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Abstract

In this paper we consider an autoregressive Pareto process which can be
used as an alternative to heavy tailed MARMA. We focus on the tail behavior
and prove that the tail empirical quantile function can be approximated
by a Gaussian process. This result allows to derive a class of consistent
and asymptotically normal estimators for the shape parameter. We will
see through simulation that the usual estimation procedure based on an
i.i.d. setting may fall short of the desired precision.
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1. Introduction

An extreme value analysis mainly aims the estimation of the probability of rarely
observed events, specially more extreme than any previously observed. The cen-
tral result in extreme value theory (EVT) states the possible probability laws that
might occur in the limit of the linearly normalized maxima (minima). More pre-
cisely, for a sequence {Xn}n≥1 of independent and identically distributed (i.i.d.)
random variables (r.v.’s), having marginal cumulative distribution function (cdf)
F , if there are real constants an > 0 and bn such that,

P (max(X1, . . . ,Xn) ≤ anx+ bn) −→
n→∞

Gγ(x) ,
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for some non-degenerate function Gγ , then this must be a generalized extreme
value function,

Gγ(x) = exp(−(1 + γx)−1/γ), 1 + γx > 0, γ ∈ R,

(G0(x) = exp(−e−x)) and we say that F belongs to the max-domain of attraction
of Gγ , in short, F ∈ D(Gγ). An analogous result is easily stated for minima
by relation min(X1, . . . ,Xn) = −max(−X1, . . . ,−Xn). The shape parameter γ
also named tail index is of major importance as it determines the tail behavior of
F . If γ > 0 then F has a heavy tail (Fréchet max-domain of attraction), γ = 0
means that F has an exponential tail (Gumbel max-domain of attraction) and
γ < 0 indicates a short tail (Weibull max-domain of attraction). Here we will be
interested in heavy tails. Considering the quantile function (qf), F−1(t) = inf{x :
F (x) ≥ t}, we have, F ∈ D(Gγ) for γ > 0, if and only if the tail qf satisfies

F−1(1− tx) ∼ x−γF−1(1− t), as t → ∞,

which is also equivalent to a −1/γ-regularly varying tail at ∞, expressed as

1− F (x) = x−1/γLF (x),(1)

where LF is a slowly varying function at ∞ (i.e., L(tx)/L(t) ∼ 1, as t → ∞). The
form (1) is also called a Pareto-type tail.

More recently, it has become evident that a number of phenomena requires
the “heavy tail" concept and, rather frequently, extremal events (excesses over
a threshold value) occur not one at time, but may cluster. Both situations are
atypical for the Gaussian linear ARMA process. As an alternative, it has been
considered the max-autoregressive moving average (MARMA) by replacing the
summation operator by the maximum one, with marginals Fréchet and thus heavy-
tailed (Davis and Resnick [3]). MARMA modeling have been widely applied
to real data in several areas from environment, engineering and financial (see
Lebedev [18] 2008 and references therein).

An alternative for MARMA are the not so well-known autoregressive Pareto
processes, at least within an extreme values modeling context (Ferreira, [8] 2012).
A Pareto process corresponds to a stochastic process whose marginal distribu-
tions are Pareto or generalized Pareto. These are heavy-tailed and satisfy (1).
Generalizations of the Pareto’s distribution, e.g. the Pareto(III)(µ,σ,γ) given by

1− F (x) =
[
1 +

(x− µ

σ

)1/γ]−1
, x > µ,(2)

have been proposed as models for economic variables (Arnold [1]). Here we
consider the first order autoregressive Pareto(III) denoted Yeh-Arnold-Robertson
Pareto(III) (Yeh et al. [25] 1988), which is defined as follows.
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Considering an innovations sequence {εn}n≥1 of i.i.d. r.v.’s Pareto(III)(0,σ,γ) in
(2), with σ, γ > 0, and sequence {Un}n≥1 of i.i.d. r.v.’s Bernoulli(p) (independent
of the ε’s), we say that the process {Xn}n≥1 is a first order Yeh-Arnold-Robertson
Pareto(III), in short YARP(III)(1), if

Xn = min
(
p−γXn−1,

1

1− Un
εn

)
,(3)

where 1/0 is interpreted as +∞. By conditioning on Un, it can be verified that
the YARP(III)(1) process has a Pareto(III)(0,σ,γ) stationary distribution (X0 has
also distribution Pareto(III)(0,σ,γ)). The YARP(III)(1) have interesting extreme
value properties. For instance, considering

Tn = min
0≤i≤n

Xi

and
Mn = max

0≤i≤n
Xi,

we have that Tn
d
= mini≤N εi, where εi, i ≥ 1, are i.i.d. Pareto(III)(0, σ, γ) and N ,

independent of εi is such that N−1 ⌢ Binomial(n, 1−p). Moreover, we have also

n(1 − p)γTn/σ
d→ Weibull(1/γ) and n−γ

σ Mn
d→ Fréchet(0, (1 − p)−1, 1/γ). We

also point out that these processes are closed for geometric minima and maxima,
i.e., TN = min1≤i≤N Xi and MN = max1≤i≤N Xi where N ⌢ Geometric(p), have
also distributions, respectively, Pareto(III)(0,σpγ , γ) and Pareto(III)(0, σp−γ , γ).
For more details, see Arnold, [2] and Krishnarani and Jayakumari, [17]. A char-
acterization of the YARP(III)(1) process’s tail behavior can be seen in Ferreira
([8] 2012) and Ferreira ([9] 2013). In particular, it was shown that it presents
a β-mixing dependence structure (to be defined below). Some tail coefficients
interesting for applications were also derived, e.g. the tail dependence coefficient
of Sibuya ([23] 1960) and Joe ([16] 1993), tail dependence coefficients for order
statistics of Ferreira and Ferreira ([10] 2012) and fragility indexes of a system
introduced in Geluk et al., ([12] 2007) and Ferreira and Ferreira ([11] 2012b).

Ferreira ([8] 2012a) presented a simple consistent and asymptotically normal
estimator for parameter p, given by

p̂n =
2

n− 1

n∑

j=2

1{Xj−1<Xj} − 1,(4)

another attractive characteristic for modeling purposes.
In this work we will be concerned about the estimation of the other parameter

γ. Our approach is within the EVT where this parameter is denoted tail index.
There already exists estimators for this latter, e.g. Hill ([13] 1975), Pickands’ ([19]
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1975), maximum likelihood (Smith [24] 1987), moments (Dekkers et al. [4] 1987),
generalized weighted moments (Hosking e Wallis [14]), among others, whose per-
formances and properties have been analyzed in an i.i.d. context. The first studies
for stationary sequences date back the nineties and concern the Hill estimator
(Rootzén et al. [22] 1990, Hsing [15] 1991, Resnick e Stărică [20, 21] 1995, 1998).
Based on results for the convergence of the tail of empirical processes, Drees ([5, 6],
1998a,b) developed a class of estimators for the tail index that includes the ones
mentioned above, and proved consistency and asymptotic normality within an
i.i.d. context. This approach was latter extended to a wide range of stationary
sequences (Drees, [7], 2003). Examples of time series models satisfying Drees’
conditions include the well-known linear ARMA and the nonlinear ARCH and
MARMA. Here we shall prove that the YARP(III)(1) model satisfies the Drees’
conditions too. Therefore, we will be able to state a weighted approximation
for the YARP(III)(1) tail empirical process and derive consistency and asymp-
totic normality of several estimators of the tail parameter γ. A simulation study
will illustrate that the estimates greatly improve whenever YARP(III)(1) serial
dependence is taken into account.

2. YARP(III)(1): the tail index and the Drees class of estimators

In this section we address the estimation of the shape parameter γ of a
YARP(III)(1) process within an EVT context, since it corresponds to the so-
called tail index of the marginal distribution. This index is a very important
issue in EVT and its estimation gets the attention of many researchers. Usually,
the tail index estimators depend only on the kn+1, n ∈ N, largest order statistics,
Xn:n ≥ Xn−1:n ≥ · · · ≥ Xn−kn:n, where {kn}n≥1 is an intermediate sequence, i.e.,
a sequence of positive integers satisfying kn → ∞ and kn = o(n), as n → ∞. The
most used estimator within a heavy tail context is the Hill estimator

γ̂Hn =
1

kn

kn∑

i=1

log
Xn−i+1:n

Xn−kn:n
.(5)

In Figure 1, the solid line corresponds to a sample path of Hill estimates plotted
against k ≡ kn largest order statistics. The horizontal line represents the true
value. Observe the effect of an increasing bias as k increases too, whilst small
values of k lead to larger variance. This is a main drawback of this type of
estimators and the choose of a number k that allows the best compromise between
bias and variance is of major importance.

Estimators in literature have been firstly analyzed in i.i.d. settings. For a
survey, see, for instance, Drees ([5, 6], 1998a,b). However, since for applications
this is often an unrealistic assumption, efforts have been made to extend the
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theory to stationary sequences (Rootzén et al. [22] 1990, Hsing [15] 1991, Resnick
e Stărică [20, 21] 1995, 1998, Drees [7] 2003).

We focus on the results in Drees ([7] 2003) which are more general and can be
applied under not too restricted serial dependence conditions.

In a very brief, by considering Fn the empirical cdf, [x] the largest integer not
exceeding x and {kn}n≥1 an intermediate sequence, Drees ([7] 2003) established
an approximation of the weighted tail empirical qf,

Qn(t) := F−1
n

(
1− knt

)
= Xn−[knt]:n, t ∈ [0, 1],(6)

to a Gaussian process, for any stationary sequence {Xn}n≥1 satisfying the condi-
tions listed below:

• a β-mixing dependence structure:

β(l) := sup
p∈N

E
(

sup
B∈F(Xp+l+1,... )

|P (B|F(X1, . . . ,Xp))− P (B)|
)
−→
l→∞

0,

with F(.) denoting the σ−field generated by the indicated random variables. More
precisely, it is assumed that there exists a sequence ln, n ∈ N, such that

lim
n→∞

β(ln)

ln
n+ lnk

−1/2
n log2 kn = 0.(7)

• a regularity condition for the joint tail of (X1,X1+m):

lim
n→∞

n

kn
P
(
X1 > F−1

(
1− kn

n
x
)
,X1+m > F−1

(
1− kn

n
y
))

= cm(x, y),(8)

for all m ∈ N and 0 < x, y ≤ 1 + ǫ.

• a uniform bound on the probability that both X1 and X1+m belong to an
extremal interval:

n

kn
P
(
X1 ∈ In(x, y),X1+m ∈ In(x, y)

)
≤ (y − x)

(
ρ̃(m) +D1

kn
n

)
,(9)

for some constant D1 ≥ 0, a sequence ρ̃(m), m ∈ N, satisfying
∑∞

m=1 ρ̃(m) <
∞ for all m ∈ N, 0 < x, y ≤ 1 + ǫ and the extremal interval, In(x, y) =
]F−1(1− ykn/n

)
, F−1(1− xkn/n)].
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• for the sake of simplicity,

F−1(1− t) = dt−γ(1 + r(t)) , with |r(t)| < Φ(t) .(10)

for some constant d > 0 and a τ -varying function Φ at 0 for some τ > 0, or τ = 0
and Φ nondecreasing with limt↓0 Φ(t) = 0.

• the intermediate sequence {kn}n≥1 is such that

lim
n→∞

k1/2n Φ(kn/n) = 0.(11)

Theorem 1 Drees (2003). Under the conditions (7)–(11) with ln = o(n/kn), there

exist versions of the tail empirical quantile function, Qn(t), defined in (6), and a

centered Gaussian process e with covariance function c given by

c(x, y) := x ∧ y +

∞∑

m=1

(cm(x, y) + cm(y, x)) ∈ R ,(12)

such that

(13) sup
t∈(0,1]

tγ+1/2(1+| log t|)−1/2
∣∣∣k1/2n

( Qn(t)

F−1(1− kn/n)
− t−γ

)
−γt−(γ+1)e(t)

∣∣∣→ 0

in probability.

In Drees ([5, 6], 1998a,b) it is observed that almost every estimator γ̂n of the tail
index parameter γ that are based only on the kn + 1 largest order statistics can
be represented as a smooth functional T (verifying some regularity conditions)
applied to the tail empirical qf, i.e., γ̂n = T (Qn). Some examples within this class
include the above mentioned Hill, maximum likelihood, moments, Pickands’ and
probability weighted moments estimators. We shall denote estimators of the form
γ̂n = T (Qn) as the Drees’ class of tail index estimators. Theorem 2.2 in Drees
([7], 2003) establishes the asymptotic normality of this class. More precisely,

k1/2n (γ̂n − γ) −→
n→∞

N (0, σ2
T,γ)

weakly with

σ2
T,γ = γ2

∫

(0,1]

∫

(0,1]
(st)−(γ+1)c(s, t)νT,γ(ds)νT,γ(dt),(14)

where c is the function defined in (12) and νT,γ is a suitable signed measure. It
can be proved that, in a generalized Pareto model, the Hill estimator in (5) has
signed measure given by
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νH,γ(dt) = tγdt− δ1(dt),

where δ1 is the Dirac measure with mass 1 at 1 (Drees [7], 2003).

Here we will prove that the YARP(III)(1) model satisfies the Drees’ conditions
and thus the application of the mentioned results is straightforward.

Proposition 2. Let {Xn}n≥1 be a YARP(III)(1) process. Then conditions (8)
and (9) both hold.

Proof. Let as be the qf of the YARP(III)(1) process at 1−s, i.e., as = F−1(1−s)
with

F−1(t) = σ((1− t)−1 − 1)γ .(15)

We start by stating the m-step transition probability function (tpf) of the
YARP(III)(1) process, given by (Ferreira, [8] 2012)

Qm(x, ]0, y]) = P
(
Xn+m ≤ y|Xn = x

)

=





1−
m−1∏

j=0

[F ε(p
jγy)(1− p) + p], x > ypmγ

1, x ≤ ypmγ ,

which will be a fundamental tool in the following. Observe that

P (X1 > atx,X1+m > aty) =

∫ ∞

atx

(1−Qm(]0, aty ]))F (du)

= tx−
∫ ∞

atx

Qm(]0, aty ])F (du).

(16)

If atx > atyp
m, we have

∫ ∞

atx

Qm(]0, aty ])F (du) =

(
1−

m−1∏

j=0

[
F ε(p

jγy)(1− p) + p
])∫ ∞

atx

F (du)

=

(
1−

m−1∏

j=0

[F ε(p
jγy)(1 − p) + p]

)
(1− F (atx)

and, whenever atx ≤ atyp
m, we have
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∫ ∞

atx

Qm(]0, aty ])F (du) =

∫ atypmγ

atx

Qm(]0, aty ])F (du) +

∫ ∞

atypmγ

Qm(]0, aty ])F (du)

= F (atyp
mγ)− F (atx)−

(
1−

m−1∏

j=0

[
F ε(p

jγy)(1 − p) + p
])

(1 − F (atyp
mγ)).

By (15), we obtain

F (atyp
mγ) =

((ty)−1 − 1)pm

1 + ((ty)−1 − 1)pm
=

(1− ty)pm

ty + (1− ty)pm
,(17)

and since the innovations {εn}n≥1 are i.i.d. also with df Pareto(III) (0,σ,γ), then∏m−1
j=0 [F ε(p

jγy)(1− p) + p] = ty + pm(1− ty). Hence,

(18)

∫ ∞

atx

Qm(]0, aty ])F (du)

=





(1− ty − pm(1− ty))tx , atx > atyp
m

F (atyp
mγ)− F (atx)

+ (1− (ty − pm(1− ty))(1− F (atyp
mγ)) , atx ≤ atyp

m.

Replacing (18) in (16) and applying (17), after some simple calculations, we derive

(19) P (X1 > atx,X1+m > aty) =

{
(ty + pm(1− ty))tx , atx > atyp

m

ty , atx ≤ atyp
m.

The limiting functions cm(x, y) in (8) are obtained by replacing t by tn ≡ kn/n
in (19):

cm(x, y) = lim
n→∞

n

kn
P (X1 > atnx ,X1+m > atny) =

{
pmx , x < yp−m

y , x ≥ yp−m.

In what concerns condition (9), considering In(x, y) =
]
atny , atnx

]
, observe that

n
kn
P
(
X1 ∈ In(x, y),X1+m ∈ In(x, y)

)
≤ n

kn
P
(
X1 ∈ In(x, y),X1+m > atny

)

≤ n
kn
P
(
X1 ∈ In(x, y), ε1+m > atny

)
≤ (y − x)knn y,

and now take D1 = 1 + ǫ (we have y ∈ (0, 1 + ǫ]) and ρ̃(m) = 0.
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In the following it is conventioned that, for k < 1,
∑k

i=1 = 0.

Proposition 3. Let {Xn}n≥1 be a YARP(III)(1) process and {kn} an intermedi-

ate sequence. Then the limit in (13) holds for the tail empirical quantile function,

Qn(t), defined in (6), with covariance function c given by

c(x, y) = min(x, y) +

r∑

m=1

(cm(x, y) + cm(y, x)) + (x+ y)
pr+1

1− p
,

where r ≡ rx,y = [max{ln(x/y)/ ln p, ln(y/x)/ ln p}].
In the YARP(III)(1) process, for any tail index estimator within Drees’ class,

γ̂n = T (Qn), we have that, k
1/2
n (γ̂n − γ) → N (0, σ2

T,γ) weakly with variance given

in (14).

Proof. The result in (13) and the asymptotic normality are straightforward from
Proposition 2 and the β-mixing dependence structure of the YARP(III)(1) process
(Ferreira [8] 2012, Proposition 2.1). Now just observe that

cm(x, y) + cm(y, x) =





x(1 + pm) , 0 < x ≤ ypm

(y + x)pm , ypm < x ≤ yp−m

y(1 + cm) , yc−m < x ≤ 1 + ǫ,

and since pm → 0 and p−m → ∞, as m → ∞, for fixed x and y, there exists some
order r ∈ N, such that, for all m ≥ r, we have ypm < x ≤ yp−m. Therefore,

∞∑

m=1

(cm(x, y) + cm(y, x)) =

r∑

m=1

(cm(x, y) + cm(y, x)) +

∞∑

m=r+1

(x+ y)pm.

Observe that for the YARP(III)(1) model the asymptotic variance of the Hill
estimator is given by γ2(1 + 2p(1 − p)−1)/kn. We remark that the asymptotic
variance within an i.i.d. context is γ2/kn. Thus the confidence intervals based on
the i.i.d. assumption, i.e.,

γ̂n ± z1−α/2
γ̂n√
kn

,

with z1−α/2 denoting the (1− α/2)-quantile of the standard normal distribution,
are shorter than the confidence intervals based on the YARP(III)(1) serial depen-
dence, i.e.,

γ̂n ± z1−α/2
γ̂n√
kn

√
1 +

2p̂n
1− p̂n

,(20)
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with p̂n given in (4) (see Figure 1), which may be an indication that perhaps the
pretended estimation accuracy of the former is not achieved. In what follows, we
analyze this issue through simulation.

We generate 1000 independent random samples of size n = 2000 from an
unit scale YARP(III)(1) process by considering the cases γ = 0.5, 1, 1.5 and
p = 0.25, 0.5, 0.75. The estimated empirical non-coverage probabilities of in-
dependent and serial dependent 95% confidence intervals are plotted in Figure
2 against k upper order statistics (solid line and dashed line, respectively). The
horizontal line represents the nominal probability 5%. The columns correspond to
γ = 0.5, 1, 1.5, respectively, and the lines correspond to p = 0.25, 0.5, 0.75, respec-
tively. Observe that, in an i.i.d. setting, the non-coverage probabilities are always
above the nominal level. Note also that the larger the p the stronger the serial
dependence which explains the very high non-coverage probabilities obtained with
p = 0.75. Only in the case of small values of p we may find more acceptable levels
of non-coverage probabilities (see the first line plots of Figure 2 corresponding to
p = 0.25, where the minimum non-coverage probability is about 9%). A sample
fraction of 100 . k . 200 leads to an overall good performance of confidence
intervals (20) with coverage probabilities of at least 95%.
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Figure 1. Sample path of the Hill estimator (solid line) applied to a YARP(III)(1) process,
with γ = 1 and p = 0.5, and 95% confidence intervals based on the i.i.d. assumption
(dashed line) and taking into account the serial dependence (dotted line).
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Figure 2. Empirical non-coverage probabilities of 95% confidence intervals based on the
i.i.d. assumption (solid line) and taking into account the serial dependence (dashed
line). The horizontal line corresponds to the probability 5%; left-to-right corresponds to
γ = 0.5, 1, 1.5, respectively; top-to-bottom corresponds to p = 0.25, 0.5, 0.75, respectively.
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