s
n,λ = K1,λ · ~q s

n−1,λ + ~q s
1,λ = K1,λ ·

n−2∑

j=0

Kj
1,λ · ~q s

1,λ + ~q s
1,λ =

n−1∑

j=0

Kj
1,λ · ~q1,λ.

Thus the transition probabilities in n steps between the sub-populations will
be the elements of the Kn

1,λ matrix.
If the probabilities of a new policyholder being placed in the s classes

are the components of the row vector ~p
′s
0,λ, the corresponding probabilities

after n years will be the components of the vector

(2) ~p
′s
n,λ = ~p

′s
0,λ ·Kn

1,λ.

2.1.2. Limit state probabilities
Under very general conditions we have (Healy, 1986)

(3) K1,λ =
s∑

l=1

ηl,λ ~αs
l,λ

~β
′s
l,λ

where the ηl,λ [~αs
l,λ ; ~β

′s
l,λ]; l=1,...,s are the eigenvalues [left and right

eigenvectors] of K1,λ, with

(4) ~β
′s
l,λ · ~αs

h,λ = 0 ; l 6= h

so that

(5) Kn,λ = Kn
1,λ =

s∑

l=1

ηn
l,λ ~αs

l,λ
~β
′s
l,λ.
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Now (Parzen, 1965), the transition probabilities between transient states
tend to zero with the number of steps, thus

(6) |ηl,λ| < 1 ; l = 1, . . . , s.

2.1.3. Entrances on the system

2.1.3.1 Assymptotic Model

Let θi be the mean number of admissions at the i-th year. To lighten the
computation we assume that the admissions are at the beginning of each
year. We now get

Lemma 2. The mean value for the number of policyholders in the different
classes will, at the end of n years, be the components of

(7) ~v
′s
n,λ = ~p

′s
0,λ

n∑

i=0

θn−i Ki
1,λ.

Proof. The mean values we are looking for are the sum of the mean values
for the number of policyholders in the different classes that were admitted
at years n− i , i = 0, . . . , n. According to expression (2) these partial mean
values will be the components of the row vectors

θn−i · ~p ′si,λ = θn−i · ~p ′s0,λ ·Ki
1,λ ; i = 0, . . . , n

and the thesis is established.

We now introduce an assumption about the growth of the portfolio. Due to
the high competitiveness of the market (at least in Portugal) we put

(8) θi = κ (1− e−βi), κ, β > 0

so that the admissions will tend to a limit κ. We point out that, due to (6),
limit state probabilities exist even under more aggressive growth.

Let us establish

Proposition 1. When (8) holds, the mean values for the number of policy-
holders in the different classes will be, after n years, the components of
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(9) ~v
′s
n,λ = κ ~p

′s
0,λ

[
n∑

i=0

Ki
1,λ − e−βn

n∑

i=0

(
eβK1,λ

)i
]

.

Moreover

(10) ~v
′s
∞,λ = lim

n→∞~v
′s
n,λ = κ ~p

′s
0,λ

s∑

l=1

1
1− ηl,λ

~αs
l,λ

~β
′s
l,λ.

Proof. The first part of the thesis follows from expressions (7) and (8).
Going over to the second part of the thesis we have, according to (5) and
(6),

∞∑

i=0

Ki
1,λ =

∞∑

i=0

s∑

l=1

ηi
l,λ ~αs

l,λ
~β
′s
l,λ

=
s∑

l=1

~αs
l,λ

~β
′s
l,λ

∞∑

i=0

ηi
l,λ =

s∑

l=1

~αs
l,λ

~β
′s
l,λ

1
1− ηl,λ

and according to

n∑

i=0

eβ(i−n)ηi
l,λ = e−βn

1− eβ(n+1) ηn+1
l,λ

1− eβ ηl,λ

=
e−βn − eβ ηn+1

l,λ

1− eβ ηl,λ
−→ 0 as n →∞ for l = 1, . . . , s,

we will also get

(11)

n∑

i=0

eβ(i−n) Ki
1,λ

=
s∑

l=1

~αs
l,λ

~β
′s
l,λ

n∑

i=0

eβ(i−n) ηi
l,λ −→ 0 as n →∞ for l = 1, . . . , s

and the thesis is established.
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When ~v
′s
∞,λ is defined, to obtain the limit state probabilities we have only

to divide the components of ~v
′s
∞,λ by their sum. Let ~π

′s
T,λ be the row vector

of these limit probabilities which clearly do not depend on κ, this is, on the
upper bound for admissions.

To obtain the unconditional long run distribution we must decondition,
getting

(12) πT (j) =
∫ ∞

0
πT,λ(j)dF (λ) , j = 1, . . . , s,

where the πT,λ(j) [πT (j)] , j = 1, . . . , s, are the conditional [unconditional]
limit state probabilities.

In the next point we will assume that the entrances in the system are
made according to the Poisson distribution, instead of being estimated by a
certain fit.

2.1.3.2. Stochastic Model

Let us assume that the entrances in the system in one year will be Poisson
distributed with mean value θ. If k is the number of admissions in one year,
the number of policyholders in the different classes, after n years will be
multinomial distributed with parameters

k, pn,λ(1), pn,λ(2), . . . , pn,λ(s + 1)

and have a moment generating function (m.g.f.) given by:

ϕ(u1, . . . , us+1) =

(
s+1∑

j=1

pn,λ(j) euj

)k

.

Since we assumed that the number of entrances in the system is aleatory,
we have to decondition it, so the m.g.f. will now be

ϕ(u1, . . . , us+1|θ) =
s+1∏

j=1

eθ·pn,λ(j) (euj−1)

with ~p
′s+1
0,λ · Pn,λ, this is, the number of policyholders in the different

classes will be independent and Poisson distributed with mean values
θ · pn,λ(j), j = 1, . . . , s + 1.
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Let us assume that until the present, entrances are made in a stable way,
with Xn the number of policyholders admitted to the system in the n-th
year. The policyholders in the various bonus classes will be the sum of
those who entered through the years, and did not leave the system.

Assuming that Xn is Poisson distributed with expected value θn and
independence between the entries in different years, we will have

ϕ(u1, . . . , us+1|θ1, . . . , θn) =
s+1∏

j=1

e
∑n

w=0 θw pw,λ(j) (euj−1).

We now see that, after n years, the policyholders in each bonus class are
independent Poisson distributed variables, with mean value

∑n
w=0 θwpw,λ(j).

Considering an infinite horizon and focusing only on the transient states
of the Markov chain, let us establish

Proposition 2. The series
∑+∞

n=0 pn,λ(j), j = 1, . . . , s, are convergent.

Proof. By (5), we know that Kn,λ =
∑s

l=1 ηn
l,λ ~αs

l,λ
~β
′s
l,λ, so

~p
′s
0,λ ·

+∞∑

n=0

Kn
1,λ =

s∑

l=1

1
1− ηl,λ

(~p
′s
0,λ · ~αs

l,λ) · ~β ′s
l,λ.

It now suffices to point out that
∑+∞

n=0 pn,λ(j) is the j-th element of
~p
′s
0,λ ·

∑+∞
n=0 Kn

1,λ , to see that it is convergent.

Corolary 1. If θn < u, n = 0, 1, . . ., then the series
∑+∞

n=0 pn,λ(j) θn,
j = 1, . . . , s, are convergent.

So, with θ∗j =
∑+∞

n=0 θn pn,λ(j) , j = 1, . . . , s, restricted to θn < k,
n = 0, 1, . . ., the number of policyholders in class j will have the Poisson
distribution with mean value θ∗j as limit distribution, since the corresponding
series converges and so we know that this limit distribution is defined.

As the joint m.g.f. for the number of policyholders in the different
classes is the product of marginal m.g.f. it is easy to see that the same will
be true for characteristic functions. In that way we can see that the joint
distribution of the number of policyholders in the different classes is the
product of the marginal distributions so the number of policyholders in the
different classes will be independent random variables (Cramer, 1957). It is
easy to see that the limit joint distribution will be the product of the limit
distributions for the number of policyholders in the different classes.
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3. Relevant data

We will apply our model to the portfolio of a recently established Portuguese
insurance company. The BMS of this insurer has s = 20 classes, the premium
coefficients increasing with the class index. For each claim free year the index
decreases by one. The first [each of the next] claim increases the class index
by three [five]. For our purposes the relevant data were

a) Claims Frequency
The claims frequency (in year 2000) was

Table 1. Claims frequency - Year 2000

N. accidents N. policyholders

0 41.484
1 2.998
2 318
3 29
4 7
5 2

Total 44.838

To these data it was possible to adjust a mixed Poisson distribution,
the structural distribution of the λ parameter being Gamma. The
maximum likelihood estimators for the parameters of this distribution
being α̂ = 0, 5204150 and p̂ = 0, 8612576.

b) Admission numbers (using an assymptotic model)
Since the portfolio was quite recent, having been established in the
end of 1996, we assumed the values in bold in Table 2 in order to
adjust a model of type Xi = κ(1 − e−βi) , i = 0, 1, . . . to the number
of admissions.

Table 2. Number of admissions per year

Year 1997 1998 1999 2000 2001 2002 2003 2004
N. of new policies 4280 10.646 16.506 22.451 28.067 32.251 33.457 33.670
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In carrying out the adjustment we assumed values for κ and then used
least squares to estimate β. The final pair (κ̂, β̂) chosen was the one
for highest R2. Thus, with κ̂ = 40.000 and β̂ = 0, 239947 we obtained
R2 = 0, 987 which can be considered an excellent fit.

Figure 1 illustrates the fitness.

Figure 1. Entrances in the BMS

c) Probabilities of new policies to be placed into each class
Despite the ”standard entry class” being the 10th, many new policy-
holders get, due to market competitiveness, a better rating. Using
the available data we estimated the components of ~p0

s, considering it
independent from λ. The results are presented in Table 3.

d) Probabilities of annulment per class
Using the available data, considering it also independent from λ, we
estimated the components of vector ~q

′s
1 . As we can see in Table 4,

the highest probabilities are in higher classes, except for probability of
Class 18 which is abnormally small.
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Table 3. Probabilities of entrance
in each class

Table 4. Probabilities of annulment
per class

j p0(j)

1 0, 239402

2 0, 053668

3 0, 191427

4 0, 06955

5 0, 18862

6 0, 006072

7 0, 034191

8 0, 010409

9 0, 062468

10 0, 142443

11 0, 000552

12 0, 000363

13 0, 000252

14 0, 000237

15 0, 000205

16 0, 0000158

17 0, 0000315

18 0, 0000315

19 0

20 0, 0000631

j p1(j)

1 0, 038902

2 0, 049994

3 0, 05412

4 0, 121957

5 0, 110309

6 0, 125375

7 0, 108242

8 0, 113882

9 0, 148407

10 0, 203858

11 0, 204494

12 0, 276347

13 0, 153846

14 0, 262295

15 0, 265306

16 0, 421053

17 0, 447368

18 0, 142857

19 0, 5

20 0, 789474

4. Portfolio performance

We now assess the portfolio performance using our model as well as the
Open Model of Centeno and Andrade e Silva (2001) and the Classic Closed
Model.

4.1. Long run and weighted distribution

We now consider, besides the long run distribution, the weighted distribution
required to apply the Borgan et al. (1981) premium scale. To obtain this,
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we took a time horizon of 20 years, and following Centeno and Andrade e
Silva (2001), used weights given by wn = wn−1

1+i and
∑20

n=1 wn = 1, with
i = 5%, where wn represents the weight given to period n (n = 1, 2, . . .).

The distributions are presented in Figure 2 with the exception of the

Figure 2. Long run distribution and weighted distribution.
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results for Class 1 that are shown in Table 5. The results for this singling
out being that otherwise there would not be enough graphic resolution to
evaluate differences in the other classes.

Table 5. Long run and weighted distribution - Class 1

S. Vortices O. Model C. Model

π(1) 0, 717041 0, 721193 0, 793887

p(1) 0, 441117 0, 527541 0, 336097

The results on the long run distribution, for our and Open Model are
very similar and differ markedly from those of the closed portfolio model.
This last model overevaluates the probabilities for the higher classes since
it does not take into consideration that policyholders tend to leave when
they attain higher maluses. For the lowest class the closed model differs
less. This is certainly due to many admissions being placed directly in
Class 1.

As a final remark we can point out to our and the Open Model being
the more realistic ones.

4.2. Optimal bonus scales

For the BMS under study several optimal bonus scales, such as those
of Norberg (1979), Borgan et al. (1981), Gilde and Sundt (1989) and
Andrade e Silva (1991), were obtained. The results are shown in Figures
3 and 4.

Both our and the Open Model have quite similar optimal bonus scales,
avoiding the very low or very high premiums that are obtained when using
the closed model. Thus again the two first models are to be preferred to the
last one.
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Figure 3. Optimal bonus scales of Norberg (1979) and Borgan et al. (1981).
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Figure 4. Optimal bonus scales of Gilde and Sundt (1989) and Andrade e
Silva (1991).
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