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Abstract

In this paper, we consider profile analysis for the observations with two-
step monotone missing data. There exist three interesting hypotheses –
the parallelism hypothesis, level hypothesis, and flatness hypothesis – when
comparing the profiles of some groups. The T 2-type statistics and their
asymptotic null distributions for the three hypotheses are given for two-
sample profile analysis. We propose the approximate upper percentiles of
these test statistics. When the data do not have missing observations, the
test statistics perform lower than the usual test statistics, for example, as in
[8]. Further, we consider a parallel profile model for several groups when the
data have two-step monotone missing observations. Under the assumption
of non-missing data, the likelihood ratio test procedure is derived by [16].
We derive the test statistic based on the likelihood ratio. Finally, in order to
investigate the accuracy for the null distributions of the proposed statistics,
we perform a Monte Carlo simulation for some selected parameters values.
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1. Introduction

Profile analysis is a statistical method used to compare the profiles of several
groups. In a normal population, the profile analysis for a two-sample problem
has been discussed using Hotelling’s T 2-type statistic (see, e.g., [8]). Further, [16]
gave a profile analysis of several groups based on the likelihood ratio. For the
assumption of nonnormality, [9] discussed profile analysis in elliptical populations.
Further, [7] obtained asymptotic expansions of the null distributions of some test
statistics for general distributions.

At the same time, we often encounter the problem of missing data in many
practical situations. For samples with observations missing at random, many
statistical methods have been developed by [3, 14, 15], and [12] among others.
Moreover, when the missing observations are of the monotone-type, the test for
the equality of means and simultaneous confidence intervals in repeated measures
with an intraclass correlation model was discussed by [11] in a one-sample prob-
lem, [5] in a two-sample problem, and [6] in a k-sample problem. For two-step
monotone missing data, [2] and [10] considered tests for the mean vector in a
one-sample problem. [1] obtained the maximum likelihood estimators (MLEs)
of the mean vector and covariance matrix in a one-sample problem for two-step
monotone missing data, and [4] discussed the distribution of these MLEs and
expanded for K-step monotone missing data. In the same way as [1], the MLEs
in two-sample problem have been obtained (e.g., [13]).

In this paper, we consider a profile analysis for a two-sample problem compris-
ing several groups and two-step monotone missing observations. In particular,
for several groups, we consider the parallelism hypothesis.

The organization of this paper is as follows. In Section 2, we consider a profile
analysis for complete data. In Section 3, we derive the MLEs of µ(i) and Σ when
the missing observations are of the two-step monotone-type. In Section 4, we give
the T 2-type statistics for profile analysis. In Section 5, we give the likelihood ratio
test statistic for the parallelism hypothesis. In Section 6, we perform a Monte
Carlo simulation to investigate the accuracy for the null distributions of these
statistics. Finally, in Section 7, we conclude this study.

2. Profile analysis for complete data

In this section, we consider the test statistics when the data have non-missing

observations. Let the p-dimensional random vector x
(i)
j be independently
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distributed as Np(µ
(i),Σ) (j = 1, . . . , N

(i)
1 , i = 1, 2), where µ(i) = (µ

(i)
1 , . . . , µ

(i)
p )′.

Let the i-th sample mean vector, the i-th sample covariance matrix, and the
pooled sample covariance matrix be

x(i) =
1

N
(i)
1

N
(i)
1∑

j=1

x
(i)
j , Si =

1

N
(i)
1 − 1

N
(i)
1∑

j=1

(x
(i)
j − x(i))(x

(i)
j − x(i))′,

S =
(N

(1)
1 − 1)S1 + (N

(2)
1 − 1)S2

N
(1)
1 +N

(2)
1 − 2

,

respectively. When carrying out a profile analysis for two samples, we first con-
sider the parallelism hypothesis that is expressed as

HP2 : Cµ(1) = Cµ(2) vs. AP2 6= HP2 ,

where C is a (p − 1) × p matrix of rank p − 1 such that C1p = 0 and 1p is a
p-vector of ones. The test statistic for testing hypothesis HP2 can be written as

T 2
Pc = (x(1) − x(2))′C ′

{
N

(1)
1 +N

(2)
1

N
(1)
1 N

(2)
1

(CSC ′)

}
−1

C(x(1) − x(2)).

In normal populations,

T 2
Pc ∼

(N
(1)
1 +N

(2)
1 − 2)(p − 1)

N
(1)
1 +N

(2)
1 − p

F
p−1,N

(1)
1 +N

(2)
1 −p

.

If the parallelism hypothesis is true, we test the level hypothesis or the flatness
hypothesis. The level hypothesis is expressed as

HL2 : 1
′

pµ
(1) = 1′pµ

(2) vs. AL2 6= HL2 .

The test statistic for testing hypothesis HL2 can be written as

T 2
Lc = (x(1) − x(2))′1p

{
N

(1)
1 +N

(2)
1

N
(1)
1 N

(2)
1

(1′

pS1p)

}
−1

1′

p(x
(1) − x(2)) .

In normal populations,

T 2
Lc ∼ F

1,N
(1)
1 +N

(2)
1 −2

.

Further, the flatness hypothesis is expressed as

HF2 : C(µ(1) + µ(2)) = 0 vs. AF2 6= HF2 .
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The test statistic for testing hypothesis HF2 can be written as

T 2
Fc = x′

12C
′

{
1

N
(1)
1 +N

(2)
1

CSC ′

}
−1

Cx12,

where

x12 =
N

(1)
1

N
(1)
1 +N

(2)
1

x(1) +
N

(2)
1

N
(1)
1 +N

(2)
1

x(2).

In normal populations,

T 2
Fc ∼

(N
(1)
1 +N

(2)
1 − 2)(p − 1)

N
(1)
1 +N

(2)
1 − p

F
p−1,N

(1)
1 +N

(2)
1 −p

.

In addition, we consider a parallelism hypothesis of several groups when the data

have non-missing observations. Let x
(i)
1 , . . . ,x

(i)

N
(i)
1

be N
(i)
1 independent observa-

tions from Np(µ
(i),Σ) (i = 1, . . . , k). Then we consider the primarily testing the

parallelism hypothesis as follows:

HPk
: Cµ(1) = · · · = Cµ(k) vs. APk

6= HPk
.

The MLEs of µ(i) and Σ under APk
are

x(i) =
1

N
(i)
1

N
(i)
1∑

j=1

x
(i)
j , Σ̂c =

1

N1

k∑

i=1

N
(i)
1∑

j=1

(x
(i)
j − x(i))(x

(i)
j − x(i))′,

respectively, where N1 =
∑k

i=1N
(i)
1 . In contrast, the MLEs of µ and Σ under

HPk
are

x =
1

N1

k∑

i=1

N(i)∑

j=1

x
(i)
j , Σ̃c =

1

N1

k∑

i=1

N
(i)
1∑

j=1

(x
(i)
j − x)(x

(i)
j − x)′,

respectively. For complete data, using these MLEs, we can construct the following
likelihood ratio:

Λc =
|CΣ̂cC

′|
1
2
N1

|CΣ̃cC ′|
1
2
N1

.

The likelihood ratio test statistic, −2 log Λc, is asymptotically distributed as a χ2

distribution with (p− 1)(k − 1) degrees of freedom as N
(i)
1 s tend to infinity (see

[16]). Hence, we reject HPk
when −2 log Λc > χ2

(p−1)(k−1),α, where χ2
(p−1)(k−1),α



Profile analysis based on missing data 175

is the upper 100α percentile of a χ2 distribution with (p − 1)(k − 1) degrees of
freedom. However, convergence to the asymptotic χ2 distribution can be im-
proved by considering an asymptotic expansion for the likelihood ratio statistic
and deriving the modified likelihood ratio statistic as −2ρc1 log Λc, where

ρc1 = 1−
1

2N1
(p+ k + 1).

3. MLEs

We consider the case when the missing observations are of the two-step monotone-

type. Observations {x
(i)
ℓj } can be written in the following form:




x
(i)
11 · · · x

(i)
1p1

x
(i)
1,p1+1 · · · x

(i)
1p

...
...

...
...

x
(i)

N
(i)
1 1

· · · x
(i)

N
(i)
1 p1

x
(i)

N
(i)
1 ,p1+1

· · · x
(i)

N
(i)
1 p

x
(i)

N
(i)
1 +1,1

· · · x
(i)

N
(i)
1 +1,p1

∗ · · · ∗

...
...

...
...

x
(i)

N(i)1
· · · x

(i)

N(i)p1
∗ · · · ∗




,

where ∗ denotes missing component. Let x
(i)
j ≡ (x

(i)′

1j ,x
(i)′

2j )′ (j = 1, . . . , N
(i)
1 , i =

1, . . . , k) be a p-dimensional observation vector from the i-th group with complete

data. Let x
(i)
1j (j = N

(i)
1 +1, . . . , N (i)) be p1-dimensional vectors based on N

(i)
2 (=

N (i)−N
(i)
1 ) observations. Now, we assume the distribution of observation vectors:

x
(i)
j ∼ Np(µ

(i),Σ) (j = 1, . . . , N
(i)
1 , i = 1, . . . , k),

x
(i)
1j ∼ Np1(µ

(i)
1 ,Σ11) (j = N

(i)
1 + 1, . . . , N (i), i = 1, . . . , k),

respectively, where

µ(i) =

(
µ
(i)
1

µ
(i)
2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

and µ(i) and Σ are partitioned according to the blocks of the data set. Therefore,

µ
(i)
ℓ (ℓ = 1, 2) is a pℓ-dimensional vector and Σℓm (ℓ,m = 1, 2) is a pℓ×pm matrix.

We give some notations for the sample mean vectors. Let x
(i)
1T be the sample

mean vector of x
(i)
11 , . . . ,x

(i)

1N(i) . Let (x
(i)′

1F , x
(i)′

2F )′ be the sample mean vector of
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x
(i)
1 , . . . ,x

(i)

N
(i)
1

, where x
(i)′

ℓF : pℓ × 1 (ℓ = 1, 2). That is,

x
(i)
1T =

1

N (i)

N(i)∑

j=1

x
(i)
1j , x

(i)
1F =

1

N
(i)
1

N
(i)
1∑

j=1

x
(i)
1j , x

(i)
2F =

1

N
(i)
1

N
(i)
1∑

j=1

x
(i)
2j .

Since the MLEs based on the complete data case cannot be used, we have to
estimate µ(i) and Σ under two-step monotone missing data. Let µ̂(i) and Σ̂ be
the MLEs of µ and Σ. These have the same patterns of partition as µ(i) and Σ.
The likelihood function is

L(µ(i),Σ)

=

k∏

i=1



N

(i)
1∏

j=1

1

(2π)
p

2 | Σ |
1
2

exp

{
−
1

2
(x

(i)
j − µ(i))′Σ−1(x

(i)
j − µ(i))

}

×

N(i)∏

j=N
(i)
1 +1

1

(2π)
p1
2 | Σ11 |

1
2

exp

{
−
1

2
(x

(i)
1j − µ

(i)
1 )′Σ−1

11 (x
(i)
1j − µ

(i)
1 )

}

 .

Let A be a p× p transformation matrix:

A =

(
Ip1 O

−Σ21Σ
−1
11 Ip2

)
.

Then we have

Ax
(i)
j =

(
x
(i)
1j

x
(i)
2j − Σ21Σ

−1
11 x

(i)
1j

)
∼ Np(Aµ

(i), AΣA′),

where the mean vector and the covariance matrix of transformed observation
vectors are

Aµ(i) = η(i) =

(
η
(i)
1

η
(i)
2

)
=

(
µ
(i)
1

µ
(i)
2 − Σ21Σ

−1
11 µ

(i)
1

)
,

AΣA′ =

(
Σ11 O

O Σ22·1

)
,

and Σ22·1 = Σ22−Σ21Σ
−1
11 Σ12. It should be noted that µ(i) and Σ have one-to-one

correspondence with η(i) and Ψ, where

Ψ =

(
Ψ11 Ψ12

Ψ21 Ψ22

)
=

(
Σ11 Σ−1

11 Σ12

Σ21Σ
−1
11 Σ22·1

)
.
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For parameters η(1), . . . ,η(k) and Ψ, the likelihood function is

L(η(1), . . . ,η(k),Ψ)

= Const.× | Ψ11 |
−

1
2
N | Ψ22 |

−
1
2
N1

× exp



−

1

2

k∑

i=1

N(i)∑

j=1

(x
(i)
1j − η

(i)
1 )′Ψ−1

11 (x
(i)
1j − η

(i)
1 )





× exp




−
1

2

k∑

i=1

N
(i)
1∑

j=1

(x
(i)
2j −Ψ21x

(i)
1j − η

(i)
2 )′Ψ−1

22 (x
(i)
2j −Ψ21x

(i)
1j − η

(i)
2 )





,

where N =
∑k

i=1 N
(i).

Differentiating the log likelihood function, we get that

η̂
(i)
1 = x

(i)
1T ,

η̂
(i)
2 = x

(i)
2F − Ψ̂21x

(i)
1F ,

and that

Ψ̂11 =
1

N

k∑

i=1

N(i)∑

j=1

(x
(i)
1j − x

(i)
1T )(x

(i)
1j − x

(i)
1T )

′,

Ψ̂21 =




k∑

i=1

N
(i)
1∑

j=1

z
(i)
2j z

′(i)
1j







k∑

i=1

N
(i)
1∑

j=1

z
(i)
1j z

′(i)
1j




−1

,

Ψ̂22 =
1

N1





k∑

i=1

N
(i)
1∑

j=1

z
(i)
2j z

′(i)
2j

−




k∑

i=1

N
(i)
1∑

j=1

z
(i)
2j z

′(i)
1j







k∑

i=1

N
(i)
1∑

j=1

z
(i)
1j z

′(i)
1j




−1 


k∑

i=1

N
(i)
1∑

j=1

z
(i)
1j z

′(i)
2j








,

z
(i)
1j = x

(i)
1j − x

(i)
1F , z

(i)
2j = x

(i)
2j − x

(i)
2F .
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We thus obtain the MLEs of µ(i) and Σ in general:

µ̂(i) =

(
µ̂
(i)
1

µ̂
(i)
2

)
=

(
x
(i)
1T

x
(i)
2F − Ψ̂21(x

(i)
1F − x

(i)
1T )

)
,

Σ̂ =

(
Σ̂11 Σ̂12

Σ̂21 Σ̂22

)
=

(
Ψ̂11 Ψ̂11Ψ̂12

Ψ̂21Ψ̂11 Ψ̂22 + Ψ̂21Ψ̂11Ψ̂12

)
.

4. Two-sample profile analysis with two-step monotone missing

data

By using the MLEs given in Section 3, we obtain the T 2-type statistics. In this
section, let k = 2. The T 2-type statistic under HP2 can be written as

T 2
Pm = (µ̂(1) − µ̂(2))′C ′{CΞ̂C ′}−1C(µ̂(1) − µ̂(2)),

where Ξ̂ is the MLE of Ξ = {Cov[µ̂(1)] + Cov[µ̂(2)]},

Ξ̂ =




N

N (1)N (2)
Σ̂11

N

N (1)N (2)
Σ̂12

N

N (1)N (2)
Σ̂21 Ĉov[µ̂

(1)
2 ] + Ĉov[µ̂

(2)
2 ]




and

Ĉov[µ̂
(1)
2 ] + Ĉov[µ̂

(2)
2 ]

=
2∑

i=1

{
1

N
(i)
1

(
Σ̂22 −

N
(i)
2

N (i)
Σ̂21Σ̂

−1
11 Σ̂12

)
+

N
(i)
2 p1

N (i)N
(i)
1 (N

(i)
1 − p1 − 2)

Σ̂22·1

}
.

For details of the MLEs, see [4]. T 2
Pm is asymptotically distributed as a χ2

distribution with p− 1 degrees of freedom when N
(i)
1 s are large.

The T 2-type statistic under HL2 can be written as

T 2
Lm = (µ̂(1) − µ̂(2))′1p{1

′

pΞ̂1p}
−11′

p(µ̂
(1) − µ̂(2)).

T 2
Lm is asymptotically distributed as a χ2 distribution with 1 degree of freedom

when N
(i)
1 s are large.

When we consider the case underHF2 , we can join the two samples and regard
it as a one-sample problem. The T 2-type statistic under HF2 can be written as

T 2
Fm = (Cµ̂)′{CĈov[µ̂]C ′}−1(Cµ̂),
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where

µ̂ =

(
µ̂1

µ̂2

)
=

(
x1T

x2F − Σ̂21Σ̂
−1
11 (x1F − x1T )

)
,

Ĉov[µ̂] =




1

N
Σ̂11

1

N
Σ̂12

1

N
Σ̂21 Ĉov[µ̂2]


 ,

Ĉov[µ̂2] =
1

N1

(
Σ̂22 −

N2

N
Σ̂21Σ̂

−1
11 Σ̂12

)
+

N2p1

NN1(N1 − p1 − 2)
Σ̂22·1

and

x1T =
1

N

2∑

i=1

N(i)∑

j=1

x
(i)
1j , x1F =

1

N1

2∑

i=1

N
(i)
1∑

j=1

x
(i)
1j , x2F =

1

N1

2∑

i=1

N
(i)
1∑

j=1

x
(i)
2j ,

N2 =

k∑

i=1

N
(i)
2 .

These estimators are extended for the MLEs obtained by [4]. T 2
Fm is asymptot-

ically distributed as a χ2 distribution with p − 1 degrees of freedom when N
(i)
1 s

are large.

However, the upper percentiles of the χ2 distribution are not a good approxi-
mation for the T 2-type statistic when the sample size is small, and it is difficult to
obtain the exact upper percentiles of these statistics when the data have missing
observations. Hence, we give the approximate upper percentiles based on the
idea of [10] where it is assumed that the true upper percentiles exist between
T 2
p−1,N1−p,α and T 2

p−1,N−p,α. F ∗

1,α can give the approximate upper percentiles of
TPm and TFm.

F ∗

1,α = T 2
p−1,N1−p,α −

Np−N2p2

Np

(
T 2
p−1,N1−p,α − T 2

p−1,N−p,α

)
,

where

T 2
p−1,N−p,α =

(N − 2)(p − 1)

N − p
Fp−1,N−p,α,

T 2
p−1,N1−p,α =

(N1 − 2)(p − 1)

N1 − p
Fp−1,N1−p,α,
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and Fp,q,α is the upper 100α percentile of F distribution with p and q degrees of
freedom. Further, F ∗

2,α can give the approximate upper percentiles of TLm.

F ∗

2,α = T 2
1,N1−2,α −

Np−N2p2

Np
(T 2

1,N1−2,α − T 2
1,N−2,α),

where

T 2
1,N−2,α = F1,N−2,α,

T 2
1,N1−2,α = F1,N1−2,α.

5. Parallelism hypothesis for several groups with two-step

monotone missing data

We have two-step monotone missing data when k ≥ 3, as in Section 3. First, we
transform the observation vectors using C. Then we have

u
(i)
j = Cx

(i)
j ∼ Np−1(θ

(i),Γ),

u
(i)
1j = C1x

(i)
1j ∼ Np1−1(θ

(i)
1 ,Γ11),

where θ(i) = Cµ(i), Γ = CΣC ′, and C1 is a (p1 − 1)× p1 matrix of rank (p1 − 1)
such that C11p1 = 0 and 1p1 is a p1-vector of ones.

θ(i) =

(
θ
(i)
1

θ
(i)
2

)
, Γ =

(
Γ11 Γ12

Γ21 Γ22

)
.

θ(i) and Γ are partitioned according to the blocks of the data set. It should be
noted that θ1 : (p1 − 1) × 1, θ2 : p2 × 1, Γ11 : (p1 − 1) × (p1 − 1), Γ12 = Γ′

21 :
(p1 − 1) × p2, and Γ22 : p2 × p2. To construct a likelihood ratio, we obtain the
MLEs of θ(i) and Γ in general and under the hypothesis HPk

. These can be
obtained in the same way as earlier:

θ̂
(i)

=

(
θ̂
(i)

1

θ̂
(i)

2

)
=

(
u
(i)
1T

u
(i)
2F − Φ̂21(u

(i)
1F − u

(i)
1T )

)
,

Γ̂ =

(
Γ̂11 Γ̂12

Γ̂21 Γ̂22

)
=

(
Φ̂11 Φ̂11Φ̂12

Φ̂21Φ̂11 Φ̂22 + Φ̂21Φ̂11Φ̂12

)
,
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where

u
(i)
1T =

1

N (i)

N(i)∑

j=1

u
(i)
1j , u

(i)
1F =

1

N
(i)
1

N
(i)
1∑

j=1

u
(i)
1j , u

(i)
2F =

1

N
(i)
1

N
(i)
1∑

j=1

u
(i)
2j ,

and

Φ̂11 =
1

N

k∑

i=1

N(i)∑

j=1

(u
(i)
1j − u

(i)
1T )(u

(i)
1j − u

(i)
1T )

′,

Φ̂21 =




k∑

i=1

N
(i)
1∑

j=1

y
(i)
2j y

′(i)
1j





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k∑

i=1

N
(i)
1∑

j=1

y
(i)
1j y

′(i)
1j




−1

,

Φ̂22 =
1

N1





k∑

i=1

N
(i)
1∑

j=1

y
(i)
2j y

′(i)
2j

−


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k∑

i=1

N
(i)
1∑
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(i)
2j y

′(i)
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
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
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


−1 
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k∑

i=1

N
(i)
1∑

j=1

y
(i)
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′(i)
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






,

y
(i)
1j = u

(i)
1j − u

(i)
1F , y

(i)
2j = u

(i)
2j − u

(i)
2F .

Similarly, the MLEs of θ and Γ under HPk
are as follows:

θ̃ =

(
θ̃1

θ̃2

)
=

(
u1T

u2F − Φ̃21(u1F − u1T )

)
,

Γ̃ =

(
Γ̃11 Γ̃12

Γ̃21 Γ̃22

)
=

(
Φ̃11 Φ̃11Φ̃12

Φ̃21Φ̃11 Φ̃22 + Φ̃21Φ̃11Φ̃12

)
,

where

u1T =
1

N

k∑

i=1

N(i)∑

j=1

u
(i)
1j , u1F =

1

N1

k∑
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N
(i)
1∑

j=1

u
(i)
1j , u2F =

1

N1

k∑

i=1

N
(i)
1∑

j=1

u
(i)
2j ,

and

Φ̃11 =
1

N

k∑

i=1

N(i)∑

j=1

(u
(i)
1j − u1T )(u

(i)
1j − u1T )

′,
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Φ̃21 =




k∑

i=1

N(i)∑

j=1

w
(i)
2jw

′(i)
1j






k∑

i=1

N(i)∑

j=1

w
(i)
1jw

′(i)
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

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,
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
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
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w
(i)
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(i)
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2j − u2F .

We have a likelihood ratio for the parallelism hypothesis as follows:

Λm =
k∏

i=1

L(θ̃
(i)

1 , θ̃
(i)

2 , Γ̃)

L(θ̂
(i)

1 , θ̂
(i)

2 , Γ̂)
=

|Γ̂∗|
1
2
N1

|Γ̃∗|
1
2
N1

×
|Γ̂11|

1
2
N2

|Γ̃11|
1
2
N2

,

where

Γ̂∗ =

(
Γ̂11 O

O Γ̂22 − Γ̂21Γ̂
−1
11 Γ̂12

)
, Γ̃∗ =

(
Γ̃11 O

O Γ̃22 − Γ̃21Γ̃
−1
11 Γ̃12

)
.

Then the likelihood ratio statistic −2 log Λm is asymptotically distributed as a

χ2 distribution with (p − 1)(k − 1) degrees of freedom as N
(i)
1 ’s tend to infinity.

Hence, we reject HPk
when −2 log Λm > χ2

(p−1)(k−1),α. However, it is difficult to
obtain the modified likelihood ratio statistic directly when the data have missing
observations. As such, much like in the two-sample case, we use ρm that improves
convergence to a χ2 distribution, and put it into the test statistic:

ρm =

{
1

ρc1
−

Np−N2p2

Np

(
1

ρc1
−

1

ρc2

)}
−1

,

where

ρc1 = 1−
1

2N1
(p+ k + 1),

ρc2 = 1−
1

2N
(p + k + 1)

and ρc1 , ρc2 6= 0. Then we reject HPk
when −2ρm log Λm > χ2

(p−1)(k−1),α.
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6. Simulation studies

In this section, we examine the accuracy of the approximations of the proposed
test statistics. The Monte Carlo simulation for the upper percentiles of the T 2-
type statistics and the likelihood ratio test statistic is implemented for selected
values of the parameters. The settings of the parameters α, p (= p1 + p2), and
M (= M1 +M2) for the simulation are as follows:

k = 2, 3, 6,

α = 0.05,

(p1, p2) = (2, 2), (3, 1), (2, 6), (6, 2),

(M1,M2) = (10, 10), (20, 10), (50, 10), (100, 10),

(10, 100), (20, 100), (50, 100), (100, 100),

where Mj = N
(i)
j (j = 1, 2). Further, we compare their type I error rates. As

a numerical experiment, we carry out 1,000,000 replications. It should be noted
that our results may be applicable to the case where the sample size differs for
each population. However, for simplicity, we show the results under the same
sample size.

Tables 1–3 list the percentiles of the T 2-type statistics and the values of F ∗

1

and F ∗

2 . They also list the results for the comparison of the type I error rates
under the T 2-type statistics when the null hypothesis is rejected, using F ∗

1 , F ∗

2 ,
and a χ2 distribution. The T 2-type statistics are closer to the χ2 distribution
when the sample size is large. Comparing the type I error rates, we have that
F ∗

1,α and F ∗

2,α seem to be closer to 0.05 than the percentiles of the χ2 distribution
especially when the sample size is small. The value tends to be closer to 0.05
under the level hypothesis than under the parallelism hypothesis and the flatness
hypothesis.

Tables 4 and 5, which are compare −2 log Λm and −2ρm log Λm, list the per-
centiles and type I error rates using a χ2 distribution. −2 log Λm and −2ρm log Λm

are close to the χ2 distribution when the sample size is large. Furthermore,
−2ρm log Λm is closer to the χ2 distribution than −2 log Λm.

7. Conclusions

We discussed profile analysis when the observations have two-step monotone miss-
ing data. In Section 3, we first derived the MLEs of several groups. In Section 4,
we constructed the T 2-type statistics under the three hypotheses for a two-sample
problem using the MLEs given in Section 3. We gave the likelihood ratio test
statistic under the parallelism hypothesis for several groups in Section 5. Finally,
we performed a Monte Carlo simulation for the type I error rates in Section 6.
As a result, we confirmed that F ∗

1,α and F ∗

2,α are better approximations than

the upper percentiles of a χ2 distribution. We confirm that both −2 log Λm and
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−2ρm log Λm are closer to the χ2 distribution as the sample size becomes large.
We can also see that −2ρm log Λm is always closer to the χ2 distribution than
−2 log Λm for any sample size. Therefore, we confirm that convergence to the
asymptotic χ2 distribution is improved by inputting ρm into the likelihood ratio
statistic −2 log Λm.

Table 1. Upper percentiles and type I error rates of T 2
Pm and F ∗

1 values.

percentile type I error rate

p p1 p2 M M1 M2 T 2
Pm F ∗

1 T 2
Pm χ2

4 2 2 20 10 10 9.671 9.540 0.052 0.089
χ2
3,0.05 = 7.815 30 20 10 8.750 8.684 0.051 0.071

60 50 10 8.212 8.194 0.050 0.059
110 100 10 8.001 8.014 0.050 0.054
110 10 100 9.176 9.339 0.047 0.078
120 20 100 7.996 8.446 0.050 0.064
150 50 100 8.075 8.061 0.050 0.056
200 100 100 7.974 7.950 0.051 0.054

3 1 20 10 10 9.198 9.308 0.048 0.080
30 20 10 8.664 8.644 0.050 0.069
60 50 10 8.182 8.191 0.050 0.058
110 100 10 8.020 8.013 0.050 0.055
110 10 100 8.261 8.676 0.042 0.060
120 20 100 8.137 8.221 0.048 0.057
150 50 100 7.987 8.010 0.050 0.054
200 100 100 7.953 7.936 0.050 0.053

8 6 2 20 10 10 18.184 20.645 0.030 0.120
χ2
7,0.05 = 14.067 30 20 10 17.200 17.288 0.049 0.108

60 50 10 15.465 15.444 0.050 0.076
110 100 10 14.787 14.779 0.050 0.063
110 10 100 14.195 18.371 0.014 0.052
120 20 100 15.011 15.655 0.041 0.067
150 50 100 14.774 14.685 0.049 0.061
200 100 100 14.498 14.499 0.050 0.058

2 6 20 10 10 26.607 23.487 0.073 0.251
30 20 10 18.428 17.640 0.060 0.131
60 50 10 15.624 15.470 0.052 0.078
110 100 10 14.811 14.783 0.050 0.063
110 10 100 25.615 25.559 0.050 0.234
120 20 100 17.715 17.534 0.052 0.117
150 50 100 15.306 15.160 0.052 0.072
200 100 100 14.695 14.600 0.052 0.061
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Table 2. Upper percentiles and type I error rates of T 2
Lm and F ∗

2 values.

percentile type I error rate

p p1 p2 M M1 M2 T 2
Lm F ∗

1 T 2
Lm χ2

4 2 2 20 10 10 4.048 7.322 7.322 0.048
χ2
1,0.05 = 3.841 30 20 10 3.999 4.014 7.094 0.055

60 50 10 3.925 3.922 6.857 0.050
110 100 10 3.880 3.885 6.733 0.050
110 10 100 3.990 4.005 7.399 0.050
120 20 100 3.950 3.926 6.973 0.051
150 50 100 3.883 3.884 6.749 0.050
200 100 100 3.871 3.868 6.686 0.050

3 1 20 10 10 4.175 4.177 7.699 0.050
30 20 10 4.023 4.022 7.178 0.050
60 50 10 3.916 3.923 6.845 0.050
110 100 10 3.880 3.885 6.745 0.050
110 10 100 4.218 4.125 7.923 0.052
120 20 100 4.025 3.971 7.198 0.051
150 50 100 3.898 3.895 6.802 0.050
200 100 100 3.879 3.871 6.728 0.050

8 6 2 20 10 10 3.433 4.138 6.242 0.032
χ2
1,0.05 = 3.841 30 20 10 3.976 4.014 7.075 0.049

60 50 10 3.928 3.922 6.847 0.050
110 100 10 3.886 3.885 6.729 0.050
110 10 100 2.840 4.005 5.510 0.024
120 20 100 3.859 3.926 6.863 0.048
150 50 100 3.890 3.884 6.760 0.050
200 100 100 3.867 3.868 6.698 0.050

2 6 20 10 10 4.239 4.217 7.860 0.051
30 20 10 4.065 4.030 7.258 0.051
60 50 10 3.942 3.924 6.893 0.051
110 100 10 3.884 3.885 6.758 0.050
110 10 100 4.264 4.245 8.113 0.050
120 20 100 4.070 4.017 7.291 0.051
150 50 100 3.917 3.905 6.877 0.050
200 100 100 3.865 3.874 6.738 0.050
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Table 3. Upper percentiles and type I error rates of T 2
Fm and F ∗

1 values.

percentile type I error rate

p p1 p2 M M1 M2 T 2
Fm F ∗

1 T 2
Fm χ2

4 2 2 20 10 10 10.699 9.540 0.069 0.112
χ2
3,0.05 = 7.815 30 20 10 9.072 8.684 0.057 0.078

60 50 10 8.301 8.194 0.052 0.061
110 100 10 8.065 8.014 0.051 0.056
110 10 100 10.672 9.339 0.072 0.112
120 20 100 8.898 8.446 0.059 0.074
150 50 100 8.212 8.061 0.053 0.059
200 100 100 8.017 7.950 0.051 0.055

3 1 20 10 10 10.071 9.308 0.100 0.100
30 20 10 8.913 8.644 0.055 0.075
60 50 10 8.294 8.191 0.052 0.061
110 100 10 8.060 8.013 0.051 0.055
110 10 100 9.414 8.676 0.085 0.085
120 20 100 8.479 8.221 0.055 0.065
150 50 100 8.106 8.010 0.052 0.057
200 100 100 7.980 7.936 0.051 0.054

8 6 2 20 10 10 24.303 20.645 0.084 0.230
χ2
7,0.05 = 14.067 30 20 10 18.111 17.288 0.061 0.127

60 50 10 15.663 15.444 0.053 0.080
110 100 10 14.838 14.779 0.051 0.064
110 10 100 21.011 18.371 0.077 0.168
120 20 100 16.274 15.655 0.059 0.091
150 50 100 14.982 14.774 0.053 0.067
200 100 100 14.606 14.499 0.052 0.060

2 6 20 10 10 30.222 23.487 0.103 0.314
30 20 10 30.222 19.236 0.070 0.148
60 50 10 15.834 15.470 0.055 0.083
110 100 10 14.904 14.783 0.052 0.065
110 10 100 30.757 25.559 0.086 0.324
120 20 100 18.966 17.534 0.068 0.144
150 50 100 15.630 15.160 0.057 0.079
200 100 100 14.842 14.600 0.054 0.064
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Table 4. Upper percentiles and type I error rates using −2 log Λm

and −2ρm log Λmvalues for k = 3.

percentile type I error rate

p p1 p2 M M1 M2 LRT modified LRT LRT modified LRT

4 2 2 20 10 10 14.314 13.108 0.086 0.060
χ2
6,0.05 = 12.592 30 20 10 13.437 12.789 0.066 0.054

60 50 10 12.923 12.631 0.056 0.051
110 100 10 12.771 12.615 0.053 0.050
110 10 100 14.132 13.126 0.082 0.060
120 20 100 13.306 12.840 0.064 0.055
150 50 100 12.894 12.702 0.056 0.052
200 100 100 12.726 12.620 0.053 0.051

3 1 20 10 10 13.961 12.906 0.078 0.056
30 20 10 13.287 12.671 0.064 0.051
60 50 10 12.893 12.604 0.056 0.050
110 100 10 12.757 12.602 0.053 0.050
110 10 100 13.544 12.967 0.069 0.057
120 20 100 13.051 12.747 0.059 0.053
150 50 100 12.782 12.630 0.054 0.051
200 100 100 12.718 12.623 0.052 0.051

8 6 2 20 10 10 28.011 24.822 0.128 0.067
χ2
14,0.05 = 23.685 30 20 10 25.836 24.039 0.084 0.055

60 50 10 24.586 23.760 0.064 0.051
110 100 10 24.166 23.726 0.057 0.051
110 10 100 26.788 25.009 0.102 0.070
120 20 100 25.089 24.204 0.071 0.057
150 50 100 24.285 23.851 0.059 0.052
200 100 100 24.033 23.762 0.055 0.051

2 6 20 10 10 29.686 25.521 0.168 0.079
30 20 10 26.312 24.333 0.094 0.059
60 50 10 24.669 23.826 0.064 0.052
110 100 10 24.201 23.758 0.057 0.051
110 10 100 29.538 25.110 0.164 0.072
120 20 100 26.219 24.371 0.092 0.060
150 50 100 24.613 23.952 0.064 0.054
200 100 100 24.165 23.832 0.057 0.052
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Table 5. Upper percentiles and type I error rates using −2 log Λm

and −2ρm log Λmvalues for k = 6.

percentile type I error rate

p p1 p2 M M1 M2 LRT modified LRT LRT modified LRT

4 2 2 20 10 10 27.213 25.642 0.085 0.059
χ2
15,0.05 = 24.996 30 20 10 26.079 25.215 0.066 0.053

60 50 10 25.462 25.066 0.057 0.051
110 100 10 25.243 25.031 0.053 0.050
110 10 100 27.213 25.642 0.085 0.059
120 20 100 25.918 25.298 0.063 0.054
150 50 100 25.395 25.135 0.055 0.052
200 100 100 25.189 25.044 0.053 0.051

3 1 20 10 10 26.759 25.372 0.077 0.055
30 20 10 25.951 25.125 0.064 0.052
60 50 10 25.407 25.016 0.056 0.050
110 100 10 25.211 25.000 0.053 0.050
110 10 100 26.158 25.410 0.067 0.056
120 20 100 25.580 25.175 0.058 0.052
150 50 100 25.301 25.094 0.054 0.051
200 100 100 25.157 25.028 0.052 0.050

8 6 2 20 10 10 54.759 50.882 0.114 0.061
χ2
35,0.05 = 49.802 30 20 10 52.432 50.154 0.080 0.053

60 50 10 50.959 49.888 0.062 0.051
110 100 10 50.382 49.808 0.056 0.050
110 10 100 53.064 50.957 0.088 0.062
120 20 100 51.423 50.305 0.068 0.055
150 50 100 50.581 49.802 0.058 0.052
200 100 100 50.248 49.895 0.054 0.051

2 6 20 10 10 56.757 51.821 0.148 0.072
30 20 10 53.077 50.585 0.088 0.058
60 50 10 51.083 49.992 0.064 0.052
110 100 10 50.431 49.854 0.056 0.051
110 10 100 56.585 51.391 0.145 0.067
120 20 100 52.916 50.608 0.086 0.058
150 50 100 51.004 50.150 0.062 0.053
200 100 100 50.427 49.993 0.056 0.052
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