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Abstract

A generalized form of the usual Lognormal distribution, denoted with
LN γ , is introduced through the γ-order Normal distribution Nγ , with its
p.d.f. defined into (0,+∞). The study of the c.d.f. of LN γ is focused on
a heuristic method that provides global approximations with two anchor
points, at zero and at infinity. Also evaluations are provided while certain
bounds are obtained.
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1. Introduction

The p-variate γ-order Normal distribution, denoted by N p
γ (µ,Σ), is an multi-

variate exponential-power generalization of the usual Normal distribution, con-
structed to play the role of the usual Normal distribution for the generalized
Fisher’s entropy type information measure, see [7] for details. Recall that the den-
sity function fX of a γ-order normally distributed random variableX ∼ N p

γ (µ,Σ),
with location vector µ ∈ R

1×p, positive definite scale matrix Σ ∈ R
p×p and shape

parameter γ ∈ R \ [0, 1] is given by, [7],

(1) fX(x) = fX(x; µ,Σ, γ) := Cp
γ |detΣ|−

1
2 exp

{

−γ−1
γ Qθ(x)

γ
2(γ−1)

}

, x ∈ R
1×p,
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where the quadratic form Qθ(x) = (x−µ)TΣ−1(x−µ), θ = (µ,Σ) while Cp
γ being

the normalizing factor

(2) Cp
γ := π−p/2Γ(

p
2 + 1)

Γ(pγ−1
γ )

(γ−1
γ )p

γ−1
γ

−1.

The location parameter µ ∈ R
1×p is in fact the mean vector of Xγ , i.e. µ =

E(X). Notice also that the second-ordered Normal is the known multivariate
normal distribution, i.e., N p

2 (µ,Σ) = N p(µ,Σ). Moreover, for γ → 1+,±∞ or
γ → ±∞ the N 1

γ (µ, σ
2) converges, respectively, to the Uniform U(µ − σ, µ + σ)

and the Laplace L(µ, σ) distribution, while for γ → 0−, N 1
γ (µ, σ

2) converges to
the degenerate Dirac D(µ) distribution with pole at µ ∈ R. Therefore, the shape
parameter γ can be extended to be γ ∈ R ∪ {±∞} \ [0, 1] and thus the γ-order
Normal family of distributions include four significant type of distributions such
as the Uniform, Normal, Laplace and Dirac. For a comprehensive study of the
Nγ family see [9, 8].

Now, the Lognormal distribution has been widely applied in many different
aspects of life sciences, including Biology, Ecology, Geology and Meteorology
as well as in Economics, Finance and Risk Analysis, see [4]. Also, it plays an
important role in Astrophysics and Cosmology, see [2, 3] among others.

In principle, the Lognormal distribution is defined as the distribution of a ran-
dom variable whose logarithm is normally distributed, and usually is formulated
with two parameters. Furthermore, Log-Uniform and Log-Laplace distributions
can be similarly defined with applications in Finance, see [11]. Especially, the
power-tail phenomenon of the Log-Laplace distributions [10] attracts attention
quite often in Environmental Sciences, Physics, Economics.

The Lognormal distribution can be easily extended to the γ-order Lognormal
distribution, denoted here by LN γ(µ, σ), in the sense that if X ∼ N 1

γ (µ, σ
2) then

Y = eX will follow the LN γ(µ, σ), and the p.d.f. of Xγ is then given by

(3) fY (y) :=
1
yfX(log y) = C1

γσy
−1 exp

{

−γ−1
γ | log y−µ

σ |
γ

γ−1

}

, y ∈ R
∗
+,

while log Y ∼ Nγ(µ, σ
2).

Notice that, for γ = 2, LN 2(µ, σ) is reduced to the well known Lognormal
distribution. Moreover, for the extended shape parameter γ ∈ R ∪ {±∞} \
[0, 1] the first-ordered LN 1(µ, σ) coincides with the Log-Uniform distribution
LU(eµ−σ , eµ+σ), while the infinity-ordered LN±∞(µ, σ) coincides with the known
(symmetric) Log-Laplace distribution LL(eµ, 1/σ, 1σ), see [13].

In this paper the cumulative distribution function (c.d.f) of the γ-order log-
normally distributed eX ∼ LN γ(µ, σ), with X ∼ Nγ(µ, σ

2), is derived, uniformly
approximated and bounded.
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2. The c.d.f. of the LN γ distribution

The generalized error function that briefly discussed here, plays an important
role to the development of c.d.f. of the LN γ . The generalized error function,
denoted by Erfa, [6], is defined as

(4) Erfa(x) :=
Γ(a+1)√

π

x
∫

0

e−tadt, x ∈ R, a ≥ 0,

while the generalized complementary error function Erfca = 1−Erfa, a ≥ 0. The
generalized error function, can be expressed (by changing to variable ta) through
the lower incomplete gamma function γ(a, x) or the upper (complementary) in-
complete gamma function Γ(a, x) = Γ(a)− γ(a, x), as

(5) Erfa(x) =
Γ(a)√

π
γ
(

1
a , x

a
)

= Γ(a)√
π

[

Γ
(

1
a

)

− Γ
(

1
a , x

a
)]

, x ∈ R, a ≥ 0,

see [6]. Moreover, adopting the series expansion form of the lower incomplete
gamma function,

(6) γ(a, x) :=

x
∫

0

ta−1e−tdt =

∞
∑

k=0

(−1)k

k!(a+k)x
a+k, x, a ∈ R+,

a series expansion form of the generalized error function can be extracted, i.e.

(7) Erfa(x) =
Γ(a+1)√

π

∞
∑

k=0

(−1)k

k!(ka+1)x
ka+1, x, a ∈ R+.

Notice that, Erf2 is the known error function erf, i.e., Erf2(x) = erf(x), while
Erf0 is the function of a straight line through the origin with slope (e

√
π)−1. Ap-

plying a = 2, the known incomplete gamma function identities such as γ(1/2, x) =√
π erf

√
x, and Γ(1/2, x) =

√
π(1 − erf

√
x) =

√
π erfc

√
x, x ≥ 0 is obtained.

Moreover, while Erfa 0 = 0 for all a ∈ R+. and

lim
x→±∞

Erfa x = ± 1√
π
Γ(a) Γ

(

1
a

)

, a ∈ R+,

as γ(a, x) → Γ(a) when x → +∞.
For the evaluation of the cumulative distribution function of the generalized

Lognormal distribution, we state and prove the following.

Theorem 1. The c.d.f. FXγ of a γ-order Lognormal random variable Xγ ∼
LN γ(µ, σ) is given by

FXγ (x) = 1
2 +

√
π

2Γ(γ−1
γ ) Γ( γ

γ−1 )
Erf γ

γ−1

{

(γ−1
γ )

γ−1
γ log x−µ

σ

}

(8)

= 1− 1

2Γ(γ−1
γ )

Γ
(

γ−1
γ , γ−1

γ ( log x−µ
σ )

γ
γ−1

)

, x ∈ R
∗
+.(9)



102 T.L. Toulias

Proof. From density function fXγ , as in (3), we have

FXγ (x) =

x
∫

0

fXγ(t)dt = σ−1C1
γ

x
∫

0

t−1 exp

{

−γ−1
γ

∣

∣

∣

log t−µ
σ

∣

∣

∣

γ

γ−1

}

dt.

Applying the transformation w = log t−µ
σ , t > 0, the above c.d.f. is reduced to

(10) FXγ (x) = C1
γ

log x−µ

σ
∫

−∞

exp
{

−γ−1
γ |w|

γ

γ−1

}

dw = ΦZγ(
log x−µ

σ ),

where ΦZγ is the c.d.f. of the standardized γ-order Normal distribution Zγ =
1
σ (logXγ − µ) ∼ Nγ(0, 1). Moreover, ΦZγ can be expressed in terms of the
generalized error function. In particular

ΦZγ (z) = C1
γ

z
∫

−∞

exp
{

−γ−1
γ |w|

γ

γ−1

}

dw = ΦZγ(0) +C1
γ

z
∫

0

exp
{

−γ−1
γ |w|

γ

γ−1

}

dw,

and as fZγ is a symmetric density function around zero, we have

ΦZγ (z) =
1
2+C1

γ

z
∫

0

exp
{

−γ−1
γ |w|

γ
γ−1

}

dw = 1
2+C1

γ

z
∫

0

exp

{

−
∣

∣

∣
(γ−1

γ )
γ−1
γ w

∣

∣

∣

γ

γ−1

}

dw,

and thus

(11) ΦZγ(z) =
1
2 + C1

γ

(

γ
γ−1

)
γ−1
γ

(γ−1
γ

)
γ−1
γ z

∫

0

exp
{

−u
γ

γ−1

}

du.

Substituting the normalizing factor, as in (2), and using (4) we obtain

(12) ΦZγ(z) =
1
2 +

√
π

2Γ(γ−1
γ + 1)Γ(2γ−1

γ−1 )
Erf γ

γ−1

{

(γ−1
γ )

γ−1
γ z

}

, z ∈ R,

and finally, through (10), we derive (8), which forms (9) through (5).

Notice that the (non log-scaled) location parameter eµ is in fact the median for
all generalized lognormally distributed Xγ ∼ LN γ(µ, σ). Specifically, through
(8) and the fact that Erfa 0 = 0, a ∈ R

∗
+, it holds that MedXγ = F−1

Xγ
(1/2) = eµ,

i.e., MedXγ is a γ-invariant location measure.
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It is essential for numeric calculations to express (8) considering positive argu-
ments for Erf. Indeed, through (11), we obtain

(13) FXγ (x) =
1
2 +

sgn(log x− µ)
√
π

2Γ(γ−1
γ ) Γ( γ

γ−1 )
Erf γ

γ−1

{

(γ−1
γ )

γ−1
γ

∣

∣

∣

logx−µ
σ

∣

∣

∣

}

,

while applying (5) into (13) we obtain

(14) FXγ (x) =
1+sgn(log x−µ)

2 − sgn(log x− µ)

2Γ(γ−1
γ )

Γ

(

γ−1
γ , γ−1

γ

∣

∣

∣

log x−µ
σ

∣

∣

∣

γ

γ−1

)

.

Letting Zγ := logXγ ∼ Nγ(µ, σ
2) where Xγ ∼ LN γ(µ, σ), we have, through (10),

that

FZγ (z) = FlogXγ
(z) = FXγ (e

z).

Therefore, through Theorem 1 the following holds.

Corollary 2. The c.d.f. FZγ of a γ-order normally distributed random variable

Zγ ∼ Nγ(µ, σ
2) is given by

FZγ (z) = 1
2 +

√
π

2Γ(γ−1
γ ) Γ( γ

γ−1 )
Erf γ

γ−1

{

(γ−1
γ )

γ−1
γ z−µ

σ

}

(15)

= 1− 1

2Γ(γ−1
γ )

Γ
(

γ−1
γ , γ−1

γ (z−µ
σ )

γ
γ−1

)

, x ∈ R,(16)

while considering positive arguments for Erf and Γ(·, ·),

FZγ (z) = 1
2 +

sgn(x− µ)
√
π

2Γ(γ−1
γ ) Γ( γ

γ−1 )
Erf γ

γ−1

{

(γ−1
γ )

γ−1
γ

∣

∣

z−µ
σ

∣

∣

}

(17)

= 1+sgn(x−µ)
2 − sgn(x− µ)

2Γ(γ−1
γ )

Γ
(

γ−1
γ , γ−1

γ

∣

∣

z−µ
σ

∣

∣

γ

γ−1

)

, x ∈ R.(18)
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Corollary 3. The c.d.f. FX of X ∼ LN γ(µ, σ) can be expressed in the series

expansion form

(19) FX(x) = 1
2 +

(γ−1
γ )

γ−1
γ

2
γ Γ(

γ−1
γ )

( log x−µ
σ )

∞
∑

k=0

(

1−γ
γ | log x−µ

σ |
γ

γ−1

)k

k![(k + 1)γ − 1]
, x ∈ R

∗
+.

Proof. Substituting the series expansion form of (7) into (13) we get

FX(x) = 1
2 + (γ − 1)C1

γ

∞
∑

k=0

(−1)k

k! · (γ−1
γ

)k

γ(k+1)−1

∣

∣

∣

log x−µ
σ

∣

∣

∣

kγ
γ−1

+1
, x ∈ R

∗
+,

and expressing the infinite series using the integer powers k, and the fact that
sgn(x)x = |x|, x ∈ R, we finally derive the series expansions as in (19) respec-
tively.

3. Global approximation for the LN γ

For the c.d.f. evaluation of a Xγ ∼ LN γ(µ, σ) or logXγ ∼ Nγ(µ, σ
2) over all

defined parameters γ ∈ R \ [1, 0], a heuristic method is developed that allow us
to construct uniform approximations of these functions. This can be achieved
through a generalized Hermite-Padé approximation applied on the generalized
error function Erfγ/(γ−1)(x) at x = 0 and in infinity.

In particular, we need a finite approximation f(x) of Erfγ/(γ−1)(x) at x = 0
(polynomial approx.) and at x = +∞ (asymptotic approx.), i.e.

(20) f(x) =

m−1
∑

k=0

akx
k +O(xm) ≈

n−1
∑

k=0

kkx
−n +O(x−n), x ∈ (0,+∞).

Then, we construct a uniform approximation of the rational form

(21) f(x) ≈ p0 + p1x+ x2

q0 + q1x+ x2
, x ∈ (0,+∞),

which is similar to the Hermite-Padé interpolation problem with two anchor
points, one for the zero point and the other at infinity, see [5] and [12]. The
coefficients pi’s and qi’s i = 0, 1 are obtained through an inhomogeneous lin-
ear system derived from (20). Therefore, the FX and FY cumulative functions
can be uniformly approximated through rational expressions as in (21). Several
examples are given and evaluations are provided.
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The upper incomplete gamma function admits the following asymptotic series
expansion

(22) Γ(a, x) =
xa−1

ex

∞
∑

k=0

Γ(a)

Γ(a− k)
x−k :=

xa−1

ex
ga(x), x, a ∈ R

∗
+,

while its series expansion around x = 0 is given, through (6), by

(23) Γ(a, x) = Γ(a)− γ(a, x) = Γ(a)−
∞
∑

k=0

(−1)k

k!(a+ k)
xa+k, x, a ∈ R+.

Therefore, the asymptotic series ga(x), as in (22), can be expressed as a series
expansion around x = 0 of the form

(24) ga(x) = x1−aex Γ(a)−Ga(x), x, a ∈ R+,

where

Ga(x) := ex
∞
∑

k=0

(−1)k

k!(a+ k)
xk+1, x, a ∈ R+,

or, using the exponential series expansion ex = 1 + x+ 1
2!x

2 + 1
3!x

3 + · · · ,

(25) Ga(x) =
∞
∑

m=1

Ga;mxm
{

= −ga(x) + Γ(a)x1−aex
}

, x, a ∈ R+,

with coefficients Ga;m being

(26) Ga;m =
m−1
∑

k=0

(−1)k

k!(a+ k)(m− k)!
, a ∈ R+, m ∈ N

∗.

A uniform approximation of Γ(a, x) can be obtained through a uniform approx-
imation of the asymptotic series expansion ga(x) which is also admits a series
expansion at x = 0 due to (24). We can then apply the global Padé approxima-
tion method for ga(x). In particular, ga(x) admits a rational approximation of
the form

(27) ga(x) ≈
p0 + p1x+ x2

q0 + q1x+ x2
, x, a ∈ R+.

Utilizing the series expansion form of ga(x) as in (24), (27) implies

p0+p1x+x2 ≈ Γ(a)
ex

xa−1
(q0+ q1x+x2)−Ga;1q0x− (Ga;1q1+Ga;2q0)x

2−Ga;1x
3,
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and thus

p0 = 0,(28)

p1 = −q0Ga;1,(29)

1 = −q1Ga;1 − q0Ga;2.(30)

Letting ga(x) :=
∑∞

k=0 ga;kx
−k, (27), through (24), (27) also implies

1 +
p1
x

+
p0
x2

≈
(

1 +
ga;1
x

+
ga;2
x2

)(

1 +
q1
x

+
q0
x2

)

, x ∈ R
∗
+,

hence

(31) p1 = q1 + ga;1.

Applying (29) to (31) we get q1 = −q0Ga;1 − ga;1 and hence, through (30), we
obtain

(32) q0 =
ga;1Ga;1 − 1

Ga;2 −G2
a;1

.

Moreover, (32) through (29) yields

(33) p1 =
Ga;1 − ga;1G

2
a;1

Ga;2 −G2
a;1

,

while (33) through (31) yields

(34) q1 =
Ga;1 − ga;1Ga;2

Ga;2 −G2
a;1

.

Considering now (22) and (26), we evaluate

ga;1 = Γ(a)/Γ(a− 1) = a− 1, a ∈ R+,

Ga;1 = 1/a, a ∈ R+, and

Ga;2 =
1
a − 1

a+1 = 1
a(a+1) , a ∈ R+,

and substituting the above coefficients to (32), (34) and (33) we obtain respec-
tively

q0 = a(a+ 1), q1 = −2a and p1 = −(a+ 1),
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and hence ga, as in (27), adopts a global approximation of the form

(35) ga(x) ≈
x2 − (a+ 1)x

x2 − 2ax+ a(a+ 1)
, x, a ∈ R+.

The above methodology is formed into the following Theorem.

Corollary 4. The c.d.f. FXγ of the generalized lognormally distributed Xγ ∼
LN γ(µ, σ) admits a uniform approximation of the form

FXγ (x) ≈ 1
2 + 1

2 sgn(log x− µ)−
sgn(log x− µ)(γ−1

γ )
γ−1
γ

2Γ(γ−1
γ + 1)

e
1−γ

γ
k(x)

×
k(x)− 2γ−1

γ

k2(x)− 2( γ
γ−1 )

2k(x) + γ3(2γ−1)
(γ−1)4

, x ∈ R+,(36)

where k(x) = | log x−µ
σ |γ/(γ−1), x ∈ R+.

Proof. From ga as in (22) and the the fact that Γ(a, x) = Γ(a)− γ(a, x), x, a ∈
R+, we have

ga(x) =
ex

xa−1
[Γ(a, x)− γ(a, x)], x, a ∈ R+,

while substituting the lower incomplete gamma function from the above relation
to (5), we readily get

(37) Erfa(x) = π−1/2 Γ(a) Γ(1/a) − Γ(a)√
πxa−1exa g1/a(x

a), x, a ∈ R+,

and therefore, through (35), we obtain

(38) Erfa(x) ≈ π−1/2 Γ(a) Γ( 1a)− π−1/2 Γ(a)xe−xa xa − a− 1

x2a − 2axa + a(a+ 1)
.

Applying the uniform approximation of the generalized error function as in (38)
into (13) we obtain (36).

Table 1 provides the probability values FXγ (x) = Pr{Xγ ≤ x} for x = 0.5, 2, 3, 4, 5
for various Xγ ∼ LN γ(0, 1). Notice that FXγ (1) = 1/2 for all γ values due to
the fact that 1 = eµ|µ=0 = MedXγ , i.e., the point x = 1 coincides with the
γ-invariant median of the LN γ(0, 1) family. Moreover, the last two columns pro-
vide the 1st and 3rd quartile points QXγ (1/4) and QXγ (3/4) of Xγ , i.e. Pr{Xγ ≤
QXγ (k/4)} = k/4, k = 1, 3, for various γ values. These quartiles evaluated using
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the quantile function of Xγ ,

QXγ (P ) := inf
{

x ∈ R+| FXγ (x) ≥ P
}

= F−1
Xγ

(P )

= exp

{

sgn(2P − 1)σ
[

γ
γ−1 Γ

−1
(

γ−1
γ , |2P − 1|

)]
γ−1
γ

}

, P ∈ (0, 1),

for P = 1/4, 3/4, that derived through (14). The values of QXγ (P ) were nu-
merically calculated through the roots of the function φ(x) = FXγ (x) − P with
P = 1/4, 3/4.

Table 1. Probability values FXγ (x) for various x ∈ R+ as well as the 1st and
3rd quartile points QXγ (1/4), QXγ (3/4), for certain generalized lognormally dis-
tributed Xγ ∼ LN γ(0, 1).

γ FXγ
(1
2
) FXγ

(2) FXγ
(3) FXγ

(4) FXγ
(5) QXγ

(1
4
) QXγ

(3
4
)

−50 0.2501 0.7499 0.8326 0.8739 0.8987 0.4998 2.0008
−10 0.2505 0.7495 0.8297 0.8698 0.8940 0.4990 2.0038
−5 0.2508 0.7492 0.8264 0.8652 0.8887 0.4982 2.0071
−2 0.2515 0.7485 0.8187 0.8539 0.8756 0.4964 2.0145
−1 0.2521 0.7479 0.8097 0.8408 0.8601 0.4945 2.0223

−1/2 0.2524 0.7476 0.7989 0.8248 0.8410 0.4925 2.0303
−1/10 0.2528 0.7482 0.7757 0.7895 0.7984 0.4986 2.0426

1 0.1534 0.8466 1.0000 1.0000 1.0000 0.6065 1.6487
3/2 0.2381 0.7619 0.8848 0.9437 0.9721 0.5172 1.9334
2 0.2441 0.7559 0.8640 0.9172 0.9462 0.5094 1.9630
3 0.2472 0.7528 0.8505 0.8989 0.9267 0.5049 1.9804
4 0.2481 0.7519 0.8452 0.8917 0.9188 0.5034 1.9867
5 0.2486 0.7514 0.8425 0.8878 0.9145 0.5025 1.9899
10 0.2494 0.7506 0.8375 0.8810 0.9068 0.5011 1.9954
50 0.2499 0.7501 0.8341 0.8761 0.9013 0.5002 1.9992

±∞ 0.2500 0.7500 0.8333 0.8750 0.9000 0.5000 2.0000

Proposition 5. The c.d.f. of the positive-ordered lognormally distributed Xγ ∼
LN γ>1(µ, σ) admits the following bounds,

(39) B(x; γ−1
γ ) < FXγ (x) < B

(

x;
[

(γ−1
γ )

1
γ Γ(γ−1

γ )
]

γ−1
γ

)

, x ∈ R+,

where, for k ∈ R+,

(40) B(x; k) = 1
2 +

1
2 sgn(log x− µ)

(

1− exp
{

−k| log x−µ
σ |

γ
γ−1

})
γ−1
γ

.

The inverted inequalities hold for the negative-ordered Xγ ∼ LN γ<0(µ, σ).
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Proof. Applying the inequalities in [1], for x ∈ R+,

(41) Γ(1 + 1
a)

[

1− e−u(a)xa
]1/a

<

x
∫

0

e−tadt < Γ(1 + 1
a)

[

1− e−v(a)xa
]1/a

,

where

u(a) =

{

Γ−a(1 + 1
a), 0 < a < 1,

1, a > 1,
and v(a) =

{

1, 0 < a < 1,
Γ−a(1 + 1

a), a > 1,

into the definition of the generalized error function in (4) we obtain, through the
additive identity of the gamma function, that
(42)

1√
π
Γ(a) Γ( 1a)

[

1− e−u(a)xa
]1/a

< Erfa(x) <
1√
π
Γ(a) Γ( 1a)

[

1− e−v(a)xa
]1/a

.

Consider now the generalized lognormally distributed Xγ ∼ LN γ(µ, σ) with γ ∈
R \ [0, 1] and let a = γ

γ−1 . Then, for the positive-ordered Xγ , i.e. for γ > 1, it
is a > 1 while for the negative-ordered Xγ it is 0 < a < 1. Therefore, setting
B(x; ·) as in (40), the bounds (39) for γ > 1 hold true as (42) is applied to (13),
while for γ < 0 the inverted bounds of (39) hold.

Example 6. The c.d.f. of the lognormally distributed X ∼ LN (µ, σ) admits the

following bounds,

FX(x) > 1
2 + 1

2 sgn(log x− µ)

√

1− e−
1
2
( log x−µ

σ
)2 , and

FX(x) < 1
2 + 1

2 sgn(log x− µ)

√

1− e−
2
π
( log x−µ

σ
)2 .
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