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Abstract

Maximum autoregressive processes like MARMA (Davis and Resnick,
[5] 1989) or power MARMA (Ferreira and Canto e Castro, [12] 2008) have
singular joint distributions, an unrealistic feature in most applications. To
overcome this pitfall, absolute continuous versions were presented in Alpuim
and Athayde [2] (1990) and Ferreira and Canto e Castro [14] (2010b), respec-
tively. We consider an extended version of absolute continuous maximum
autoregressive processes that accommodates both asymptotic tail depen-
dence and independence. A full characterization of the bivariate lag-m tail
dependence is presented. This will be useful in an adjustment procedure of
the model to real data. An illustration with financial data is presented at
the end.
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1. Introduction

Many areas of environment, geophysics, engineering or finance demand statis-
tical tools to analyze the extreme events. The classical extreme value theory
(EVT), firstly developed for independent and identically distributed (i.i.d.) ran-
dom variables (r.v.’s), has been expanded under the more realistic assumption of
dependence. Linear autoregressive series like ARMA are perhaps the best known
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and used in the modeling. A heavy-tailed distribution function (d.f.) F can be
represented through

1− F (x) = x−1/γL(x),(1)

where L is a slowly varying function at ∞, i.e, L(ax)/L(x) → 1 for any fixed
a > 0, as x → ∞, and γ > 0 is the tail index that rules the “heaviness" of the
tail (the larger the γ the heavier the tail). Condition (1) means that 1 − F is a
regularly varying function with index −1/γ and models with this formulation are
also denoted Pareto-type. In domains of applications of EVT, taking the maxima
or the sum of two heavy-tailed r.v.’s is basically equivalent for the tail behavior
(see Embrechts et al. [4] 1997, Chap. 2). The max-autoregressive moving average
processes MARMA (Davis and Resnick, [5] 1989) are derived from ARMA by
replacing summation by the maximum operator. The particular case MAR(1) or
ARMAX, given by

Xi = cXi−1 ∨ Zi, 0 < c < 1,(2)

with {Zi}i≥1 an i.i.d. innovations sequence having non-negative support and Xi

independent of Zj , for any integers i < j, has been widely studied in the liter-
ature (Alpuim [1] 1989, Lebedev [19] 2008, Ferreira [10, 11] 2011/2013, Ferreira
and Canto e Castro [12, 13] 2008/2010a, among others). Since MARMA finite-
dimensional distributions can easily be written explicitly, they are more conve-
nient for analysis than heavy-tailed linear ARMA. We remark that second or even
first moments may not exist for heavy-tailed r.v.’s and the lag-m auto-correlation
function (ACF), with m positive integer, cannot be obtained to assess temporal
dependence. Alternative measures within EVT framework have been considered
in the literature, like the lag-m tail dependence coefficient, in short lag-m TDC

(Zhang et al. [20] 2005),

λm = lim
t↓0

P (F (X1+m) > 1− t|F (X1) > 1− t),(3)

where F is the marginal d.f. of a stationary process {Xi}i≥1. Loosely stated, λm

is the probability of one variable being extreme given that another lag-m apart is
extreme too. If λm > 0 then the random pair (X1,X1+m) is tail dependent and
λm = 0 means tail independence. This latter case encompasses exact indepen-
dence and asymptotically vanishing dependence, i.e., the degree of dependence
between exceedances decreases as t ↓ 0, with the extremal behavior of {Xi}i≥1

increasingly approaching an i.i.d. series at higher thresholds. This phenomenon
has been noticed in practical and theoretical applications which include the well-
known autoregressive Gaussian processes. The degree of asymptotically vanishing
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dependence can be measured through the Ledford and Tawn coefficient at lag-m,
ηm (see Heffernan et al. [17] 2007). More precisely, as t ↓ 0,

P (F (X1) > 1− t, F (X1+m) > 1− t) ∼ t1/ηmL(1/t),(4)

where L is a slowly varying function at ∞ and ηm ∈ (0, 1]. It is easily seen
that X1 and X1+m are tail dependent when ηm = 1 and L(1/t) 6→ 0 as t ↓
0, and are asymptotically tail independent otherwise. Moreover, the r.v.’s are
positively associated when 1/2 < ηm < 1, (nearly) independent when ηm = 1/2
and negatively associated when 0 < ηm < 1/2. Observe that (4) can be formulated
as

P

(
min

(
1

1− F (X1)
,

1

1− F (X1+m)

)
> t

)
∼ t−1/ηmL(t),(5)

which, according to (1), means that P (min((1−F (X1))
−1, (1−F (X1+m))−1) > t)

is a regularly varying function with index −1/ηm and thus ηm corresponds to the
tail index of

min

(
1

1− F (X1)
,

1

1− F (X1+m)

)
.(6)

In the sequel, coefficient ηm shall be shortly referred lag-m LTC.

MARMA processes are tail dependent. In particular, the ARMAX model in (2)
with Pareto-type marginals given in (1) has λm = cm/γ (Ferreira, [10] 2011) and so
ηm = 1. Thus it is not suitable for data presenting asymptotic tail independence.
This gap was bridged with other processes, e.g., power MARMA (Ferreira and
Canto e Castro, [12] 2008) and extended moving maxima (Heffernan et al., [17]
2007). For instance, the power ARMAX, in short pARMAX, obtained under the
same assumptions of ARMAX by just replacing the factor parameter c by an
exponent p, i.e.,

Xi = Xp
i−1 ∨ Zi,(7)

with 0 < p < 1, has ηm = max(1/2, pm) (and of course λm = 0).

Now we call the attention for the singular feature of ARMAX to possibly generate
runs of values in exact geometric progression. A long sample path of the process
would also allow us to know the value of p. This behavior might be found in
some specific scenarios (e.g. economic ones) but seems implausible in most of the
practical cases. A minor modification of the process will be free of this defect.
Alpuim and Athayde [2] (1990) presented a model that, instead of a fixed value
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of p, considers a randomly selected value of p at each stage of the process. More
precisely, the absolutely continuous version of ARMAX is given by

Xi = UiXi−1 ∨ Zi,(8)

where {Ui}i≥1 is an i.i.d. sequence with support in (0, 1) and Uj independent of
{Zi}i≥1 for all integer j.

An analogous phenomenon was noticed in the study of the logarithm transform
of pARMAX. An absolutely continuous version was latter presented in Ferreira
and Canto e Castro [14] (2010b),

Xi = UiX
p
i−1 ∨ Zi,(9)

with 0 < p < 1 and denoted pRARMAX.

Here we consider model (9) with 0 < p ≤ 1, and thus denoted extended pRARMAX,
in short EpRARMAX. A sample path of this process with p = 1 and with p = 0.7
can be seen in Figure 1 (left and right, respectively).
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Figure 1. Five thousand realizations of an EpRARMAX process with Ui ⌢ U(0, 1) and
Zi ⌢ Pareto(0.7), i = 1, . . . , 5000, considering p = 1 (left) and p = 0.7 (right).

It is evident the occurrence of sudden large peaks, also observed in heavy-tailed
ARMA and MARMA processes (Davis and Resnick, [5] 1989). We compute the
lag-m tail measures TDC in (3) and LTC in (4) and find that the EpRARMAX
process comprises both lag-m tail independence and dependence (Section 2). The
estimation of these measures will be addressed and allow us to estimate the pa-
rameter p. In Section 3, this will be used in an adjustment methodology of the
EpRARMAX process to a dataset. An application to financial data illustrates
the procedure.
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2. Extremal (in)dependence of EpRARMAX

Consider nonnegative r.v.’s, {Zi}i≥1 and {Ui}i≥1, i.i.d. copies of Z and U , respec-
tively, Uj independent of {Zi}i≥1, for all integer j. A sequence {Xi}i≥1 is said to
be an EpRARMAX process if it satisfies the recursion,

Xi = UiX
p
i−1 ∨ Zi , 0 < p ≤ 1.(10)

Admit that Z has non-degenerate d.f. FZ . The existence of an unique stationary
solution of equation (10) is assured by considering U with support U ⊆ (0, 1).
Denote FU the d.f. of U and K the marginal d.f. of the EpRARMAX. The sta-
tionarity equation of the process is thus given by

K(x) = FZ(x)

∫

U
K((x/u)1/p)dFU (u).(11)

For details, see Ferreira and Canto e Castro [14] (2010b).

Observe that if U is degenerate in 1 we obtain the pARMAX in (7), taking
p = 1 leads to model (8) and, in addition, if U is degenerate in c, 0 < c < 1, we
obtain the ARMAX process in (2).

In the sequel we will consider the case of an EpRARMAX process with Pareto-
type marginal d.f. K, i.e.,

K(x) = 1− x−1/γLK(x),(12)

with tail index γ > 0. According to (11), we thus have the following definition of
FZ :

FZ(x) = K(x)

[
1− x−1/(pγ)LK

(
x1/p

) ∫

U
u1/(pγ)

LK

((
x
u

)1/p)

LK

(
x1/p

) dFU(u)

]−1

.

Note that, LK

((
x
u

)1/p)
/LK

(
x1/p

)
→ 1, as x → ∞, and thus by the Dominated

Convergence Theorem,

FZ(x) ∼ K(x)
[
1− x−1/(pγ)LK

(
x1/p

)
E
(
U 1/(pγ)

)]−1
,(13)

where notation f(x) ∼ g(x) means limx→∞ f(x)/g(x) = 1.

It is not difficult to conclude that the tail behavior of the process is similar to the
one of the innovations Z, sharing both the same tail index γ.

Now consider

at = K−1(1− t) = t−γLK−1(t),(14)
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where K is the marginal d.f. in (12) and the convention
∏j

k=iUk = 1 for i > j.
Applying (13) and (14) we have, for each positive integer k and as t ↓ 0,

(15)

FZ(a
1/pk

t ) ∼
K(a

1/pk

t )

1− (a
1/pk

t )−1/(γp)LK(a
1/pk+1

t )E(U1/(γp))

∼ 1− t1/p
k
L(a

1/pk

t ) + t1/p
k+1

L(a
1/pk+1

t )E(U1/(γp)),

where

L
(
a
1/pk

t

)
= LK

(
a
1/pk+1

t

)
LK−1(t)−1/(γpk+1).(16)

The following Lemmas will be used in the proof of the main result below (Propo-
sition 3).

Lemma 1. For each positive integer m,

(17)

∫
· · ·

∫

Um

K

((
at/

m−1∏

j=0

up
j

m−j

)1/pm)

·
m−1∏

j=0

FZ

((
at/

j−1∏

i=0

up
i

m−i

)1/pj)
dFU (u1) . . . dFU (um) = K(at).

Proof. Just observe that, by (11),

(18)

∫

U
K

((
at/

m−1∏

j=0

up
j

m−j

)1/pm)
dFU (u1) =

K((at/
∏m−2

j=0 up
j

m−j)
1/pm)

FZ((at/
∏m−2

j=0 up
j

m−j)
1/pm)

and hence

(19)

∫

U
K

((
at/

m−1∏

j=0

up
j

m−j

)1/pm)
dFU (u1)FZ

((
at/

m−2∏

j=0

up
j

m−j

)1/pm)

= K

((
at/

m−2∏

j=0

up
j

m−j

)1/pm)
.

Therefore, the left-hand side of (17) simplifies to

∫
· · ·

∫

Um−1

K

((
at/

m−2∏

j=0

up
j

m−j

)1/pm−1)

·
m−2∏

j=0

FZ

((
at/

j−1∏

i=0

up
i

m−i

)1/pj)
dFU (u2) . . . dFU (um).

The result follows by applying successively the same reasoning.
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Lemma 2. For each positive integer m,

(20)

∫
· · ·

∫

Um

m−1∏

j=0

FZ

((
at/

j−1∏

i=0

up
i

m−i

)1/pj)
dFU (u1)...dFU (um)

∼ 1− t+ t1/p
m
L
(
a
1/pm

t

)m−1∏

j=1

E(U1/(γpj ))E(U1/(γp)).

Proof. For simplicity, we do the calculations for m = 3, but the same reasoning
can be applied to any value of m. Observe that, by (15) and the Dominated

Convergence Theorem,
(21)∫∫∫

U3

FZ((at/u3)
1/p)FZ((at/(u3u

p
2))

1/p2)dFU (u1)dFU (u2)dFU (u3)

=

∫∫

U2

FZ((at/u3)
1/p)FZ((at/(u3u

p
2))

1/p2)dFU (u2)dFU (u3)

∼

∫∫

U2

[1− t1/pL(a
1/p
t )u

1/(γp)
3 + t1/p

2
L(a

1/p2

t )u
1/(γp2)
3 E(U1/(γp))][1− t1/p

2
L(a

1/p2

t )

· u
1/(γp2)
3 u

1/(γp)
2 + t1/p

3
L(a

1/p3

t )u
1/(γp2)
3 u

1/(γp)
2 E(U1/(γp))]dFU (u2)dFU (u3).

Thus, after some simplifications, we have

(22)

∫∫

U2

FZ((at/u3)
1/p)FZ((at/(u3u

p
2))

1/p2)dFU (u2)dFU (u3)

∼

∫∫

U2

[1− t1/pL(a
1/p
t )u

1/(γp)
3

+ t1/p
3
L(a

1/p3

t )u
1/(γp2)
3 u

1/(γp)
2 E(U1/(γp))]dFU (u2)dFU (u3)

= 1− t1/pL(a
1/p
t )E(U1/(γp)) + t1/p

3
L(a

1/p3

t )E(U1/(γp2))E(U1/(γp))2.

Now we just need to multiply the last expression by FZ(at). By considering (15)
with k = 1, we obtain the result, i.e.,

1− t+ t1/p
3
L(a

1/p3

t )E(U1/(γp2))E(U1/(γp))2.(23)



54 M. Ferreira

Proposition 3. For each positive integer m,

(24)

P (X1 > at,X1+m > at)

∼ t21{pm≤1/2} + t1/p
m
L
(
a
1/pm

t

)m−1∏

j=1

E(U1/(γpj ))E(U1/(γp))1{pm>1/2}.

Proof. We have, successively,

P (X1 > at,X1+m > at)

= P

(
X1 > at,

m−1∨

j=0

j−1∏

i=0

Upi

1+m−iZ
pj

1+m−j ∨

m−1∏

i=0

Upi

1+m−iX
pm

1 > at

)

= 1−K(at)− P

(
X1 > at,

m−1∨

j=0

j−1∏

i=0

Upi

1+m−iZ
pj

1+m−j < at,

m−1∏

i=0

Upi

1+m−iX
pm

1 < at

)

= 1−K(at)−

∫
· · ·

∫

Um

[
K

((
at/

m−1∏

j=0

up
j

1+m−j

)1/pm)
−K(at)

]

·
m−1∏

j=0

FZ

((
at/

j−1∏

i=0

up
i

1+m−i

)1/pj)
dFU (u2) . . . dFU (um+1).

Now the result is straightforward from Lemmas 1 and 2.

Corollary 4. For each positive integer m,

λm =





0 , 0 < p < 1

E(U1/γ)m , p = 1.
(25)

Corollary 5. For each positive integer m,

ηm =





max(1/2, pm) , 0 < p < 1

1 , p = 1.
(26)

Observe that if U is degenerated equal to some constant c ∈ (0, 1), i.e., cor-
responding to the ARMAX process defined in (2), then E(U1/γ) = c and thus
λm = cm/γ as expected. If 0 < p < 1, the lag-m tail coefficients coincide with
the ones of the pARMAX in (7), indicating that the dependence behavior in the
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tail is controlled by the exponent p and that the random coefficients Ui (i ≥ 1)
are “innocuous" in this case. We conclude that for p = 1 the process is lag-m tail
dependent whilst 0 < p < 1 leads to a lag-m asymptotic tail independent process.
The exponent parameter p of the process can therefore be estimated through the
lag-1 LTC η1 (details on this topic can be seen in Ferreira and Canto e Castro,
[13, 14] 2010a,b). The results are illustrated in Figures 2, 3, 4, 5, based on the
generation of samples of extended pRARMAX processes {Xi}i≥1 of size n = 5000.
The horizontal lines correspond to the true values. For the lag-m TDC (Figures
2, 4) we have used estimator

λ̂m = 2−
log Ĉm (1− k/n, 1− k/n)

log (1− k/n)
, 1 ≤ k < n,(27)

with Ĉm denoting the empirical copula

Ĉm(u, v) =
1

n

n∑

i=1

1{Ri<u,Ri+m<v},(28)

where 1 denotes the indicator function and Ri the rank of Xi (see e.g. Frahm et
al. [16] 2005). In what concerns the lag-m LTC, since it coincides with the tail
index of (6), we consider estimator

η̂m =
1

k

k∑

i=1

log
T
(n,m)
n,n−i+1

T
(n,m)
n,n−k

, 1 ≤ k < n,(29)

corresponding to the Hill estimator (Hill, [18] 1975) of {T
(n,m)
i }i≥1, which is based

on the k upper order statistics T
(n,m)
n,n ≥ . . . ≥ T

(n,m)
n,n−k, with

T
(n,m)
i = min

(
1

1−Ri/(n + 1)
,

1

1−Ri+m/(n + 1)

)
.(30)

For more details, see Draisma et al. [8] (2004) and Ferreira and Canto e Castro
[13, 14] (2010a,b).

In the lag-m LTC sample paths (Figures 3 and 5), i.e., the sample paths of

the Hill estimator of {T
(n,m)
i }i≥1, plotted against the respective k upper order

statistics, it is evident a larger variance for small values of k and a larger bias
whenever k increases. This bias-variance trade-off is a feature of the tail index
estimators in general and of several TDC estimators (this phenomena is also
observed in the lag-m TDC plots of Figures 2 and 4). An optimal choice of
k is not easy to derive and, in practice, the estimate usually corresponds to a
"plateau" region of the plot. Observe that the information of both TDC and
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LTC, as well as considering more than lag-1, are important in order to conclude
whether we have tail dependence or asymptotic independence. For instance, in the
case p = 0.7 (Figures 2 and 3), the lag-1 graph of TDC points out tail dependence
but the lag-1 graph of LTC indicates asymptotic tail independence and the next
lags confirm this latter. However, going further than lags-3, 4 may lead to wrongly
infer asymptotic tail independence if we have p = 1 (Figures 4 and 5).

3. Fitting an EpRARMAX: an application to financial data

In Ferreira and Canto e Castro [14, 15] (2010b,c) it was considered an adjustment
method of pRARMAX to data. Here we shall widen this latter to the EpRARMAX
model by including lag-m TDC and LTC plots, in order to decide wether to fit
an EpRARMAX with p = 1 (tail dependence case) or with p < 1 (asymptotic tail
independence case corresponding to a pRARMAX). This will be illustrated with
an application to the financial time series Nasdaq index, for the period February
1971 to July 2013. More precisely, we analyze the volatility of this index through
the squared log-returns R2

i = (log Pi+1/ log Pi)
2, i = 1, . . . , 10700, corresponding

to a sample of size n = 10700. The values of Ri and R2
i are plotted in Figure

6 (left and right, respectively). Observe the sudden large peaks of the {R2
i }i

series, similar to the EpRARMAX plots in Figure 1. In order to the marginals be
modeled by Pareto distributions, we implement a robust regression leading to the
transformed data Xi = aR2

i + b, with a = 7150.04 and b = 1.12. In the following
we denote sequence {Xi}i≥1 as X.

Observe in Figure 7 the Pareto qq-plot as well as the empirical mean excess
function plot, which indicate a Pareto-type model (see, e.g., Beirlant et al. [3]
2004).

We also test if X is in the domain of attraction of a heavy tail (see, e.g.,
Dietrich et al. [7] 2002). The sample path of this latter, plotted against k (the
number of upper order statistics of X) corresponds to the left graphic of Figure
8. The horizontal line is the critical value above which we reject the heavy tail
domain of attraction. Observe that we do not reject this assumption for k . 990,
which is a plausible result to keep it.

In order to estimate the tail index γ of X, we use estimators in the EVT
literature that can be applied to several time series models (Drees, [9] 2003)
and in particular to the pRARMAX (see Ferreira and Canto e Castro [13, 14]
2010a,b). Here we will use the Hill estimator (Hill, [18] 1975) and moments
estimator (Dekkers et al., [6] 1989), which are plotted in Figure 8 (center and
right, respectively), also against k upper order statistics of X. The value where
both sample paths yield approximately a flat line is at about γ̂ = 0.5.

The lag-m TDC and LTC plots can be seen in Figures 9 and 10, respectively.
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For the lag-m LTC, besides the Hill estimator (first line plots of Figure 10) given
in (29), we also consider the moments estimator (second line plots). From left to
right we have the lags-1, 2, 3 respective estimator plots. Observe that the TDC
sample paths present some stability around zero and the ones of LTC are away
from one, indicating asymptotic tail independence. Observe that the lag-1 LTC
sample path is approximately stable around 0.65 (this is more evident in the
moments estimator) and thus we have p̂ = 0.65. Observe also that the lags-2, 3
LTC plots are approximately stable around 0.5, which is consistent with the ηm
formula of the EpRARMAX given in Corollary 5.

Now, in order to evaluate if a pRARMAX recursion is present in data, we are
going to apply to X the algorithm considered in Ferreira and Canto e Castro [14,
15] (2010b,c), based on the theory of multiple hypothesis tests and on classification
theory. It is quite detailed in these latter references and therefore we only give a
brief description of its steps:

a. According to the pRARMAX recursion in (9), whenever Xi > Xp
i−1 the

maximum component surely comes from the innovation Zi (observe that
if Xi < Xp

i−1, we cannot know for sure from which component Xi comes
from). Thus we apply this criterion (replacing p by the estimate p̂ already
obtained) to separate the innovations and test if this sample is also in the
Fréchet domain of attraction and compute its tail index (recall that the
innovations and the process must have the same tail index).

b. Capture the observations corresponding to the random factors U , through
the following criterion:

if Xi < X p̂
i−1 and Xi belongs to the significance region

Bυ =

{
t :

π0t
−1/(γ̂p̂)fZ(t)

π0t−1/(γ̂p̂)fZ(t) + (1− π0)t−1/(γ̂ p̂)−1FZ(t)
≤ υ

}
, 1

with fZ the density function of of the innovations sequence, π0 = 1 − π1
with π1 = P (UiX

p̂
i−1 > Zi)/P (X p̂

i−1 > Zi), then we consider that Xi is given

by UiX
p̂
i−1 i.e., Ui = Xi/X

p̂
i−1; υ cannot be too large (larger errors) nor

too small (not enough observations to carry out the test of the next step).
For more details, see Ferreira and Canto e Castro [14] 2010 and references
therein.

1
Bυ is obtained based on classification theory and a Bayesian solution that minimizes the risk

of possible wrong decisions, i.e., consider that Xi corresponds to the innovation Zi component

when it actually comes from the autoregressive part UiX
p
i−1 or the other way round, whenever

we have the ambiguous case Xi < X
p
i−1.
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c. Test whether the sample of random variables U captured in step b. has
distribution Beta(1/(γ̂ p̂) + 1, 1), using e.g. the Kolmogorov-Smirnov test
(since we have Ui|Xi∈Bυ,Xi=UiX

p̂
i−1

⌢ Beta(1/(γp) + α, β), assuming that

Ui ⌢ Beta(α, β); observe that if α = β = 1, then Ui ⌢ U(0, 1)).

From Figure 11, we conclude that the innovations Z captured on step a. do not
reject a Fréchet domain of attraction and the tail index is also γ̂Z ≈ 0.5.

We implement step b. and capture the values corresponding to the random
coefficients U , by considering υ = 0.05, . . . , 0.5. In applying the Kolmogorov-
Smirnov test of step c., we do not reject the adjustment hypothesis to the model
Beta(1/(0.5 ∗ 0.65) + 1, 1) for υ = 0.25 (we are considering U ⌢ U(0, 1)), with
p-value= 0.0502 (see Figure 12), which is consistent with the simulation results
in Ferreira and Canto e Castro [14] (2010b). Therefore, we conclude that the
EpRARMAX model, with p = 0.65 and γ = 0.5, can be considered for the
modeling of X.
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Figure 2. TDC estimates λ̂m plotted against k upper order statistics of an EpRARMAX

process with U ⌢ U(0, 1), p = 1 and γ = 1, and for lag-m with (left-to-right and

top-to-bottom) m = 1, . . . , 6, respectively.
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Figure 3. LTC estimates η̂m plotted against k upper order statistics of an EpRARMAX

process with U ⌢ U(0, 1), p = 0.7 and γ = 1, and for lag-m with (left-to-right and

top-to-bottom) m = 1, . . . , 6, respectively.
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Figure 4. TDC estimates λ̂m plotted against k upper order statistics of an EpRARMAX

process with U ⌢ U(0, 1), p = 1 and γ = 1, and for lag-m with (left-to-right and

top-to-bottom) m = 1, . . . , 6, respectively.
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Figure 5. LTC estimates η̂m plotted against k upper order statistics of an EpRARMAX

process with U ⌢ U(0, 1), p = 1 and γ = 1, and for lag-m with (left-to-right and

top-to-bottom) m = 1, . . . , 6, respectively.

Figure 6. Log-returns (Ri) (left) and volatility (R2

i
) (right) of the Nasdaq index, from

February 1971 to July 2013.
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Figure 7. Pareto qq-plot of X (left) and the empirical mean excess function against k

upper order statistics (right).
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Figure 8. Left: sample path of the heavy tail domain of attraction test statistic for

X with the horizontal line corresponding to the critical value above which we reject the

extreme value condition. Center/Right: Hill/momments estimates for X against k upper

order statistics, respectively.
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Figure 9. TDC estimates λ̂m plotted against k upper order statistics of the Nasdaq series

X , for (left-to-right) lags m = 1, 2, 3, respectively.
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Figure 10. LTC estimates η̂m plotted against k upper order statistics of the Nasdaq series

X , for (left-to-right) lags m = 1, 2, 3, respectively. The first line corresponds to the Hill

estimator sample paths and the second line to the moments estimator sample paths.
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Figure 11. Left: sample path of the heavy tail domain of attraction test statistic for the

captured innovations Z in step a., with the horizontal line corresponding to the critical

value above which we reject the extreme value condition. Center/Right: Hill/momments

estimates for Z against k upper order statistics, respectively.
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Figure 12. Empirical and theoretical d.f. of the random coefficients U captured through

step b. (with p̂ = 0.65), for a significance region with υ = 0.25.
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