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Abstract

We show that in the delta-normal model there exist perturbations of the
Gaussian multivariate distribution of the returns of a portfolio such that the
initial marginal distributions of the returns are statistically undistinguish-
able from the perturbed ones and such that the perturbed V@R is close to
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the worst possible V@R which, under some reasonable assumptions, is the
sum of the V@Rs of each of the portfolio assets.
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1. Introduction

The aim of this note is to prove that small perturbations of the returns of each
individual asset in a portfolio, for example non detectable under the Kolmogorov-
Smirnov test, can change the global Value-at-Risk of the portfolio up to a value
near the worst V@R possible according to formula (4) below. In an apparently
well diversified portfolio with hundreds of assets, if the correlations between the
assets’ returns are changed by non-noticeable perturbations of the returns of each
particular asset, the Value-at-Risk of the portfolio can suffer great changes for
the worst. This new V@R shortcoming gives reinforced importance, in the delta-
normal model, to a rigorously estimated and realistic correlation matrix between
the assets’ returns.

Despite the more recent capital adequacy standards for banking and insur-
ance the delta-normal model for V@R computation is still widely used in the
industry. In [5] attention is drawn to the fact that switching from a finite to an
infinite mean model alters the additivity properties for V@R in case the depen-
dence is Archimedean. In [14] and we quote: “explicit lower and upper bounds
on the value-at-risk (VaR) for the sum of possibly dependent risks are derived
when only partial information is available about the dependence structure and
the individual behaviors.”. Results on worst case V@R scenarios in higher di-
mensions for dependent risks are given in [7] with an analytical solution in case
of uniform marginals. The first noticeable study on worst case V@R scenarios is
[6] with complementary results and extensions given in [12] and also in [11].

Let us detail these preliminary remarks. Following McNeil, Frey and Em-
brechts [13, p. 38], given some confidence level α ∈]0, 1[ and a fixed time horizon
T the Value-at-Risk V@RX

α of a portfolio, with unit value and profit and loss X,
is given by the smallest number l such that the probability that the loss of the
portfolio exceeds l, during the time interval T , is no larger than 1−α. Hence the
Value-at-Risk is a quantile of the distribution of the portfolio’s profit and loss
distribution. Both in theoretical and applied literature, the Value-at-Risk can be
computed either using the distribution of the profit and loss (P&L) or using the
distribution of losses taken with positive values.

For a portfolio with unit total value, for which the P&L random variable
Z has normal distribution with mean µ and variance σ2, given Φ the standard
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normal’s distribution, it is straightforward (see [13, p. 38]) to check that:

(1) V@RZ
α = µ+ σΦ−1(α),

with, usually, α ∈ {0.05, 0.01, 0.003}. In practice (see [13, p. 38] and [10, p.
111]), one often use the mean V@R defined by V@RZ

α, mean
:= V@RZ

α − µ where
µ is the mean value of the P&L’s distribution. When this distribution is normal,
we have:

(2) V@RZ
α, mean

= σΦ−1(α) .

The delta-normal model has two main assumptions; firstly, the joint distribution
of the individual returns is taken to be multivariate normal, so that each individ-
ual return is itself normally distributed (see [10, p. 162]). Secondly, it is assumed
that the P&L is given by the product of the returns by the capital invested either
in the asset or in the whole portfolio (see Section 2); given that the capital is
deterministic it follows that the P&L’s distribution is also normal. A general
setting to compute the Value-at-Risk in the delta-normal model is given by the
variance-covariance method one can find in [3, p. 37] or [13, p. 48]. In the bench-
mark applications of this method, let the column vector V have as components
the mean V@Rs of each individual asset. Using the correlation matrix /R between
the returns of each individual assets then the portfolio’s mean V@R is given by
the following striking formula (proved, for completeness, in Section 2),

(3)
(

V@RX
α, mean

)2
= Vt /RV,

that one can find, for example, in [2, p. 23].

Observation 1. One simple but important remark following formula (3) is that
if Vt = (V1, . . . , VN ), /R = [ρij ]i,j∈{1,...,N} and if Vi ≥ 0 (or if Vi ≤ 0) for all
i ∈ {1, . . . , N} and ρij ∈ [−1, 1] for i, j ∈ {1, . . . , N} then, we always have:

(4) Vt /RV =
N
∑

i,j=1

ViVjρij ≤
N
∑

i,j=1

ViVj =

(

N
∑

i=1

Vi

)2

.

This observation is suggested in [10, p. 164] in the case where the portfolio has
two assets. Let us stress that in the delta-normal model and under the assumption
that the Value-at-Risk of each asset is nonnegative then the maximum Value-at-
Risk of the portfolio is given by the sum of the Values-at-Risk of each asset.
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2. Computing the V@R in the delta-normal model

For completeness, we now present the well known Value-at-Risk computation
under the delta-normal model’s assumptions. We will consider a portfolio with N
assets. Let W = (W1, . . . ,WN ) be the column vector with components given by
the capital invested in each asset then WΣ =

∑N
i=1Wi is the total capital invested

in the portfolio. Let ω = (ω1, . . . , ωN ) be the column vector with components
being the ratio of the capital invested in each asset, that is for all i ∈ {i, . . . , N}
we have ωi = Wi/WΣ. Finally let X = (X1, . . . ,XN ) be the column vector
having as components the additive returns of each asset of the portfolio. The
first assumption of the delta-normal model is that X is multivariate normal,
noted X ⌢ N (µ(X), /Σ(X)) where µ(X) is the mean value vector and /Σ(X)
is the variance-covariance matrix. As the next proposition will show, we can
compute the distributions of both the return and the P&L of the portfolio.

Proposition 2. Let E [X] = (E [X1] , . . . ,E [XN ]). Considering additive returns,
the total return of the portfolio XΣ satisfies:

XΣ = ω
t ·X and XΣ ⌢ N

(

ω
t · E [X] ,

√

ωt · /Σ(X) · ω
)

.

hence the P&L of the portfolio, P&GΣ, satisfies:

(5) P&GΣ = W ×XΣ = W ×
(

ω
t ·X

)

.

Furthermore,

(6) P&GΣ ⌢ N

(

W ×
(

ω
t · E [X]

)

,W ×
√

ωt · /Σ(X) · ω
)

.

Proof. One can see that after a certain time interval, the new total value of the
porfolio is the sum of all the new values of each individual assets. Let W t

Σ be the
value of the portfolio at time t. Using the definition of additive returns we have:

W t+1
Σ =

N
∑

i=1

W t+1
i =

N
∑

i=1

W t
i × (1 +Xi) = W t

Σ +W t
Σ ×

N
∑

i=1

Xi ×
W t

i

W t
Σ

= W t
Σ × (1 +

N
∑

i=1

Xi × ωi) = W t
Σ × (1 +XΣ),

this shows that XΣ = ω
t ·X. From this, it follows immediately that XΣ being a

linear combination of the components of a normal vector it is a random variable
with the above normal distribution (see [15, p. 414]). The P&L is then obtained
by the difference between the value of the portfolio after the time interval and
the initial value, which is:
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P&GΣ = W t+1
Σ −W t

Σ = W t
Σ × (1 +XΣ)−W t

Σ = W t
Σ ×XΣ

hence immediately, we get formula (5). Standard results about normal variables
lead to the desired P&L distribution stated in (6).

Consequently due to formulae (1) and (2) we have the following fundamental
result.

Corollary 3. In the delta-normal model, given some confidence level α ∈]0, 1[:

V@RP&GΣ

α = W ×
(

ω
t · E [X]

)

+W ×
√

ωt · /Σ(X) · ω × Φ−1(α)

and

(7) V@RP&GΣ

α, mean
= W ×

√

ωt · /Σ(X) · ω×Φ−1(α) =
√

Wt · /Σ(X) ·W×Φ−1(α).

Finally, we have the proof of (3) used in practical applications. Let /Σ(X) =
[cov(Xi,Xj)]i,j∈{1,...,N} and let the correlation matrix of the assets returns be

/R(X) = [ρ(Xi,Xj)]i,j∈{1,...,N}. For a better understanding of the next proposi-
tion, we will make a preliminary observation on variance-covariance matrices.

Observation 4. As for any real column vector W = (W1, . . . ,WN ), we have
that

Wt · /Σ(X) ·W = E(∑
i

Wi (Xi −E [Xi])

)2


 ≥ 0,

it then follows that the sign of V@RP&GΣ

α, mean
in formula (7) is given by the sign of

Φ−1(α).

Corollary 5. In the delta-normal model, given some confidence level α ∈]0, 1[, if
V is the column vector having as components the mean V@Rs of each individual
asset then:

V@RP&GΣ

α, mean
=















+
√

Vt /R(X)V if α ∈]12 , 1[
0 if α = 1

2

−
√

Vt /R(X)V if α ∈]0, 12 [.
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Proof. Following (2) applied to each individual asset one has that:

Wt·/Σ(X) ·W ×
(

Φ−1(α)
)2

=
∑

i,j

(

WiΦ
−1(α)

)

cov(Xi,Xj)
(

WjΦ
−1(α)

)

=
∑

i,j

(

WiΦ
−1(α)σ(Xi)

) cov(Xi,Xj)

σ(Xi)σ(Xj)

(

WjΦ
−1(α)σ(Xj)

)

=
∑

i,j

V@R(WiXi)
α, mean

ρ(Xi,Xj)V@R
(WjXj)
α, mean = Vt /R(X)V,

as was expected.

Observation 6 (Fundamental). Corollary 5 permits to go even further on Obser-
vation 1. In the delta-normal model, under the assumption that the Value-at-Risk
of each individual asset have the same sign, the worst Value-at-Risk of the port-
folio is given by the sum of the Values-at-Risk of all the assets. One can note
that in the delta-normal model this happens in (2), with the obvious assumption
that all Value-at-Risk of the assets are taken given the same confidence level α.

3. Small Gaussian perturbations

In this section we show how to produce small perturbations, with respect to
the Kolmogorov distance, of Gaussian random variables so that the perturbed
distribution remains Gaussian and the mean value is preserved. We will start
with the univariate case and then present the multivariate case.

3.1. Small perturbations of random univariate normal variables

We will use the following notations. Let X ⌢ N (µ, σ) denote X to be a normal
variable with mean value µ and variance σ2, its density function being given by

F ′
X(x) =

1√
2σ2π

exp

[

−1

2

(

x− µ

σ

)2
]

,

and its characteristic function by:

(8) φX(t) = exp

(

iµt− t2σ2

2

)

.

The existence of small univariate perturbations of Gaussian random variables is
detailed by the following result.
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Theorem 7. Let X ⌢ N (µ, σ) and E ⌢ N (0, ǫ) be such that X ⊥⊥ E and
so X + E ⌢ N (µ,

√
σ2 + ǫ2). Assuming furthermore that ǫ < σ, we obtain the

following bound for the Kolmogorov distance between the distribution functions of
X + E and X:

(9) sup
x∈R

|FX+E(x)− FX(x)| ≤ 1

π

+∞
∑

n=1

(−1)n+1

n

( ǫ

σ

)2n
=

1

π
ln

(

1 +
( ǫ

σ

)2
)

.

In particular, as in (9) the series being an alternating series with terms converging
to 0 monotonically, we have the following estimate:

(10) sup
x∈R

|FX+E(x)− FX(x)| ≤ 1

π

( ǫ

σ

)2
.

Proof. Given that the sum of two independent Gaussian random variables is
still Gaussian, the proof is a consequence of the Esseen inequality (see [8], [9, p.
538] or [18, p. 296]), stating that for all T > 0:

sup
x

|FX+E(x)− FX(x)| ≤ 2

π

∫ T

0

∣

∣

∣

∣

φX+E(t)− φX(t)

t

∣

∣

∣

∣

dt+
24

πT
sup
x

∣

∣F ′
X(x)

∣

∣ .

Using (8), the fact that F ′
X is bounded, the independency of X and E (so that

φX+E = φX · φE), we have:

sup
x∈R

|FX+E(x)− FX(x)| ≤ 2

π

∫ +∞

0
e−

σ2t2

2

1− e−
ǫ2t2

2

t
dt.

The exponential series being uniformly convergent on compact sets, we have:

2

π

∫ +∞

0
e−

σ2t2

2

1− e−
ǫ2t2

2

t
dt

=
2

π
lim

N∈N→+∞

∫ N

0
e−

σ2t2

2

(

+∞
∑

n=1

(−1)n+1

n!

ǫ2nt2n−1

2n

)

dt

=
2

π
lim

N∈N→+∞

+∞
∑

n=1

(−1)n+1ǫ2n

n! 2n

(∫ N

0
t2n−1e−

σ2t2

2 dt

)

.

Using the change of variable σt = u followed by integration by parts, an induction
argument allows us to conclude:

∫ +∞

0
t2n−1e−

σ2t2

2 dt =
1

σ2n

∫ +∞

0
u2n−1e−

u2

2 du =
1

σ2n
2n−1(n− 1)! .
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We then have:
(11)
∫ N

0
t2n−1e−

σ2t2

2 dt =

∫ +∞

0
t2n−1e−

σ2t2

2 dt−
∫ +∞

N

t2n−1e−
σ2t2

2 dt ≤ 2n−1(n− 1)!

σ2n
,

The sum of a series can be interpreted as an integral relative to the integer
counting measure µc, so that:

lim
N→+∞

+∞
∑

n=1

(−1)n+1ǫ2n

n! 2n

(
∫ N

0
t2n−1e−

σ2t2

2 dt

)

= lim
N→+∞

∫

{1,2,...,n,...}

(−1)n+1ǫ2n

n! 2n

(
∫ N

0
t2n−1e−

σ2t2

2 dt

)

dµc(n) .

One can note that for ǫ < σ, the equation (11) implies that:

∣

∣

∣

∣

(−1)n+1ǫ2n

n! 2n

(
∫ N

0
t2n−1e−

σ2t2

2 dt

)∣

∣

∣

∣

≤ 1

n

( ǫ

σ

)2n
.

The series with general term given by the righthand side of this equation is
convergent, hence:

∫

{1,2,...,n,...}

1

n

( ǫ

σ

)2n
dµc(n) =

+∞
∑

n=1

1

n

( ǫ

σ

)2n
< +∞.

Finally by Lebesgue’s dominated convergence theorem, we obtain:

2

π

∫ +∞

0
e−

σ2t2

2

1− e−
ǫ2t2

2

t
dt

=
2

π
lim

N∈N→+∞

+∞
∑

n=1

(−1)n+1ǫ2n

n! 2n

(
∫ N

0
t2n−1e−

σ2t2

2 dt

)

=
2

π

+∞
∑

n=1

(−1)n+1ǫ2n

n! 2n
lim

N∈N→+∞

(
∫ N

0
t2n−1e−

σ2t2

2 dt

)

=
1

π

+∞
∑

n=1

(−1)n+1

n

( ǫ

σ

)2n
.

The convergence of the series obtained in the last inequality permits to conclude
the proof of (9).

Observation 8. Perturbing data with Gaussian distribution by summing a zero
mean Gaussian random variable with small variance (with respect to the origi-
nal variable) does not change significantly the V@R. Indeed, using the notations
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of the Theorem 7, we have for α ∈]0, 1[ that V@RX+E
α = µ +

√
σ2 + ǫ2Φ−1(α)

and V@RX
α = µ+ σΦ−1(α) (as seen in (1)), so that for ǫ ≪ σ we have:

(12)
∣

∣V@RX+E
α − V@RX

α

∣

∣ =

∣

∣

∣

∣

∣

1−
√

1 +
( ǫ

σ

)2
∣

∣

∣

∣

∣

σ
∣

∣Φ−1(α)
∣

∣ ≈
( ǫ

σ

)2 σ
∣

∣Φ−1(α)
∣

∣

2
.

We can observe that, as should be expected, the approximation of the pertubated
V@R by the non perturbated V@R is of the same order as the approximation error
between the distribution functions in Theorem 7, that is, of the order of (ǫ/σ)2.

Observation 9. Let F
(n)
X+E be the empirical distribution function of a dimension

n sample of the variable X + E. As we have:

sup
x∈R

∣

∣

∣F
(n)
X+E(x)− FX+E(x)

∣

∣

∣ ≤ sup
x∈R

∣

∣

∣F
(n)
X+E(x)− FX(x)

∣

∣

∣

+ sup
x∈R

|FX+E(x)− FX(x)| ,
(13)

using the estimates of Theorem 7, one can argue that for ǫ ≪ σ and for a suf-
ficiently large sample, the distribution functions of X and X + E are nearly
indistinguishable in the sense of the Kolmogorov-Smirnov test. More precisely,
suppose that we are in a situation were the proposed model is described by the ran-
dom variable X but that a more appropriate model would be given by the perturbed
model X + E. Hence, this would imply that the observed distribution function is

F
(n)
X+E and not F

(n)
X . As a consequence when performing the Kolmogorov-Smirnov

test we calculate supx∈R

∣

∣

∣F
(n)
X+E(x)− FX(x)

∣

∣

∣ instead of supx∈R

∣

∣

∣F
(n)
X (x)− FX(x)

∣

∣

∣.

For example (see Section 4), lets consider a sample of 36 (additive) returns, given

monthly, of an PSI-20 asset such that supx∈R

∣

∣

∣
F

(36)
X+E(x)− FX(x)

∣

∣

∣
= 0.262. If

ǫ ≪ σ is chosen so that supx∈R |FX+E(x)− FX(x)| < 0.0001 then, for a signi-
ficance level of 1% the model X is not rejected. Furthermore by (13) and with
the same significance level, the model X + E is also not rejected (notations and
numerical values are taken from [15, pp. 284–286, 536]).

3.2. Small perturbations of random multivariate Gaussian variables

From now on, we will assume the hypothesis of the delta-normal model. We
are going to show how to build the variance-covariance matrix of an independent
Gaussian multivariate perturbation of the return’s vector, so that the V@R of the
portfolio is as close as possible of the maximum V@R (according to Observations 1
and 6).

We recall our previously partial conclusions on the univariate Gaussian per-
turbations, to be used next. The result in Theorem 7 suggests that we can define
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a small Gaussian perturbation of a Gaussian random variable as any independent
Gaussian random variable with strictly smaller variance. Observation 8 in Sub-
section 3.1 shows the small impact on the V@R of a small normal perturbation.
Similarly, in Observation 9 we saw that, given some confidence level, if the vari-
ance of the perturbation is sufficiently small this perturbation can’t be detected
by a test based on the Kolmogorov distance. Our method has the following steps.

1. Start by defining the matrix’s diagonal coefficients. Let δ1, δ2 > 0 be, re-
spectively, the upper bounds for the maximum error admissible in the distance
between the V@R of the inicial distribution and the perturbed one, and the
maximum error admissible for the Kolmogorov distance between the same distri-
butions. This choice will hold for each component of the return and perturbation
vectors. Relatively to the distance between V@Rs, if:

∣

∣V@RXi+Ei
α −V@RXi

α

∣

∣ =
∣

∣

∣

√

σ(Xi)2 + σ(Ei)2 − σ(Xi)
∣

∣

∣

∣

∣Φ−1(α)
∣

∣ = δ1,

then the standard deviation of the perturbation Ei is:

σ(Ei) =

√

2δ1σ(Xi)

|Φ−1(α)| +
(

δ1
|Φ−1(α)|

)2

≈
√

2δ1σ(Xi)

|Φ−1(α)| ,

the approximation estimate being obtained for δ1 ≪
∣

∣Φ−1(α)
∣

∣; one can note that
this is the same approximation obtained using directly the bound given by formula
(12). For the Kolmogorov distance we have, using the bound given by (9), that:

1

π
ln

(

1 +

(

σ(Ei)

σ(Xi)

)2
)

= δ2,

hence the variance of the perturbation Ei is given by:

(14) σ(Ei) = σ(Xi)
√

eδ2π − 1 ≈ σ(Xi)
√

δ2π,

with the last approximation holding for δ2π ≪ 1; as above, this is the same
approximation that we would get using directly formula (10). Therefore each
component Ei of the perturbation must satisfy:

(15) σ(Ei) = min





√

2δ1σ(Xi)

|Φ−1(α)| +
(

δ1
|Φ−1(α)|

)2

, σ(Xi)
√

eδ2π − 1



 .
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2. Non diagonal terms of the variance-covariance matrix can be defined
noticing that the independency between the returns X and the multivariate
perturbation E imply that the variance-covariance matrix of X + E satisfies:
/Σ(X+E) = /Σ(X)+/Σ(E). Now, consider the matrix /Σ(E) = [cov(Ei, Ej)]i,j∈{1,...,N}

and let the correlation matrix of the perturbation be given by /R(X + E) =
[ρ(Xi + Ei,Xj + Ej)]i,j∈{1,...,N}. The Cauchy-Schwarz inequality:

(16) |cov(Ei, Ej)| ≤ σ(Ei)σ(Ej),

implies that the variance-covariance matrix of the perturbations can’t be cho-
sen arbitrarly: it must, at least, satisfy this bound. Therefore to complete our
construction, one first solution is to chose an upper bound satisfying the Cauchy-
Schwarz inequality. Unfortunately, choosing arbitrarily variance-covariances sat-
isfying this bound will generally lead to a singular matrix. To overcome this
difficulty one can choose randomly the non diagonal coefficients cov(Ei, Ej) of
the variance-covariance matrix in the intervals [σ(Ei)σ(Ej) − γ, σ(Ei)σ(Ej)] for
a small γ. If the matrix obtained by this method is non positive definite, one can
obtain one that is, altering slightly the matrix, using a transformation method
inspired by the one given in [16] (see also [17]).

Such a transformation is done in the following way. Let the matrix C =
[cij ]i,j∈{1,...,N}, the initially estimated variance-covariance matrix of size N , be
nonsingular; in practice, this matrix is made to be symmetric but can have non-
positive eigenvalues hence being non positive definite. Let Λ be a diagonal matrix
having as diagonal entries λ1, . . . , λN the eigenvalues of C, ordered by decreas-
ing absolute value. Let M be an orthogonal matrix with columns given by the
eigenvectors of M , i.e. satisfying: C ·M = M · Λ. Observe that, given that the
eigenvectors are chosen so to form an orthonormal base, M is orthogonal and
C = MΛM−1 = MΛM t.

(a) Let |Λ| be the matrix with coefficients given by the absolute values of the
eigenvalues, ordered in the same way as Λ.

(b) LetM = [mij]i,j∈{1,...,N} and consider T = [tij ]i,j∈{1,...,N} the diagonal matrix
defined by:

(17) tii :=
cii

∑N
k=1m

2
ik |λk|

.

(c) Let
√
T and

√

|Λ| be the diagonal matrices which coefficients are the square
root of those in T and Λ. Let B :=

√
TM

√

|Λ| then:
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Calt := B · Bt =
(√

TM
√

|Λ|
)(√

TM
√

|Λ|
)t

=
√
TM |Λ|M t

√
T

(18)

is the transformed matrix given by a variation of the Rebonato method (cf.
Theorem 10 below).

The next theorem, on our variant of Rebonato’s method, will describe the main
proprieties of Calt giving an estimate of the distance between the initial matrix
C and the altered matrix Caltdepending only on C.

Theorem 10 (Variation of the Rebonato method). Let C be the initial variance-
covariance matrix, assumed to be nonsingular, symmetric with some negative
eigenvalues. By construction, the matrix Calt given by (18) is symmetric, positive
definite and has diagonal entries identical to those of C. Let |||·|||

F
denote the

Frobenius norm for matrices. Then Calt satisfies the following estimate:

(19)
∣

∣

∣

∣

∣

∣C − Calt
∣

∣

∣

∣

∣

∣

F
≤





N
∑

i,j=1

(

1−
√
tii
√

tjj
)2





1

2
(

N
∑

i=1

λ2
i

)

1

2

+ 2





∑

i:λi<0

λ2
i





1

2

,

where the tii are given by (17) and λ1, . . . , λN are the eigenvalues of C.

Proof. If Calt := B ·Bt with B :=
√
TM

√

|Λ| invertible then Calt is necessarly
symmetric and positive definite. Given Calt = [caltik ]i,k∈{1,...,N}, the right equality
in (18) implies that:

caltik =
√
tii





N
∑

j=1

mij |λj |mkj





√
tkk.

Together with formula (17) this implies that for i = k, the diagonal coefficients
caltii of Calt are the same as the ones of C:

caltii = tii





N
∑

j=1

mij |λj|mij



 = cii.

To prove the estimate (19), consider the following matrix |C| := M |Λ|M−1 =
M |Λ|M t. The triangular inequality implies:

∣

∣

∣

∣

∣

∣C − Calt
∣

∣

∣

∣

∣

∣

F
≤
∣

∣

∣

∣

∣

∣Calt − |C|
∣

∣

∣

∣

∣

∣

F
+ ||||C| − C|||

F
.
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The Frobenius norm being invariant for orthogonal transformation, we have:

||||Λ| − Λ|||
F
=
∣

∣

∣

∣

∣

∣M (|Λ| − Λ)M t
∣

∣

∣

∣

∣

∣

F
=
∣

∣

∣

∣

∣

∣(M |Λ| −MΛ)M t
∣

∣

∣

∣

∣

∣

F

=
∣

∣

∣

∣

∣

∣M |Λ|M t −MΛM t
∣

∣

∣

∣

∣

∣

F
= ||||C| −C|||

F
.

Since |Λ| −Λ is a diagonal matrix for which the only positive terms are the ones
of the form 2 |λi| for λi < 0, the Frobenius norm property |||A|||

F
=
√

Tr(AAt) ,
implies that:

||||C| −C|||
F
= ||||Λ| − Λ|||

F
=
√

Tr((|Λ| − Λ)2) = 2





∑

i:λi<0

λ2
i





1

2

.

Let 1 be the N × N matrix with all entries equal to one and the matrix T̃ :=
[
√
tii
√
tkk]i,k∈{1,...,N}. Consider A ◦B the Hadamard product between A and B.

Using proprieties of the Hadamard product, the fact that the Frobenius norm is
sub-multiplicative and again the invariance of orthogonal transformations under
the Hadamard norm, we have:

∣

∣

∣

∣

∣

∣Calt − |C|
∣

∣

∣

∣

∣

∣

F
=
∣

∣

∣

∣

∣

∣

∣

∣

∣
|C| − T̃ ◦ |C|

∣

∣

∣

∣

∣

∣

∣

∣

∣

F

=
∣

∣

∣

∣

∣

∣

∣

∣

∣
1 ◦ |C| − T̃ ◦ |C|

∣

∣

∣

∣

∣

∣

∣

∣

∣

F

=
∣

∣

∣

∣

∣

∣

∣

∣

∣

(

1− T̃
)

◦ |C|
∣

∣

∣

∣

∣

∣

∣

∣

∣

F

≤
∣

∣

∣

∣

∣

∣

∣

∣

∣

(

1− T̃
)∣

∣

∣

∣

∣

∣

∣

∣

∣

F

||||C||||
F

=
∣

∣

∣

∣

∣

∣

∣

∣

∣

(

1− T̃
)∣

∣

∣

∣

∣

∣

∣

∣

∣

F

||||Λ||||
F
.

Proof of the estimate (19) is obtained by noting that:

||||Λ||||
F
=

√

Tr(|Λ| |Λ|t) =

√

√

√

√

N
∑

i=1

λ2
i ,

and after some calculations, that we have:

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

1− T̃
)∣

∣

∣

∣

∣

∣

∣

∣

∣

F

=

√

Tr

(

(

1− T̃
)(

1− T̃
)t
)

=

√

√

√

√

N
∑

i,j=1

(

1−
√
tii
√

tjj
)2
.

Observation 11. It would be interesting to have, for the spectral norm, a finer
estimate (and if possible, optimal) than the one we just obtained in (19) for the
Frobenius norm. Note that if |||·||| is the spectral norm then for an invertible
matrix C: |||C||| ≤ |||C|||

F
≤ N |||C|||.
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Observation 12. One consequence of the inequality (16) and independency is
the following. Since:

ρ(Xi + Ei,Xj + Ej) =
cov(Xi,Xj) + cov(Ei, Ej)

√

σ(Xi)2 + σ(Ei)2
√

σ(Xj)2 + σ(Ej)2
,

for i 6= j we have the following upper bound of the correlations of the perturbated
returns:

(20) ρ(Xi + Ei,Xj + Ej) ≤
cov(Xi,Xj) + σ(Ei)σ(Ej)

√

σ(Xi)2 + σ(Ei)2
√

σ(Xj)2 + σ(Ej)2
.

Formula (20) shows that the correlation matrix of the perturbed data can’t be
arbitrarily close to the matrix with all entries equal to one, which corresponds to
maximal V@R. Furthermore formula (14) gives:

ρ(Xi + Ei,Xj + Ej) ≤ ρ(Xi,Xj) + ρ(Ei, Ej)
σ(Ei)

σ(Xi)

σ(Ej)

σ(Xj)

≤ ρ(Xi,Xj) +
σ(Ei)

σ(Xi)

σ(Ej)

σ(Xj)
≈ ρ(Xi,Xj) + δ2π,

so that any correlation of the perturbed data is bounded from above by the sum
of the corresponding correlation of the initial data and an error term identical to
the one considered for each perturbed distribution.

The next theorem shows that if the diagonal terms of the correlation matrix of
the perturbed data are given by (20) then this condition determines the maximal
V@R of the portfolio of perturbed returns.

Theorem 13. For i = 1, . . . , N , let the standard deviation of the pertubation
σ(Ei) be defined by (15). Also let for i = j ρmax

ii = 1 and, for i 6= j let the non
diagonal terms of the maximal correlation matrix be given by

(21) ρmax

ij := ρmax(Xi +Ei,Xj + Ej) :=
cov(Xi,Xj) + σ(Ei)σ(Ej)

√

σ(Xi)2 + σ(Ei)2
√

σ(Xj)2 + σ(Ej)2
,

assuming for i 6= j that we have ρmax

ij ∈ [−1, 1] and that the matrix /R
max

=

[ρmax

ij ]i,j∈{i,...,N} is positive definite. Then for α ∈]0, 12 [ the mean V@R of the
perturbed portfolio is given by

V@RP&GΣ

α, mean
= −





N
∑

i,j=1

√

σ(Xi)2 + σ(Ei)2
√

σ(Xj)2 + σ(Ej)2
(

Φ−1(α)
)2

ρmax

ij





1

2

.
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Proof. This is a direct consequence of corollary 5 and formula (2) since one can
see that for each asset i ∈ {1, . . . , N}, the corresponding perturbed V@R is given
by:

√

σ(Xi)2 + σ(Ei)2 Φ
−1(α).

Observation 14. For example, if δ1 e δ2 are chosen such that in formula (15)
we have:

σ(Ei) =

√

2δ1σ(Xi)

|Φ−1(α)| +
(

δ1
|Φ−1(α)|

)2

,

then the mean V@R of the perturbed portfolio, given α ∈]0, 12 [, is:

V@RP&GΣ

α, mean
= −





N
∑

i=1

(∣

∣V@RXi
α, mean

∣

∣+ δ1
)2

+ 2
∑

i<j

cov(Xi,Xj)
∣

∣Φ−1(α)
∣

∣

+

√

(

2δ1
∣

∣V@RXi
α, mean

∣

∣+ δ21
)

(

2δ1

∣

∣

∣V@R
Xj
α, mean

∣

∣

∣+ δ21

)

) 1

2

.

4. An application with real data

We present next a real world application showing that for a standard small port-
folio there exist a large class of statistically undetectable perturbations of the
individual returns which change significantly the V@R of the portfolio. This
practical application of this paper results was independently developed in [4].
The 10 assets used in the portfolio and their respective portfolio weights are Mil-
lenniumBCP (0.16), SEMAPA (0.075), BES (0.11), EDP (0.05), Teixeira Duarte
(0.075), Brisa (0.09), Mota-Engil (0.125), Portucel (0.14), SonaeCom (0.075) and
ZonMultimédia (0.1). The monthly closing prices were obtained from May 2007
to May 2010, that is, 37 observations for each asset. All the additive returns
were tested for normality and for none of them the hypothesis of a Gaussian
distribution was rejected. Again, one can see from (7) that the mean V@R is
proportional to the total value of the portfolio, so that, from now on we will
assume this value is set to one. This allow us to look at the values of the mean
V@R as percentage of the total value of the portfolio.

Observation 15. According to Section 2 all the returns considered are additive
instead of multiplicative. In this case, tests are needed to check for normality
and independency. All of our additive returns were tested and the hypothesis was
rejected in none of them.
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We present next a summary of the results of our application to real data, done
with Mathematica 7 TM software 2. We will first present deterministic results
and then go on to the results obtained in a simulation of perturbed returns.

• The mean V@Rs of the portfolio are given by

BCP SEMAPA BES EDP TD

−0.0294738 −0.00813451 −0.0219616 −0.00524454 −0.0239367

BRISA ME PORTUCEL SC ZONM

−0.0116766 −0.0236536 −0.0181462 −0.0157889 −0.0158876

We may observe that they are all negative.

• We computed the correlation matrix of the portfolio’s returns. To this corre-
lation matrix corresponds a mean V@R of −0.13238 and a maximum mean
V@R of −0.173904 (according to Observation 6).

• Given that δ1 = δ2 = 0.1, according to formula (15) one can compute the
standard deviation for each of the perturbed assets and obtain the following
results for their variance:

BCP SEMAPA BES EDP TD

0.00462948 0.00160487 0.00543804 0.00150098 0.0138965

BRISA ME PORTUCEL SC ZONM

0.0022964 0.00488509 0.00229201 0.00604614 0.00344364

• Next, using Theorem 13 and the standard deviations of each perturbed asset
according to formula (15), the correlation matrix of the perturbed returns was
computed. As announced we have the following important result. The max-
imum mean V@R of the portfolio computed using Theorem 13 is −0.169373
which is close to the maximum mean V@R computed according to Observa-
tion 6, −0.173904.

Next, we detail a simulation example. We simulate Gaussian perturbation of
the returns of the portfolio according to Step 2 of Section 3.2. We compute the
corresponding mean V@Rs for each asset and the V@R of the portfolio. Finally,
we tested the equality between the distributions of the perturbed returns and the
distributions of the initial, non perturbed, returns.

• We computed an instance of a variance-covariance matrix of the perturba-
tion, built according to the Step 2 of Section 3.2. The first matrix obtained
using this method has non diagonal coefficients cov(Ei, Ej) with uniform
distribution in the intervals [σ(Ei)σ(Ej) − γ, σ(Ei)σ(Ej)] with γ = 0.0003.

2All the data and computational results used in our application can be obtained at the
following address: http://ferrari.dmat.fct.unl.pt/personal/mle/pps/pm-mle2009a.html.
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This matrix being non positive definite, we had to apply Rebonato’s method.
Using the spectral norm, the distance between this first matrix and the one
computed with Rebonato’s method is:

(22)
∣

∣

∣

∣

∣

∣C − Calt
∣

∣

∣

∣

∣

∣ = 0.000966904.

This distance, computed using the Frobenius norm, is:

(23)
∣

∣

∣

∣

∣

∣C − Calt
∣

∣

∣

∣

∣

∣

F
= 0.00118581.

On the other hand, the value obtained from the upper bound of inequal-
ity (19) is 0.018035. Using the L2 norm, the distance between the eigen-
vectors of the first matrix and the ones of the altered matrix is 0.00093739.
These values show that the process transforming a singular matrix to a pos-
itive definite one, does not change the matrix significantly.

• The next table shows the mean V@Rs of the assets of the perturbed portfolio
which can be compared to the mean V@Rs of the assets in the non perturbed
portfolio. The norm of the difference between the vector of initial mean
V@Rs and the vector of mean V@Rs of the perturbed portfolio is 0.0128048.
This shows that even a small perturbation can alter significantly all the
V@Rs.

BCP SEMAPA BES EDP TD

−0.0318634 −0.0086518 −0.0249565 −0.0056083 −0.0260704

BRISA ME PORTUCEL SC ZONM

−0.0122701 −0.0251029 −0.0202031 −0.0166392 −0.0175773

• We then have the second most important result of this application to real
data. In our simulation, the mean V@R of the perturbed portfolio is −0.1766
which is even greater than the maximum V@R of the original portfolio (ac-
cording to Observation 6) which, as noted above, is −0.173904.

• Given the levels of confidence 0.05 and 0.01, we used the Kolmogorov and
the Kolmogorov-Smirnov tests to check, for each asset, that the perturbed
distribution is statistically indistinguishable from the original one. With the
Kolmogorov test, for each perturbed asset, the hypothesis of normality with
mean value and variance estimated from the original data was not rejected.
With the Kolmogorov-Smirnov test, the hypothesis that both perturbed and
original distributions are equal was, also, not rejected.

5. Conclusion and open questions

In the benchmark applications of the delta-normal model, an a priori estimation
of the correlation matrix is generally given. Our results show that in the case
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that the returns of the assets suffer a statistically undetectable perturbation, with
no significant impact on the correlation matrix, the V@R of the portfolio may
change to the point it is close to the maximum V@R possible. Therefore, as a
measure of the risk associated to the portfolio, the mere V@R is insufficient. If,
nevertheless, we have to use the V@R methodology, it is fundamental that the
initial correlation matrix and its estimation method are explicitly given, together
with the portfolio V@R.

To complement our study, it would be interesting to have a statistical test
allowing to decide that both the initial and the perturbed variance-covariance
matrices are equal.

In Section 3.2 we saw that given a variance-covariance matrix C and Calt
the matrix obtained after the applying the Rebonato’s method then the spectral
norm

∣

∣

∣

∣

∣

∣C − Calt
∣

∣

∣

∣

∣

∣ is small. This property, which was confirmed in our practical
application, lacks a proper justification (see formula (22) and Observation 11).
According to our numerical results, we propose the following conjecture: the
spectral norm is comparable to the norm obtained by the Euclidian norm of the
difference between the eigenvectors obtained after Rebonato’s modification and
the original eigenvectors 3.

One way to compare the correlation matrix of the perturbed returns
/Rest(X + E) with the original estimated matrix /Rest(X), is to define a per-
turbation index. So consider the ratio of the Frobenius norm of the difference of
the matrices to the norm of the worst possible case (this being is the difference
between the matrix with all entries equal to one and the identity matrix). Using
our numerical example this gives:

Iper :=

∣

∣

∣

∣

∣

∣ /Rest(X+E)− /Rest(X)
∣

∣

∣

∣

∣

∣

√
N2 −N

=
1.3423

90
= 0.01491444 ,

that is, a perturbation with index inferior to 1,5%. This confirms our claim that
it is indeed a small perturbation with large effects. A deeper study of this index
should bring interesting results.
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