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Abstract

Several peculiarities of stochastic dynamic programming problems
where random vectors are observed before the decision is
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1. Introduction

It is assumed for a lot of concepts in the theory of stochastic dynamic
programming that random disturbances are observed after the
decision is made at each stage (for instance, compare Bertsekas [2],
Schneeweiss [16], Dinkelbach [4]). Problems for which this is assumed
we denote as DB models. (DB stands for ”decision before”.) Problems
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where the random disturbances are observed before the decision is made
at each stage we call DA models. (DA stands for ”decision after”.) We
began to study DA models by a stochastic dynamic transportation prob-
lem (compare [8], [9]). Not very much can be found about problems of
DA models. Something is included in the book by Sebastian and Sieber,
[17]. There the situations of incomplete information are described by means
of operators as a starting point for further investigations (compare [17],
2.7 with n = 1). Dreyfus and Law give an example in relation to cer-
tainty equivalence and an example of a stochastic equipment inspection
and replacement model, where some components of the random vector are
observed after the decision is made (in a usual way) but some compo-
nents are observed before (compare [5], p. 189 resp. 137). On the one
hand, DA models belong to the extensive group of stochastic dynamic pro-
gramming problems, but on the other hand DA models show peculiarities.
The complexity of such problems (compare the inspection/replacement prob-
lem by Dreyfus and Law) is one motivation for further considerations
of DA models. We work out several special qualities of DA models in the
first part of the present paper. (It is not complicated to combine DA with
DB models.)

A ”certainty equivalence principle” is formulated and proved in some
cases of DA models with linear dynamics and quadratic criteria in
Section 2.

In Section 3, Markov decision processes, which result from DA models
under appropriate assumptions are investigated. There, the corresponding
decisions are characterized by a ”simple” structure. The transition proba-
bility matrices differ only by two elements from the corresponding ”neigh-
bouring” decisions.

In the second part of the paper we consider Markov decision processes
with ”distance properties” (in a natural way such properties are found in
flow problems), which result from DA models. We give surrogate problems
for the calculation of approximate solutions. These surrogate problems are
based on the distance properties and the DA models.

At the end of the paper (Section 5), the theoretical investigations of the
preceding sections are applied to the above-mentioned stochastic dynamic
transportation problem.
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1.1. The DA model

In the following we use

N ∈ N ∪ {∞} the horizon

t ∈ {1, 2, ..., N} numbers of stages

S state space

s ∈ S states

B disturbance space

w ∈ B random disturbances

A decision space

x ∈ A decisions (resp. controls)

(The questions of measurability are mostly omitted. At the beginning let S
and A be Borel spaces and let the values of w be elements of a Borel space.
Later on we often assume S ⊆ Zn (or Rn) and so on. We use the same
notations for the random vectors and their realizations.)

The above data are written with inferior indices t in order to attach the
date to the stages t.

Further on

Kt : St×Bt×At → R+ stage - cost (respectively - return) functions

Gt : St ×Bt ×At → St+1 transition function

denote (measurable) functions.

Decision spaces At can depend on previous states and disturbances.

Now, we introduce the basic problem of a DA model:

Let DA models be closed-loop optimization problems (i. e. feedback con-
trol, cf. [2], I, p.4 or [12], 2.4): More precisely that means that we postpone
making the decision xt until the last possible moment (time t) when the



8 R. Hildenbrandt

current state st and (in the case of a DA model) the realization of the ran-
dom vector wt will be known. We assume that an initial state s1 ∈ S1 and
an initial realization w1 of the random disturbances are given.

A policy

F = {x1(s1, w1), x2(s2, w2), . . . , xN (sN , wN )}

is to be found so that

E
w2,...,wN

(
N∑

t=1
Kt(st, wt, xt)|s1, w1

)

= K1(s1, w1, x1) + E
w2,...,wN

(
N∑

t=2
Kt(st, wt, xt)|w1, s2

)
→ min

subject to the constraints

st ∈ St, t = 2, · · · , N,

xt ∈ At(st, wt), t = 1, · · · , N,

(dependences At(st, wt) with st = {s1, . . . , st} are thinkable, too)

st+1 = Gt(st, wt, xt), t = 1, . . . , N − 1 (dynamic constraints).

(The objective function always exists as Kt ≥ 0, but it may have the value∞
without any additional assumptions.) We assume that the distribution func-
tions and the densities of the sequence of disturbances
{wt : t = 1, . . . , N} are known and that all (following) conditional expected
values exist.

Remarks. The dependence of At on wt is a peculiarity of DA models. In
DA models more information is known before the decisions are made at each
stage as in the usual DB models, namely xt ∈ At(st,wt).
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Figure 1

Of course, DA models are stochastic dynamic programming problems, too.
When a decision xt is made, then the realizations wt+1, wt+2, · · · of the dis-
turbances at the next stages are not known. And the cost of the next stages
depends on st+1 = Gt(st, wt, xt), too.

The optimal value function for the remaining periods and the functional

Further on, we use Ft = {xt(st, wt), x2(s2, w2), . . . , xN (sN , wN )}, t = 1, ..., N
for any admissible policy F and the symbol wt := (s1, w1, . . . , wt) (an
admissible policy F = {x1(s1, w1), x2(s2, w2), . . . , xN (sN , wN )} means
xt′ ∈ At′(st′ , wt′)∀st′ ∈ St′ ,∀t′ = 1, ..., N).

The optimal value function for the remaining periods t, . . . , N is

(1)

ft(st , wt) = min
Ft

E
wt+1,...,wN

(
N∑

t′=t

Kt′(st′ , wt′ , xt′)|wt

)

= min
Ft

(
Kt(st, wt, xt)+ E

wt+1,...,wN

(
N∑

t′=t+1

Kt′(st′ , wt′ , xt′)|wt

))

for t = 1, ..., N − 1
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and
fN (sN , wN ) = min

FN

KN (sN , wN , xN )

for DA models.
We define

(2) fN+1 ≡ 0.

The functional equation

(3) ft(st, wt) = min
xt∈At(st,wt)

(
Kt(st, wt, xt) + E

wt+1

(ft+1(st+1, wt+1)|wt)
)

t = N, . . . , 1

follows.
If an optimal policy exists, the functional equation can be proved di-

rectly by means of mathematical induction (compare Sebastian and Sieber
[17], the general formula (2.188) and the upper remarks on page 147.):

Proof.

Compare fN (sN , wN ) := min
FN

KN (sN , wn, xN ) for t = N .

Step 1.

(begin with the mathematical induction t = N − 1)

fN−1(sN−1, wN−1)

:= min
FN−1

(
KN−1 (sN−1, wN−1, xN−1) + E

wN

(KN (sN , wN , xN ) | wN−1)
)

(Compare (1) for t = N − 1.)

= min
xN−1∈AN−1(sN−1,wN−1)

xN∈AN (sN ,wN )

(
KN−1(sN−1, wN−1, xN−1)+

E
wN

(KN (sN , wN , xN ) | wN−1)
)
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= min
xN−1∈AN−1(sN−1,wN−1)

{
KN−1(sN−1, wN−1, xN−1)+

min
xN∈AN (sN ,wN )

(
E
wN

(KN (sN , wN , xN ) | wN−1)
)}

.

(There min
xN∈AN (sN ,wN )

. . . means in detail min
xN (wN )∈AN (sN ,wN )

. . .

∀ wN ∈ BN .)

Now, we use the relation min
x

E{φ(x)} = E
{

min
x

φ(x)
}

.

= min
xN−1∈AN−1(sN−1,wN−1)

{
KN−1(sN−1, wN−1, xN−1)+

E
wN

(
min

xN∈AN (sN ,wN )
KN (sN , wN , xN ) | wN−1

)}

= min
xN−1∈AN−1(sN−1,wN−1)

(
KN−1(sN−1, wN−1, xN−1)+ E

wN

(fN (sN , wN ) | wN−1)
)
.

Step N − t∗ :

Now, let us assume

(*) ft(st, wt) = min
xt∈A(st,wt)

(
Kt(st, wt, xt) + E

wt+1

(ft+1(st+1, wt+1) | wt)
)

for t = N, N − 1, . . . , t∗ + 1 (t∗ + 1 > 1).

We will prove the functional equation for t = t∗ :

ft∗(st∗ , wt∗) := min
Ft∗

(
Kt∗(st∗ , wt∗ , xt∗)+

E
wt∗+1,...,wN

( N∑
t′=t∗+1

Kt′(st′ , wt′ , xt′) | wt∗
))

(compare (1))
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= min
xt∗∈At∗ (st∗ ,wt∗ )

...
xN∈AN (sN ,wN )

(
Kt∗(st∗ , wt∗ , xt∗) +

N∑
t′=t∗+1

E
wt′ ,...,wN

(Kt′(st′ , wt′ , xt′) | wt∗)

)

= min
xt∗∈At∗ (st∗ ,wt∗ )

...
xN∈AN (sN ,wN )

{
Kt∗(st∗ , wt∗ , xt∗) + E

wt∗+1,...,wN

(Kt∗+1(st∗+1, wt∗+1, xt∗+1)

+ E
wt∗+2,...,wN

(Kt∗+2(st∗+2, wt∗+2, xt∗+2)

+ · · ·+ E
wN

(KN (sN , wN , xN ) | wN−1) | . . . | wt∗+1) | wt∗)
}

= min
xt∗∈At∗ (st∗ ,wt∗ )

{
Kt∗(st∗ , wt∗ , xt∗)+

E
wt∗+1,...,wN

(
min

xt∗+1∈At∗+1(st∗+1,wt∗+1)

(
Kt∗+1(st∗+1, wt∗+1, xt∗+1)

+ · · ·+ E
wN

(
min

xN∈AN (sN ,wN )
KN (sN , wN ) | wN−1

)
| . . .

)
| wt∗

)}
.

Now, we use (*) for t = N,N − 1, . . . , t∗ + 1.

= min
xt∗∈At∗ (st∗ ,wt∗ )

(
Kt∗(st∗ , wt∗ , xt∗) + E

wt∗+1

(ft∗+1(st∗+1, wt∗+1) | wt∗)
)
.

The ,,DA decision functions” and some other definitions (which are based
on DA models)

In DA models the state st+1 is (for a given st, wt) completely determined
by the decision (as opposed to DB models). Thus we can introduce:
The DA decision sets

(4) Ât(st, wt) := {s′ | s′ = Gt(st, wt, xt) with xt ∈ At(st, wt)}

for a given st ∈ St , wt ∈ Bt, internal cost



Stochastic dynamic programming with ... 13

(5)
ĉ(st, wt, s

′) := min
{
Kt(st, wt, xt)|xt : s′ = G(st, wt, xt)

}

with s′ ∈ Ât(st, wt)

and DA decision functions

(6)
d̂t : St ×Bt → St+1

with d̂t(st, wt) = s′ ∈ Ât(st , wt).

Finally, we use

Definition 1. The set of DA decision functions is the set

D̂t := {d̂t| d̂t : St ×Bt → St+1 with d̂t(st, wt) ∈ Ât(st , wt)}
for a given St, Bt, St+1 and DA decision sets Ât.

Separate maps

(7)
(st, wt) → s′ (by d̂)

thatmeans d̂t(st, wt) = s′





for st ∈ St , wt ∈ Bt are called separate decision.

If St and Bt are finite sets, then d̂t will include |St| · |Bt| separate
decisions (where |St| resp.|Bt| denote the numbers of elements of the sets St

resp. Bt).

In this way Figure 1 a) can be replaced with
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2. The certainty equivalence principle

For a lot of DB models with quadratic cost functionals and linear dynamics
(so called quadratic linear problems) it is possible to replace the random
disturbances with their expected values and to solve the yielded determinis-
tic problems. The solutions are the same (certainty equivalence principle).
We can use a similar method for DA models.

At first, let us consider the following example.

Example 1. We consider the stochastic dynamic programming problems

E

(
N=3∑

t=1

(
(xt)2 + (st)2

)
)
→ min,

where s1/ resp. s1 and w1 are given

and st+1 = st + wt + xt,

xt ∈ R.

(There {wt}t=1,2,3 is a sequence of independent random disturbances.)
Since the decision spaces (At(st, wt) =)R (at each stage) are independent

of wt, we can classifiy such stochastic dynamic programming problems as
DA models or as DB models (with the same data, but xt(st,wt) for DA
models and xt(st) for DB models).

The optimal solution to the problem of the DB model is

xN = x3 = 0

xN−1 = x2 = −s2−E(w2)
2

xN−2 = x1 = −3s1−E(w2)−3E(w1)
5

(We can calculate this by means of the Bellman-principle or the certainty
equivalence principle.)

The optimal solution of the DA model is
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xN = x3 = 0,

xN−1 = x2 = −s2−w2
2 ,

xN−2 = x1 = −3s1−E(w2)−3w1

5

(at the beginning we have calculated this by means of the Bellmann-principle,
compare (3)).

Obviously, the minimal expected costs for the DA model are not greater
than these costs for the DB model since every policy of the DB model is
possible for the DA model, too (At(st, wt) are independent of wt).

Example 1 shows us the relationship between the solutions of the DB model
and the DA model, respectively.

Now, we want to generalize the results of the example.

Quadratic-linear-problems

Let us assume

St = RN , t = 1, . . . , N,

At = Rq, t = 1, . . . , N.

The dynamic constraints are

st+1 = Φtst + Γtxt + Πtwt for t = 1, . . . , N1(8)

with given matrices Φt, Γt and Πt and a given s1 and moreover with given
w1 for DA model (the symbols are taken from the pattern of Schneeweiss
[16], 11.3).

The types of these matrices are determined by the types of the states,
disturbances and decisions.

If zt =
(
wt

1

)
, vt =

(
st

zt

)
, yt =

(
xt

vt

)
and Tt = (Γt,Φt, Πt, 0)

are used, then (8) has got the form

st+1 = Ttyt.
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Finally, the cost functional is

E

{
N∑

t=1
yT

t Wt,yyyt

}
→ min,

where the matrices Wt,yy have the following structure

Wt,yy =

(
Wt,xx Wt,xv

Wt,vx Wt,vv

)
=




Wt,xx Wt,xs Wt,xz

Wt,sx Wt,ss Wt,sz

Wt,zx Wt,zs Wt,zz


 =

=




Wt,xx Wt,xs Wt,xw Wt,x1

Wt,sx Wt,ss Wt,sw Wt,s1

Wt,wx Wt,ws Wt,ww Wt,w1

Wt,1x Wt,1s Wt,1w Wt,11




with regard to vt, st and yt.

Let Wt,yy be symmetric matrices (without loss of generality) and let
Wt,xx be positive definite. Further on , let all matrices Vxx be positive defi-
nite which are calculated by means of the backward dynamic programming
procedure.

Quadratic-linear-problems can be classified as DA models or as DB mod-
els with the same data, but xt(st) for DB models and xt(st,wt) for DA
models (compare Example 1).

Theorem 1 (Certainty equivalence principle). Let a quadratic-linear DB
model and a quadratic-linear DA model with the same data be given.

Further on let

xN = 0

xt = ϕ(E(wt), E(wt+1), · · · , E(wN−1) ), t = N − 1, · · · , 1

be a representation of an optimal solution of the quadratic-linear DB model.



Stochastic dynamic programming with ... 17

Then
xN = 0

xt = ϕ(wt, E(wt+1), · · · , E(wN−1)), t = N − 1, · · · , 1

is an optimal solution of the quadratic-linear DA model.

Proof. The above symbols and the following representations are taken from
the pattern of Schneeweiss [19] (compare 11.3) and they are applied to the
DA models.

The functional equation for this DA problem is

(∗1)

ft(st, wt) = min
xt

{
yT

t Wt,yyyt+ E
wt+1

{
ft+1(st, wt+1)|wt

}}

t = N, · · · , 1

fN+1 ≡ 0

(compare(4)).

Step 1.

(begin with the mathematical induction t = N)

fN (sN , wN ) = min
xN

(
yT

NWN,yyyN

)

(∗2) = min
xN

(
xT

NWN,xxxN + 2xT
NWN,xvvN + vT

NWN,vvvN

)
.

(∗3) x∗N = −(WN,xx)−1WN,xvvN

(∗3a) = − (WN,xx)−1 (WN,xssN + WN,xwwN + WN,x1)

is the optimal xN for (*2), since WN,xx is positive definite.

If we use (*3) in (*2), it follows
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fN (sN , wN )

= −vT
NW T

N,xv(WN,xx)−1WN,xvvN + vT
NWN,vv, vN

= sT
NQNsN + 2sT

N β̄N + GAN (wN )

with

QN = WN,ss −W T
N,xs(WN,xx)−1WN,xs,

β̃N = (WN,sz −W T
N,xs(WN,xx)−1WN,xz)zN ,

GAN (wN ) = γ̃N = zT
NWN,zzzN − zT

NW T
N,xz(WN,xx)−1WN,xzzN .

Further on, let βN and γN denote as follows:

βN = E{β̃N |wN−1}

= (WN,sz −W T
N,xs(WN,xx)−1WN,xz)E{zN |wN−1},

γN = E{zT
NWN,zzzN |wN−1} − ẑT

NW T
N,xz(WN,xx)−1WN,xz ẑN ,

ẑN = E{zN |wN−1}.

Step N − t + 2 :
Now, let us assume

(∗4) ft(st, wt) = sT Qtst−1 + 2sT
t β̃t + GAt(w).

On the one hand, we will prove

(∗5) ft−1(st−1, wt−1) = sT
t−1Qt−1st−1 + 2sT

t−1β̃t−1 + GAt−1(w)
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for the optimal expected value function at stage t− 1, where

Qt := Vt,ssV
T
t,xs(Vt,xx)−1Vt,xs,

β̃t := (Vt,sz − V T
t,xs(Vt,xx)−1Vt,xs)zt.

Further on, let βt, γ̃t and γt denote as follows:

βt = E{β̃t|wt−1},

γ̃t := zT
t Vt,zzzt − zT

t V T
t,xz(Vt,xx)−1Vt,xzzt,

γt := E{zT
t Vt,zzzt|wt−1} − ẑT

t V T
t,xz(Vt,xx)−1Vt,xz ẑt, ẑt = E{zt|wt−1}.

There the sub-matrices Vt,ij(i, j = x, v, z, w, s, 1) are calculated from

yT
t Vt,yyyt = yT

t Wt,yyyt + yT
t T T

t Qt+1Ttyt + 2yT
t βt+1 + γt+1,

where the initials are

QN+1 = 0, β̃N+1 = 0, γN+1 = 0, γ̃N+1 = 0.

On the other hand, we will show that

x∗t−1 = − (Vt−1,xx)−1Vt−1,xvvt−1

= − (Vt−1,xx)−1(Vt−1,xsst−1 + Vt−1,xzzt−1)

is an optimal decision at stage t− 1.

Proof .
(∗1) for t− 1 and (*4) yield
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ft−1(st−1, wt−1)

= min
xt−1

{yT
t−1 Wt−1,yyyt−1 + E{ft(Tt−1yt−1, wt)|wt−1}}

= min
xt−1

{yT
t−1 Wt−1,yy yt−1+

E{yT
t−1 T T

t−1 Qt Tt−1 yt−1 + 2yT
t−1 T T

t−1 β̃t + GAt(w) | wt−1}}

= min
xt−1

{yT
t−1 Wt−1,yy yt−1 + yT

t−1T
T
t−1 Qt Tt−1 yt−1 + 2yT

t−1 Tt−1 βt

+E{GAt(w) | wt−1}}

= min
xt−1

{yT
t−1 Vt−1,yy yt−1 − γt + E{GAt (w) | wt−1}}

(*6) = min
xt−1

{xT
t−1 Vt−1,xx xt−1 + 2xT

t−1 Vt−1,xv vt−1 + vt−1 Vt−1,vv vt−1

−γt + E{GAt(w) | wt−1}}.

x∗t−1 = −(Vt−1,xx)−1Vt−1,xv vt−1

(*7) = −(Vt−1,xx)−1(Vt−1,xszt−1 + Vt−1,xs st−1)

follows for positive definite Vt−1,xx.

(*7) placed in (*6) implies

ft−1(st−1, wt−1)

= − vt−1 V T
t−1,xv (Vt−1,xx)−1 Vt−1,xv vt−1 + vT

t−1 Vt−1,vv vt−1

− γt + E{GAt(w) | wt−1}
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= sT
t−1 Qt−1 st−1 + 2sT

t−1 β̃t−1 + γt−1 − γt + E{GAt(w) | wt−1}

= sT
t−1 Qt−1 st−1 + 2sT

t−1 β̃t−1 + GAt−1(w).

Now, we compare the optimal decisions (*7) of the quadratic-linear DA
models with the optimal decisions of the quadratic-linear DB models, see
Schneeweiss [19], 11.3.

The above matrices Vt,yy are the same as the corresponding matrices of
Schneeweiss.

Then x∗t corresponds to u∗k of Schneeweiss except for wt in vt. In
Schneeweiss we find there E{wt | wt−1}(=̂r̂k) (compare [19], pages 162/163).

With that, the Theorem 1 is proved.

Remarks.

• Above we use the denotation ”certainty equivalence principle”
(for DA models) because of the relationships between the solutions
of DB model and DA model, respectively.

• Dreyfus and Law have another opinion about such a conception
(compare [5], pages 275, 276). But the remark on page 276 is very
short. The calculations and considerations are not sufficiently given in
detail.

• Sebastian and Sieber, [17], deal with quadratic-linear-problems, too
(see 2.8.3.3). But the disturbances do not take place in the cost func-
tional and an interpretation of the calculations is not given.

3. DA models as Markov decision processes under appropriate
assumptions

In what follows, we assume an infinite horizon, that means N = ∞. The
average expected cost per stage will be minimized. Further on, we demand
stationary properties. The functions and sets Kt, Gt, At, Bt, St are the same
at each stage. We write K, G and so on. Let B, S and A be finite sets.
q(ω)(q : B → (0, 1)) denote the probabilities of the random disturbances.
These q(·) are the same at every stage, too. Finally, we assume that the
components wi of w are realized independent of each other.
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Then the problem

lim
n→∞

1
n

E

(
n∑

t=1

K(st, wt, xt)

)
→ inf,

where s1 and w1 are given

and
st+1 = G(st, wt, xt)

st+1 ∈ S



 t = 1, 2 · · ·

xt ∈ A(st, wt), t = 1, 2, · · ·

remains to be solved.

We want to represent this problem as a Markov decision process. We can
do that in two ways. First, we could use section 1.1 in link with Girlich,
Köchel and Kuenle [6], page 36, respectively Neumann and Morlock [15],
page 618. A state space S × B would follow. But here we will directly
convert the above problem into a Markov decision process. On the one
hand, then the corresponding state space is at once S and on the other
hand, peculiarities of DA models can be better characterized (compare 3.1).
(The disturbance space B and the probability q merely serve to calculate
the transition probabilities of the Markov decision process.)

Now, the Markov decision processes are introduced by means of (sta-
tionary) Markov control models MCM : (N,S, AM , p, γ) with N = ∞, the
state spaces S,AM the sets of action spaces AM (S), the transition proba-
bilities p and the average (one-step) reward functions γ (compare [7], 1.2).
AM (s), p and γ are constructed by means of d̂ and ĉ (compare (4), (5) and
(6) and Definition 1) in the following way:

AM (s) = {d(s) := {d̂(s, w1) , d̂(s, w2), · · · , d̂(s, wIBI)}|d̂ ∈ D̂}, s ∈ S(9)

(where |B| denotes the number of elements of the set B)

p(s′|s, d) =
∑

w:s′=d̂(s,w)

q(w)(10)
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γ(s, d) =
∑

s′

∑

w:s′=d̂(s,w)

ĉ(s, w, s′)q(w)

=
∑

s′


 ∑

w:s′=d̂(s,w)

ĉ(s, w, s′)
q(w)

p(s′|s, d)


 p(s′|s, d).(11)

We define the cost

(12) cd(s, s′) =
∑

w:s′=d̂(s,w)

ĉ(s, w, s′)
q(w)

p(s′|s, d)
.

The relation

(13) γ(s, d) =
∑

s′
cd(s, s′)p(s′|s, d)

follows.
Now, let us note S = {s1, · · · , sm} and pd

fl = p(sl|sf , d).
Under the assumption that the stationary distributions

(pd,∞
f )f=1,...,m with

lim
t→∞

(
(pd

fl)(f=1,...,m
l=1,...,m)

)t
=




pd,∞
1 . . . pd,∞

m
...

...
pd,∞
1 . . . pd,∞

m




exist, an optimal policy d is to be found so that

(14) dk = γ(s1, d)pd,∞
1 + · · ·+ γ(sm, d)pd,∞

m → min.

Now, we represent two special cases for cost ((a) is valid for a stochastic
dynamics transportation problem, compare [9])
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(a) ĉ(s, ω, s′) do not depend on ω.
That means

(15) ĉ(s, ω, s′) = ĉ(s, s′) for each w with s′ ∈ Â(s, w).

Then (20) yields

cd(s, s′) = ĉ(s, s′)


 ∑

w:s′=d̂(s,ω)

q(ω)
p(s′|s, d))




= ĉ(s, s′).

(b) ĉ(s, ω, s′) do not depend on s′.

That means

(16) ĉ(s, ω, s′) = ĉ(s, ω) for each s′ ∈ Â(s, w).

Then

(17) γ(s, d) =
∑
ω

ĉ(s, w)q(ω) do not depend on d.

3.1. The structure of decisions within DA models

Definition 2.
d1 ∈ AM , d2 ∈ AM will be called neighbouring, if a unique s0 ∈ S and

a unique w0 ∈ B exist with

d1(s) ≡ d2(s) for each s ∈ S and s 6= s0,

d̂1(s0, w) = d̂2(s0, w) for each w ∈ B and w 6= w0,

d̂1(s0, w0) 6= d̂2(s0, w0).

(That means d1 and d2 are only different in one separate decision (compare
(7))).

Theorem 2.
I Let d ∈ AM and d̃ ∈ AM . Then a sequence d = d0, d1, d2, · · · , dv = d̃

of neighbouring decisions di, di+1 (0 ≤ i ≤ v−1) exists with di ∈ AM .
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II Now, let d ∈ AM , d̄ ∈ AM be neighbouring with the different separate
decisions:

(18)
d̂

(
sf , w

)
= sl,

ˆ̄d
(
sf , w

)
= sl̄

(
l 6= l̄

)
.

Then the following relations hold - in regard to the transition probabilities,

the average reward functions resp. the cost:
a)

(19)

pd̄
f l = pd

fl − q(w)

pd̄
f l̄

= pd
f l̄

+ q(w)

pd̄
rv = pd

rv for (f, l) 6= (r, v) 6= (
f, l̄

)
(cf. (10)).

That means the corresponding matrices of transition probabilities are only
different in two elements (of a row)!

b)

(20)

γ
(
sf , d̄

)
= γ

(
sf , d

)
+ q (w)

(
ĉ
(
sf , w, sl̄

)
− ĉ

(
sf , w, sl

))

γ
(
sl, d̄

)
= γ

(
sl, d

)
for l 6= f

resp.
c)

(21)

cd̄
(
sf , sl

)
=

(
cd

(
sf , sl

)
− ĉ

(
sf , w, sl

)

pd
fl

q (w)

)
pd

fl

pd̄
f l

cd̄
(
sf , sl̄

)
=


cd

(
sf , sl̄

)
+

ĉ
(
sf , w, sl̄

)

pd
f l̄

q (w)


 pd

f l̄

pd̄
f l̄

cd̄ (sr, sv) = cd (sr, sv) for (f, l) 6= (r, v) 6= (
f, l̄

)
.
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Of course, the computation of the stationary distribution is more compli-
cated. In general, it is pd,∞

r 6= pd̄,∞
r for all r. But the differences of pd,∞

r and
pd̄,∞

r ”are greater” for r = l and r = l̄ than for other r ∈ {1, · · · ,m} and
moreover we have:

Theorem 3. Let P d and P d̄ be two stochastic matrices with positive ele-
ments. Let P d differ from P d̄ only for two elements in the following manner

pd
fl > pd̄

f l and pd
f l̄

< pd̄
f l̄

.

Then corresponding relations are true for the stationary distributions P d,∞
and P d̄,∞ belonging to P d and P d̄:

pd,∞
l > pd̄,∞

l and pd,∞
l̄

< pd̄,∞
l̄

.

(Cf. proof and remarks in [10] or [9], Section 3.2.3).

Figure 2. If d and d̄ are different in the kind of (18), then the average
expected costs per stage are different, first of all, in the marked terms

m∑
v=1

γ(sv, d)︸ ︷︷ ︸ pd,∞
v = · · ·+γ(sf , d)·pd,∞

f +· · ·+ γ(sl, d)︸ ︷︷ ︸ ·p
d,∞
l +· · ·+ γ(sl̄, d)︸ ︷︷ ︸ ·p

d,∞
l̄

+ · · ·

= for w 6= f = =

m∑
v=1

︷ ︸︸ ︷
γ(sv, d̄)pd̄,∞

v = · · ·+γ(sf , d̄)·pd̄,∞
f +· · ·+

︷ ︸︸ ︷
γ(sl, d̄) ·pd̄,∞

l +· · ·+
︷ ︸︸ ︷
γ(sl̄, d̄) ·pd̄,∞

l̄
+ · · ·

An Algorithm for approximate solutions of the Markov decision processes
from this section which is based on the above structures can be found in [10].

3.2. Special considerations

3.2.1. The dominant policy
In this subsection, we want to show that it is easy to inspect Markov decision
processes which are based on DA-models in the case of monotonicity.

Theorem 4. Let a stationary Markov decision process with states s1, · · · , sm

be given and let the transition probability matrices P d̄ and P d belong to
d̄ ∈ AM and d ∈ AM respectively. Furthermore, the following conditions are
assumed to be fulfilled, where
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Iv = {hv−1 + 1, hv−1 + 2, · · · , hv}, v = 1, 2, · · · , r

are sets of indices with h0 = 0, hv−1 < hv, hr = m :

(C1) (monotonicity or domination)

r̄∑

v=1

∑

l∈Iv

pd̄
h1l ≥

r̄∑

v=1

∑

l∈Iv

pd̄
h2l ≥ · · · ≥

r̄∑

v=1

∑

l∈Iv

pd̄
hrl, ∀r̄ = 1, · · · , r

(C2) (comparison)

r̄∑

v=1

∑

l∈Iv

pd̄
ȳl ≤

r̄∑

v=1

∑

l∈Iv

pd
ȳl for ȳ ∈ Iy, ∀r̄ = 1, · · · , r ∀y = 1, · · · , r

(C3) (reduction)

∑

ȳ∈Iy

pd̄
hq−1+1ȳ =

∑

ȳ∈Iy

pd̄
hq−1+2ȳ = · · ·=

∑

ȳ∈Iy

pd̄
hq ȳ,∀q=1, · · · , r∀y = 1,· · ·, r

(a) Then (C1), (C3) are valid for each power (P d̄)t(t = 1, 2, · · · ) of the
matrix P d̄ and (C2) is valid for each power (P d̄)t, (P d)t(t = 1, 2, · · · ),
too.

(b) Let additionally the stationary distributions P d̄,∞ and P d,∞ exist and
let the reward functions belong to d̄ and d, respectively, fulfil the
conditions

(Cr1, a) γ(sh1 , d̄) ≥ γ(sh2 , d̄) ≥ · · · ≥ γ(shr , d̄)

(Cr1, b) γ(shv−1+1, d̄) = γ(shv−2+2, d̄) = · · · = γ(shv , d̄) ∀v = 1, · · · , r

(Cr2) γ(sl, d̄) ≤ γ(sl, d) ∀l = 1, · · · ,m.
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Then the inequality

γ(s1, d̄)pd̄,∞
1 + · · ·+ γ(sm, d̄)pd̄,∞

m ≤ γ(s1, d)pd,∞
1 + · · ·+ γ(sm, d)d,∞

m

is valid.

Remarks.

• Of course, Iq = {q}, q = 1, · · · ,m is possible in Theorem 4. The defi-
nition of Iq, (C3), (Cr1,b) serves the reduction of the Markov decision
process if the conditions are fulfiled.

• Conditions for Markov-chains in the way of (C1) and (C2) we find in
a paper of Daley, [3], occurring for the first time.

• The proof and further comments are to be found in [9], p. 97 and in
[11], p. 15 or in [9], section 3.3.3.

Definition 3. d̄ ∈ AM is called a dominant policy of a stationary Markov
decision process if the conditions of Theorem 2 are valid with regard to d̄
and to any d ∈ AM .

(Of course, a dominant policy is an optimal policy.)
Now, let a Markov decision process be given, which results from the

DA model. On the whole we investigate the existence of (and construct) a
dominant policy in the following way.

1. We compute d0 that

(22)

d0(sf , w) = sl

with

ĉ(sf , w, sl) = min{ĉ(sf , w, sl′)|sl′ ∈ Â(sf , w)}
for f = 1, · · · ,m, w ∈ B

and γ(sf , d0) by means of (11) (first equation).

Then the condition (Cr2) of Theorem 4 is fulfiled (cf. the first equation
of (11) and (20)).

2. We number the states in a new way that

(23) γ(sλ1 , d0) ≥ γ(sλ2 , d0) ≥ · · · ≥ γ(sλm , d0)
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{λ1, · · · , λm} = {1, · · · ,m} (condition (Cr1,a)!).

3. Further on, we check the conditions (C1) and (C2) of Theorem 4.

Either not all conditions are valid or d0 is an optimal dominant policy
(d̄ = d0).

(If d0 (from 1.) is not unique or any equations can be found in (23) then
additional conditions are to be laid down.)

Remark. First of all Theorem 4 and dominant policies play a role in sta-
tionary Markov decision processes which result from DA models:

Property II a) (from Theorem 2) can be used to construct a strategy so
that (C2) (of a dominant policy) is satisfied (if the numbering of the states
is adequate) and property II b) (from Theorem 2) can be used to construct
a strategy so that (Cr2) is satisfied (compare 2., too).

If both strategies are conform and (C1) is fulfilled, then a dominant
policy exists. Markov decision processes which are not based on DA models
with dominant policies are hard to be found.

3.2.2. Problem with special stage-cost and a ”partial certainty
equivalent principle”

Now, let K, G be defined that

K : S × Rm ×A → R+,

G : S × Rm ×A → S.

Except for this fact we take as a basis the problem as at the beginning of
Section 3 with finite or infinite horizon (where the stationary distribution
should exist). Further on, we assume that the state-cost are independent of
the decisions, that means

K : S ×B → R+ (and K : S × Rm → R+, too).

This is the special case (b) from Section 3, compare (17a).

And

γ(s, d) =
∑
w

K(s, w)q(w) = E(K(s, w)) =
∑

ĉ(s, w)q(w) =: γ(s)
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follows from the representation as stationary Markov decision process with
c(s, w) = ĉ(s, w, s′) are independent of d (compare (17a), too).

In this section, we will interpret an answer to the following question:
Under which conditions are the optimal solutions of the ”surrogate
problems”

min{K(s′, E(w))|s′ ∈ Â(s, w)}(s ∈ S, w ∈ B)

optimal decisions d(s, w) for the above DA model, respectively for the above
Markov decision problem?

At first we will notice that the following condition is sufficient:
(Co) Condition of orders (sufficient condition) A numbering of states
{s1, s2, · · · , sm} exists so that

(24) K(s1, E(w)) ≥ K(s2, E(w)) ≥ · · · ≥ K(sm, E(w))

and

min
d1,··· ,dn

{((
n∑

t=0

t∏

t′=0

P dt′

)
γ

)

1

}
≥ min

d1,··· ,dn





((
n∑

t=0

t∏

t′=0

P dt′

)
γ

)

2





≥ · · · ≥ min
d1,··· ,dn

{((
n∑

t=0

t∏

t′=0

P dt′

)
γ

)

m

}
(25)

for n = 0, 1, · · ·

(There γ =




γ(s1)
...

γ(sm)


 and P d0

:= I, cf. [11]).

We remark that (25) for n = 0 means

(26)
γ(s1) = E(K(s1, w)) ≥ γ(s2)

= E(K(s2, w)) ≥ · · · ≥ γ(sm) = E(K(sm, w))
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and that (25) is valid for dominant policies with suitable numberings of
states.

We speak of the certainty equivalent principle of DA models with a special
stage- cost subject to the restriction xt+1 ∈ Â(st, wt+1) if the ”future” wt+1

in the functional equation (3) are replaced by E(w) in the corresponding
functional equation, that means

(27)

f c
t (st, wt) = min

xt∈A(st,wt)

(
K(st, wt) + f c

t+1(st+1, E(w))
)

= K(st, wt) + min
xt∈A(st,wt)

f c
t+1(st+1, E(w))

= K(st, wt) + min
st+1∈Â(st,wt)

f c
t+1(st+1, E(w))

f c
N+1 ≡ 0

and (3) (in the special case) and (27) have same optimal solutions.

Lemma 5. Under the following condition (Cc) the functional equation (27)
yields the same optimal decisions, that means the same states st+1, as the
surrogate problems min

st+1∈Â(st,wt)
K(st+1, E(w)) for t ≤ N − 1.

(Cc) Compensation condition of the stage-cost

If s̃∗ ∈ argmin
{

K(s̃, E(w))|s̃ ∈ Â(s, w)
}

, then

min
{

K(
≈
s,E(w)|≈s ∈ Â(Â(s, w), E(w))

}

= min
{

K(
≈
s, E(w))|≈s ∈ Â(s̃∗, E(w))

}

for any s ∈ S, w ∈ B.
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Proof.

(27) yields

f c
N (sN , wN ) = K(sN , wN ) + 0 = K(sN , wN )

thus

f c
N−1(sN−1, wN−1) = K(sN−1, wN−1) + min

sN∈Â(sN ,wN )
K(sN , E(wN )).

Obviously, this functional equation includes the same optimal decisions (the
same optimal states sN ) as the surrogate problem min

sN∈Â(sN ,wN )
K(sN , E(w)).

Now we consider the functional equation (27) for any t ∈ {1, . . . , N − 2} :

f c
t (st, wt) = K(st, wt) + min

st+1∈Â(st,wt)
f c

t+1(st+1, E(w))

= K(st, wt)+

min
st+1∈Â(st,wt)

[
K(st+1, E(w))+ min

st+2∈Â(st+1,E(w))
f c

t+2(st+2, E(w))
]
.

If we use the compensation condition (Cc) with

s̃ = st+1,

s = st, w = wt

and

≈
s = st+2

then

f c
t (st, wt) = K(st, wt) + K(s̃∗, E(w)) + min

st+2∈Â(s̃∗,E(w))
f c

t+2(st+2, E(w))

with s̃∗ ∈ arg min{K(st+1, E(w)) | st+1 ∈ Â(st, wt)} follows.
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That means the functional equation yields the same optimal decisions
(the same optimal states st+1 = s̃∗ as the surrogate problem

min
st+1∈Â(st+1,wt+1)

K(st+1, E(w)).

Definition 4. Let condition (Cc) be valid. If the optimal solutions of
the surrogate problems are optimal decisions d(s, w) for the DA models
and Markov decision problems of this section, then we call this the partial
certainty equivalent principle.

(We call the principle ”partial” since condition (Cc) simplifies (27) in
the way of Lemma 5).

4. DA models with distance properties

In this section, we consider Markov decision processes as in Section 3 and
additionally we assume ”distance properties”. In a natural way such proper-
ties are found, for instance, in flow problems (compare [1] and among other
things see Theorem 3.4). We want to give surrogate problems (these surro-
gate problems are a kind of two-stage-problems), which can be used to solve
the Markov decision processes approximately. These surrogate problems are
to be used above all, if the state spaces of the Markov decision processes are
very immense.

The distance properties include:

(28)
1. ĉ(s, w, s′) = 0 if and only if s ∈ Â(s, w)

and s′ = s.

(29)

2. Let be sv ∈ Â(sl, w2), sv ∈ Â(sf , w1),

sl ∈ Â(sf , w1) then

ĉ(sl, w2, sv) + ĉ(sf , w1, sl) ≥ ĉ(sf , w1, sv)





has to follow.

(triangle− inequality)
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4.1. Surrogate problems

The surrogate problems are formulated by means of

Definition 5. Let s̄ ∈ Â(s, w). The set

B OPT (s̄|s, w) =

{w̄|s̄∈Â(s̄, w̄) and 6 ∃s̄′∈Â(s, w) : ĉ(s, w, s̄′) < ĉ(s, w, s̄) and s̄′∈Â(s̄′, w̄)(∗)}

is called the optimum domain to s̄.

We remark that s̄ ∈ Â(s̄, w̄) includes ĉ(s̄, w̄, s̄) = 0 and likewise s̄′ ∈
Â(s̄′, w̄) includes ĉ(s̄′, w̄, s̄′) = 0. The definition is based on the first distance
property.

Now, we explain the definition.

If we make the internal decision s̄ = d̂(s, w) at a present stage then the
optimum domain to s̄ includes disturbances w̄ (at the next stage) so that
1. the cost at the next stage could be zero, namely ĉ(s̄, w, s̄) 2. the cost
ĉ(s, w, s̄) at the present stage fulfils the ”minimum condition” (*).

In the surrogate problems the ”probabilities of optimum domains” are
maximized over Â(s, w) :

(30) P (w ∈ BOPT (s̄|s, w)) =
∑

w̄∈BOPT (s̄|s,w)

q(w̄) → max, s̄ ∈ Â(s, w)

(where q(w̄) =
n∏

i=1
qi(w̄i) if wi are realized independent of each other).

Remark. Let do denote a policy which is yielded by the surrogate problems.
The inclusion of the ”minimum conditions” (*) in the surrogate problems
affects the greatness of γ(s, do) (compare (20)). P (w ∈ BOPT (s̄|s, w))-self
is related to the transition probabilities p(s̄|s̄, do), hence to pdo,∞(s̄), too.
On the whole, the surrogate problems yield great pdo,∞(s) for small γ(s, do)
and vice versa. By this we can consider problems (30) as surrogate problems
for Markow decision processes of this section (further comments follow in
Section 5).
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4.2. A certain subset of the problems with distance
properties

Problems with (28) and (29) for which both the additional properties

(31) ĉ(s, w, s′)(= ĉ(s, s′)) do not depend on w

(compare (15) and (16))

(32) Â(s, w)(= Â(w)) do not depend on s

are fulfilled represent a wide subset of problems with distance properties. In
the sensible way we assume Â(w) 6= ∅ for any w ∈ B.

Without loss of generality we can make the internal decision sets Â(w)
smaller for these problems.

4.2.1. The decision set of feasible states

At first we specify the triangle inequality under assumption (32). (In Section
4.2.1 we do not need (31).)

(33)

Let sv ∈ Â
(
w1

)
, sv ∈ Â

(
w2

)
, and sl ∈ Â

(
w1

)

then

c
(
sl, w2, sv

)
+ c

(
sf , w1, sl

) ≥ c
(
sf , w1, sv

) ∀sf ∈ S





has to follow.

We will show that states sv are not essential for optimal internal decisions
d∗

(
sf , w1

)
, if we have an equality in (33).

For this we define the DA decision sets of feasible states:

Definition 6. Let sf ∈ S, w1 ∈ B be given.

ˆ̂
A

(
sf , w1

)
=

{
sv ∈ Â

(
w1

) |∃w2 ∈ B with sv ∈ Â
(
w2

)
:

ĉ
(
sl, w2, sv

)
+ ĉ

(
sf , w1, sl

)
> ĉ

(
sf , w1, sv

)
∀ sl ∈ Â

(
w1

)
with sl 6= sv

}
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is called DA decision set of feasible states for a given state sf and a realized
disturbance w1.

(We notice that ˆ̂
A(sf , w1) = {sv} if Â(w1) = {sv}. For this we choose

w2 = w1 in Definition 6. Further on, it is sv ∈ ˆ̂
A(sf , w1) if ĉ(sf , w1, sv)

= min
sl∈Â(w1)

ĉ(sf , w1, sl)(∗), that means ˆ̂
A(zf , w1) 6= ∅. Take into consideration

that ĉ(sl, w2, sv) 6= 0 for sl 6= sv.)

Theorem 6. The minimum of the average expected cost per stage of a
Markov decision process which results from DA models with distance prop-
erties (28) and (29) and property (32) will not increase, when ˆ̂

A(s, w) is used
instead of Â(w) for AM (compare (32), (9)).

Proof. Let s1, (= s̃1) be some initial state. Further on let be given any
sequences wt, t = 1, 2, . . . with wt ∈ B and s̃t, t = 2, 3 . . . with s̃t+1 ∈ Â(wt)
for t = 1, 2, . . . .

We will construct a sequence st, t = 2, 3, . . . with st+1 ∈ ˆ̂
A(st, wt) that

(34)
t∑

t′=1

ĉ(s̃t′ , wt′ , s̃t′+1) ≥
t∑

t′=1

ĉ(st′ , wt′ , st′+1)

for t = 1, 2, . . . .

It is possible that the orginated policy is not stationary. But it is well
known that then an optimal stationary policy with the same set of action
spaces exists, too. Now, we construct successively st+1 ∈ ˆ̂

A(st, wt) by

(35) st+1 =





s̃t+1, if s̃t+1 ∈ ˆ̂
A(st, wt)

st+1, if s̃t+1 6∈ ˆ̂
A(st, wt) and ĉ(st+1, wt+1, s̃t+1)

+ĉ(st, wt, st+1) = ĉ(st, wt, s̃t+1).
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Such st+1 ∈ ˆ̂
A(st, wt) exists in the second case since S is finite, compare

at the beginning of Section 3.) We show that st, t = 1, 2, . . . fulfil (34) by
means of mathematical induction:
Obviously, the inequality

ĉ (s1, w1, s̃2) ≥ ĉ (s1, w1, s2)

is valid, compare (35).
Now, we assume that the inequality (34) is right for 1, 2, . . . , t.

In the case s̃t+1 = st+1 the inequality (34) for t + 1 follows from

ĉ (s̃t+1 (= st+1) , wt+1, s̃t+2) ≥ c (st+1, wt+1, st+2) ,

compare (35).
Finally, we consider cases with

s̃t1 = st1 , t1 < t + 1

and
s̃t′′ 6= st′′ , t1 < t′′ ≤ t + 1.

We compute in this way that we alternately use (35) and the triangle
inequality:

ĉ(st1 , wt1 , s̃t1+1) + ĉ(s̃t1+1, wt1+1, s̃t1+2) + ĉ(s̃t1+2, wt1+2, s̃t1+3) + · · ·+

+ĉ(s̃t+1, wt+1, s̃t+2)

= ĉ(st1+1, wt1+1, s̃t1+1) + ĉ(st1 , wt1 , st1+1) + +ĉ(s̃t1+1, wt1+1, s̃t1+2)+

+ĉ(s̃t1+2, wt1+2, s̃t1+3) + · · ·+ ĉ(s̃t+1, wt+1, s̃t+2)

≥ ĉ(st1+1, wt1+1, s̃t1+2) + ĉ(st1 , wt1 st1+1) + ĉ(st1+2, wt1+2, st1+3) + · · ·+

ĉ(s̃t+1, wt+1, s̃t+2)

≥ ĉ(st1+2, wt1+2, s̃t1+2) + ĉ(st1+1, wt1+1, st1+2) + ĉ(st1 , wt1 , st1+1)+

+ĉ(s̃t1+2, wt1+2, s̃t1+3) + · · ·+ ĉ(s̃t+1, wt+1, s̃t+2)
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≥ ĉ(st1+2, wt1+2, s̃t1+3) + ĉ(st1+1, wt1+1, st1+2) + ĉ(st1 , wt1 , st1+1) + · · ·+
ĉ(s̃t+1, wt+1, s̃t+2)

...
≥ ĉ(st+1, wt+1, s̃t+1) + ĉ(st, wt, st+1) + · · ·+ ĉ(st1+1, wt1+1, st1+2)

+ĉ(st1 , wt1 , st1+1) + ĉ(s̃t+1, wt+1, s̃t+2)

≥ ĉ(st+1, wt+1, s̃t+2) + ĉ(st, wt, st+1) + · · ·+ ĉ(st1 , wt1 , st1+1)

≥ ĉ(st+2, wt+2, s̃t+2) + ĉ(st+1, wt+1, st+2) + ĉ(st, wt, st+1) + · · ·+

ĉ(st1 , wt1 , st1+1)

≥ ĉ(st+1, wt+1, st+2) + ĉ(st, wt, st+1) + · · ·+ ĉ(st1 , wt1 , st1+1).

4.2.2. A note on transition probabilities

Lemma 7. The properties

i) s ∈ Â(w) ⇒ ˆ̂
A(s, w) = {s}

ii) p(s|s, d) =
∑

w:s∈Â(w)

q(w) for d with d̂(s′, w′) ∈ ˆ̂
A(s′, w′)∀s′ ∈ S, w′ ∈ B

(that means p(s|s, d) =: p(s|s) is independent of d)

are valid for problems of Section 4.2 with (28), (29), for which especially the
conditions (31) and (32) are fulfilled.

Proof. At first, we remark that the triangle-inequality has the
representation:

(36) ĉ
(
sl, sv

)
+ ĉ

(
sf , sl

)
≥ ĉ

(
sf , sv

)
for any ; sf ∈ S

and sl ∈ Â(w), sv ∈ Â(w) for any w ∈ Â(w).
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i) Let s ∈ Â(w) and s′ ∈ Â(w) with s′ 6= s. ĉ(s, s′) + ĉ(s, s) = c(s, s′)
follows from ĉ(s, s) = 0 (compare (28)). Hence s′ 6∈ ˆ̂

A(s, w) and

{s} = ˆ̂
A(s, w).

ii) Equation (10) and property i) yield

p(s|s, d) =
∑

w:s=d̂(s,w)

q(w) =
∑

w:z∈Â(w)

q(b) =: p(s|s).

4.2.3. Problems with special internal cost

We consider problems of Section 5.2 with (28), (29), (31), (32) in the special
case that

(37) ĉ
(
s, s̄1

)
= · · · = ĉ (s, s̄v) for any s, w and {s̄1, · · · , s̄v} = ˆ̂

A (s, w) .

We can use such a special problem to investigate the quality of the surrogate
problems for classes of problems with distance properties. (Compare the
example in Section 5.)

Lemma 8. The properties

i) ĉ(s, s̄) < ĉ(s, s̃) if {s̄, s̃} ⊆ Â(w) for any w and s̄ ∈ ˆ̂
A(s, w), s̃ 6∈ ˆ̂

A(s, w)

ii) γ(s, d) for d with d̂(s′, w′) ∈ ˆ̂
A(s′, w′)∀s′ ∈ S, w′ ∈ B do not depend

on d

are valid for problems of Section 4.2.3, for which especially the condition
(37) is fulfilled.

Proof. A proof by contradiction yields i):

i) If ĉ(s, s̃) ≤ ĉ(s, s̄) for s̃ 6∈ ˆ̂
A(s, w) and s̄ ∈ ˆ̂

A(s, w)

then
≈
s with ĉ(s,

≈
s) = min

s′∈Â(w)
ĉ(s, s′),

≈
s 6∈ ˆ̂

A(s, w) (
≈
s = s̃ is possible)
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and ĉ(s,
≈
s)(≤ ĉ(s, s̃)) ≤ ĉ(s, s̄) exists.

This is contradictory to the remark *) on Definition 6.

ii) So we can define

(38)
c(w, s) : = min

{
ĉ(s, w, s′)|s′ ∈ ˆ̂

A(s, w)
}

= ĉ(s, w, s′), where s′ ∈ ˆ̂
A(s, w)

follows from (37). This is analogous to (17a).

And (38) yields

γ(s) := γ(s, d) =
∑

w∈B

ĉ(s, w)q(w)

(with c(s, w) = ĉ(s, w, s′) and s′ ∈ ˆ̂
A(s, w)).

5. Example: A stochastic dynamic transportation problem

(The detailed representation of this problem is to be found in [8] resp. [9].)

Let n ∈ N, n ≥ 3, ko = (ko1 , ko2 , . . . , kon) with koi ∈ N and su ∈ N

with su <
n∑

i=1
koi be given.

Further on, let

Bko =
{
w ∈ Zn

+|0 ≤ w ≤ ko

}
be the disturbance space,

let Sko;su =
{

s ∈ Zn
+|0 ≤ s ≤ ko,

n∑
i=1

si = su

}
be the state space

and let

Ako;su(s, w)=




X ∈ Zn

+ × Zn
+

∣∣∣∣∣∣∣∣∣∣

n∑

j=1

xij≤zi,
n∑

i=1

xij =wj∀j if
n∑

j=1

wj≤su

n∑

i=1

xij≤wj ;
n∑

j=1

, xij=zi∀i if
n∑

j=1

wj ≥su




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be the DA decision sets.
Then we consider the DA model:

E





N∑

t=1

n∑

i,j=1

kijxt,ij



 → min

subject to the constraints

xt ∈ Ako;su(st, wt)

st+1,i = st,i −
n∑

j=1

xt,ij + wt,i for i = 1, · · · , n if
∑

wt,j ≤ su

st+1,j =
n∑

i=1

xt,ij for j = 1, · · · , n if
∑

wt,j ≥ su

where kij ∈ Rn
+×Rn

+ with kii = 0 ∀i, kij +kjl > kil ∀i 6= j 6= l, kij > 0 ∀i 6= j
and the components wi of disturbances are realized independent of each
other.

(The ”certainty equivalence principle” is not valid for this problem.)

We can convert this problem for N = ∞ in a stationary Markov decision
process as in Section 3.

Especially, we have there

ĉ(s, s′) =

= min





n∑

i,j=1

kijxij

∣∣∣
n∑

i=1

xij =s′j ,
n∑

j=1

xij =si, xij ∈ R+



− independent on d

and at first we simplify the decision sets in the way
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Âko;su(w) =





s ∈ Sko;su

∣∣∣∣∣∣∣∣∣∣

s = w if w ∈ Sko;su

s ≥ w if
∑

wj < su

s ≤ w if
∑

wj > su





.

We can show that the distance properties (28) and (29) are fulfilled for this
Markov decision process. The properties (31) and (32) are valid, too. The
DA decision set of feasible state has the representation

ˆ̂
Ako;su(s, w) =



s̄ ∈ Sko;su

∣∣∣∣∣∣
wi ≤ s̄i ≤ max{si, wi} if

∑
wi ≤ su

min{si, wi} ≤ s̄i ≤ wi if
∑

wi ≥ su



 .

The number of states of the state space can grow rather for certain su
and ko. (State spaces with more than fifty thousand millions exist for only
n = 10, ko1 = · · · = ko10 = 19.) In such cases it seems absolutely necessary
to use approximate methods.

The surrogate problems of Section 4.1 are suitable for stochastic dy-
namic transportation problems with log-concave distributed disturbances
(compare [9]).

Under the assumptions kij(= const) = 1 ∀i,j , ko1 = ko2 = · · · = kon we have

special problems as in Section 4.2.3 with ĉ(s, s̄) = 1
2

n∑
i=1

|s̄i−si| for s̄ ∈ ˆ̂
Ako;su.

In this case we assert that the partial certainty equivalent principle holds
(and that the surrogate problems and the Markov decision process have the
same optimal decisions for identical discrete log-concave distributed distur-
bances). Meantime we have shown that for problems with fixed numbers of
states but a finite number of such problems.

Dominant policies exist for certain structures of state spaces.



Stochastic dynamic programming with ... 43

References

[1] R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Networks Flows. In: Handbooks
in Operations Research and Management Science, Vol. I. Ed. by Neuhauser,
G.L.; Rinnooy Kan, A.H.G.; Todd, M.J. Elsevier Science Pub. B.V.; Amster-
dam 1989.

[2] D.P. Bertsekas, Dynamic Programming and Optimal Control, I and II, Athena
Scientific, Belmont, Massachusetts. New York-San Francisco-London 1995.

[3] D.J. Daley, Stochastic monotone Markov processes, Z. Wahrsch. Verw. Gebi-
ete, 10 (1968), 305–317.

[4] W. Dinkelbach, Entscheidungsmodelle, Springer-Verlag, Berlin-New York
1982.

[5] S.E. Dreyfus and A.M. Law, The Art and Theory of Dynamic Programming,
Academic Press New York-San Francisco-London 1977.
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