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Abstract

Every characteristic function ϕ can be written in the following way:

ϕ(ξ) =
1

h(ξ) + 1
, where h(ξ) =

{
1/ϕ(ξ)− 1 if ϕ(ξ) 6= 0

∞ if ϕ(ξ) = 0.

This simple remark implies that every characteristic function can be
treated as a simple fraction of the function h(ξ). In the paper, we
consider a class C(ϕ) of all characteristic functions of the form ϕa(ξ) =

a
h(ξ)+a , where ϕ(ξ) is a fixed characteristic function. Using the well
known theorem on simple fraction decomposition of rational functions
we obtain that convolutions of measures µa with µ̂a(ξ) = ϕa(ξ) are
linear combinations of powers of such measures. This can simplify cal-
culations. It is interesting that this simplification uses signed measures
since coefficients of linear combinations can be negative numbers. All
the results of this paper except Proposition 1 remain true if we replace
probability measures with complex valued measures with finite varia-
tion, and replace the characteristic function with Fourier transform.
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1. Introduction

By P we denote the set of all probability measures on a real line, by P(IE) the
set of all probability measures on a linear space IE. For every characteristic
function µ̂(ξ) = ϕ(ξ), ξ ∈ IE, of a measure µ we define

h(ξ) = hϕ(ξ) :=





(
1

ϕ(ξ) − 1
)

for ϕ(ξ) 6= 0

∞ for ϕ(ξ) = 0.

Of course ϕ(ξ) = 1/(h(ξ) + 1). In the paper, we discuss properties of the
set of all characteristc functions ϕa(ξ) (and corresponding measures µa)
having the form ϕa(ξ) = a/(h(ξ) + a), with h(ξ) = hϕ(ξ), for ϕ being a
fixed characteristic function. According to the methods that we are using
here there is no reason to specify precisely if a given characteristic function
corresponds to a real random variable or to a random vector taking values in
more complicated linear spaces. In order to save generality we will formulate
our results for topological linear space IE with the space of linear functionals
IE∗, however in most of the examples we will consider just real random
variables and their characteristic functions.

For every probability measure µ on IE with the characteristic function
ϕ(ξ), ξ ∈ IE∗ we define the following sets:

T(ϕ) =
{

a :
a

h(ξ) + a
is positive definite on IE∗

}
,

C(ϕ) =
{

χ : χ(ξ) =
a

h(ξ) + a
, a ∈ T(ϕ)

}
,

M(ϕ) =
{

µ ∈ P(IE) : µ̂ ∈ C(ϕ)
}

.

Of course for every characteristic function ϕ we have that 1 ∈ T(ϕ) , ϕ ∈
C(ϕ), and every probability measure µ belongs to the class M(µ̂). The set
T = T(ϕ) is a subset of complex plane Z or a subset of real line IR and
0 6∈ T(ϕ).
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Notice that two characteristic functions χ, ψ belong to the same class C(ϕ)
if and only if the following condition holds:

(∗) ∃a, b ab 6= 0 ∀ ξ ∈ IE∗ χ(ξ)ψ(ξ) 6= 0
a

χ(ξ)
− b

ψ(ξ)
= const.

About the measures µ and ν we will say that they are linearly simmilar if
there exists a characteristic function ϕ such that they both belong to the
class M(ϕ).

Proposition 1. For every characteristic function ϕ the following condi-
tions hold:

1) pT(ϕ) ⊂ T(ϕ) for every p ∈ (0, 1];

2) C(ϕ) is closed under geometric transformation, i.e. for every p ∈ (0, 1]

χ ∈ C(ϕ) =⇒ Tp(χ)(ξ)
def
=

pχ(ξ)
1− (1− p)χ(ξ)

∈ C(ϕ);

3) if the distribution L(X) of the random variable X belongs to M(ϕ),
then also L(Y ) ∈M(ϕ), where

Y =
Θ∑

k=1

Xk,

X1, X2, ... are independent copies of X and Θ independent of X1, X2, ...
has geometric distribution with parameter p ∈ (0, 1].

Proof. We start with proving (3). Calculating the characteristic function
of Y we obtain:

ψ(ξ)
def
= Eei<ξ,Y > =

∞∑

k=1

ei(<ξ,X1>+...+<ξ,Xk>)p(1− p)k−1

=
∞∑

k=1

(µ̂(ξ))k p(1− p)k−1 =
pµ̂(ξ)

1− (1− p)µ̂(ξ)
.
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Since µ̂ ∈ C(ϕ), then there exists a 6= 0 such that µ̂(ξ) = a
h(ξ)+a , thus, finally

we obtain

ψ(ξ) =
ap

h(ξ) + ap
∈ C(ϕ).

To prove (2) it is enough to put χ(ξ) = µ̂(ξ) and apply the property (3).
To see (1) notice that a ∈ T(ϕ) implies that the function χ(ξ) = a

h(ξ)+a is a
characteristic function, thus χ(ξ) = µ̂(ξ) for some probability distribution µ.
Finally, from the proof of (3) it follows that if a ∈ T(ϕ), then the function

ap
h(ξ)+ap belongs to C(ϕ), so ap ∈ T(ϕ).

Theorem 1. For every choice of k, n1, ..., nk ∈ IN and every choice of dif-
ferent numbers a1, ..., ak ∈ T(ϕ) there exists a set of numbers bi,j, i = 1, ..., k,
j = 1, ..., ni such that

µ∗n1
a1

∗ . . . ∗ µ∗nk
ak

=
k∑

i=1

ni∑

j=1

bi,jµ
∗j
ai

.

Proof. Denote by ν the measure µ∗n1
a1
∗. . .∗µ∗nk

ak
. The characteristic function

of ν has the following form

ν̂(ξ) =
(

a1

h(ξ) + a1

)n1

, . . . ,

(
ak

h(ξ) + ak

)nk

.

We can see that ν̂(ξ) is a rational function of the argument h(ξ). Using now
the theorem on simple fractions decomposition of rational functions (see e.g.
[3], [4]) we obtain that

ν̂(ξ) =
k∑

i=1

ni∑

j=1

bi,j

(
ai

h(ξ) + ai

)j

,

for suitable coefficients bi,j . This ends the proof.

2. Examples of decomposition theorems

Proposition 2. Let µ 6= ν similar two probability measures on IE. Mea-
sures µ and ν are linearly similar iff there exist constants A and B such that
A + B = 1 and

µ ∗ ν = Aµ + Bν.
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Proof. If µ̂(ξ)ν̂(ξ) = Aµ̂(ξ) + Bν̂(ξ), then the characteristic functions µ̂, ν̂
have the property (∗), thus they belong to the same class C(ϕ) for some
characteristic function ϕ.

Assume now that µ, ν ∈ M(ϕ) for some characteristic function ϕ, and
let h(ξ) = 1

ϕ(ξ) − 1. Then there exist constants a and b, ab 6= 0 such that

µ̂(ξ)ν̂(ξ) =
a

h(ξ) + a

b

h(ξ) + b
.

Treating this product as a product of simple fractions of the variable h(ξ)
we easily obtain that

µ̂(ξ)ν̂(ξ) =
b

b− a

a

h(ξ) + a
+

a

a− b

b

h(ξ) + b
=

b

b− a
µ̂(ξ) +

a

a− b
ν̂(ξ),

which ends the proof.

Proposition 3. Let µ1, ..., µn ∈ M(ϕ) be different measures with µ̂i(t) =
ai/(h(t) + ai) where h(ξ) = 1

ϕ(ξ) − 1. Then:

µ1 ∗ · · · ∗ µn =
n∑

i=1

Aiµi, for Ai =
∏

j 6=i

aj

aj − ai
.

Proof. The proof is trivial and will be omitted.

Proposition 4. Let µa, µb be measures with the characteristic functions
ϕa, ϕb, a, b ∈ T(ϕ), a 6= b. Then for every m,n ∈ IN there exist constants
a1, . . . , an and b1, . . . , bm such that

ϕn
a(t)ϕm

b (t) =
n∑

j=1

ajϕ
j
a(t) +

m∑

k=1

bkϕ
k
b (t),

and consequently,

µ∗na µ∗mb =
n∑

j=1

ajµ
∗j
a +

m∑

k=1

bkµ
∗k
b .
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Moreover,

aj = aj(n,m) =
(
− b

a

)m (
a

a− b

)n+m−j (
n + m− 1− j

n− j

)
,

bk = bk(n,m) =
(
−a

b

)m−k
(

a

b− a

)n+m−k (
n + m− 1− k

m− k

)
.

Proof. The proof of the main part of the theorem follows easily from
Lemma 2 and mathematical induction. In order to calculate aj and bk we
shall first use the mathematical induction to prove that

aj(n, 1) = − b

a

(
a

a− b

)n+1−j

, bk(n, 1) =
(

a

a− b

)n

which gives us the desired formula for m = 1. Applying mathematical
induction again, with respect to m, except the classical calculations we shall
remember also that the following formula holds:

N∑

k=0

(
M + k

k

)
=

(
N + M + 1

N

)
.

3. Examples of classes M(ϕ)

Example 1. Consider the family of exponential distributions, i.e. proba-
bility distributions on IR with densities given by the formula:

γ1,a(x) =





ae−ax for x ≥ 0

0 for < 0
a > 0.

Notice that the characteristic function of such distribution has the form:

γ̂1,a(t) =
a

−it + a
,
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thus the set of exponential distributions is equal to M(ϕ) with h(t) = −it
and T(ϕ) = IR \ {0}, where for negative a ∈ T(ϕ) the corresponding distri-
bution is concentrated on the negative half-line. It follows also from Propo-
sition 1 that the convolution mixture of exponential distribution γ1,a with
respect to the geometric distribution with parameter p is exponential γ1,ap,
so it is the same as the distribution of the random variable p−1X, where X
has γ1,a distribution. From the proof of Proposition 2 it follows easily that
the distribution of symmetrization of the distribution γ1,a has the form:

γ1,a ∗ γ1,−a =
1
2
γ1,a +

1
2
γ1,−a.

Example 2. Consider a symmetric α-stable random vector X taking values
in IE with characteristic function ϕ(ξ) = exp{−‖<(ξ)‖α

α}, where α ∈ (0, 2],
and < is the linear operator from IE∗ into some Lα-space. Let Θa be a
random variable with distribution γ1,a, a > 0, Θ independent of X. The
characteristic function of the random vector Y = XΘ1/α

a is given by

ψ(ξ) = Eei<ξ,Y > =
∫ ∞

0

(
Eei<ξs1/α,X>

)
ae−asds

= a

∫ ∞

0
exp {−(‖<(ξ)‖α + a)s} ds =

a

‖<(ξ)‖α + a
.

This means that for every α ∈ (0, 2] we have

T (ψα) = (0,∞),

M (ψα) =
{
L

(
XΘ1/α

a

)
: a > 0

}
.

Example 3. For a fixed b > 0 consider the family of probability distri-
butions Shb = {µa,b : |a| < b}, where µa,b has the density function of the
form:

fa,b =
1 + cos(π a

b )
π sin(π a

b )
sinh(ax)
sinh(bx)

.
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According to formula 28 in the table 17.34 of Gradshtejn and Ryzhik [2] the
characteristic function of the measure µa,b is given by:

ϕa,b(t) =
1 + cos(π a

b )
cosh(π t

b) + cos(π a
b )

.

Notice that the class Shb is closed under convolution mixtures with respect
to the geometric distribution. To see this consider Θ with geometric dis-
tribution with parameter p ∈ (0, 1) and let Y =

∑Θ
k=1 Xk, where Xk are

independent random variables with density fa,b. The characteristic function
ψ(t) of the random variable Y is of the form:

ψ(t) =
pϕa,b(t)

1− qϕa,b(t)
=

1 + p cos(π a
b )− q

cosh(π t
b) + p cos(π a

b )− q
.

It is easy to see that

−1 = −p− q < p cos
(
π

a

b

)
− q < p− q < 1,

thus there exists 0 < c < b such that p cos(π a
b ) − q = cos(π c

b), and con-
sequently ψ(t) = ϕc,b(t). This shows that the class Shb is equal M(ϕa,b),
where a appearing here can be arbitrarily chosen from (0, b). Finally, it is
easy to see that

T(ϕa,b) =

{
1 + cos

(
π c

b

)

1 + cos
(
π a

b

) =
cos2

(
πc
2b

)

cos2
(

πa
2b

) : |c| < b, |a| < b

}
= (0,∞).

Example 4. Consider the family of symmetric exponential distributions
Λ = {λa : a > 0}, where λa has the following density and the corresponding
characteristic function:

ga =
a

2
e−a|x|, λ̂a(t) =

a2

t2 + a2
.
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It is easy to see that Λ = M(λ̂1), and T(λ̂1) = (0,∞). In order to use
Theorem 2 we shall know the density of the measure λ

∗(n+1)
a , which according

to formula 3.737.1 of [2] is given by:

g∗(n+1)
a (x) =

ae−a|x|

22n+2n!

n∑

k=0

(2n− k)!
k!n!

(2a|x|)k.
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