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Abstract

In some cases, the estimators obtained in compound tests have better
features than the traditional ones, obtained from individual tests, cf. Sobel
and Elashoff (1975), Garner et al. (1989) and Loyer (1983). The bias, the
efficiency and the robustness of these estimators are investigated in several
papers, e.g. Chen and Swallow (1990), Hung and Swallow (1999) and Lan-
caster and Keller-McNulty (1998). Thus, the use of estimators based on
compound tests not only allows a substantial saving of costs, but they also
can (in some situations) be more accurate than the estimators based on the
individual tests.

Nevertheless, each laboratory produces estimates for the prevalence rate
of a given infection using different methodologies, such as halving nested

http://dx.doi.org/10.7151/dmps.1151


80 J.P. Martins, M. Felgueiras and R. Santos

procedures (Sobel and Elashoff, 1975) and square array testing (Kim et al.,
2007). The logistic regression or the weighted least squares regression can
be used in order to combine different prevalence rate estimates (Chen and
Swallow, 1990). In this work some meta-analytical techniques are proposed
as an alternative approach. This methodology has the advantage of being
quite simple and flexible to account for the error source.

Keywords: compound tests, estimation of prevalence, meta-analysis, sen-
sitivity, specificity.
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1. Introduction

Dorfman (1943) has been the first to use group testing. Individuals were gathered
into pools to screen for a binary characteristic (presence or absence of the syphilis
antigen) in order to reduce the costs. A negative result on a pooled mixture of
blood from n people indicates that all of them are free of the disease. A positive
result indicates that at least one of the n individuals has the disease, but we
do not know how many or which ones. In this case, performing individual tests
is advised to identify the individual positives in the sample from the individual
negatives. The optimal batch size minimizes the expected number of tests as the
cost of mixing samples is usually negligible (cf. Liu et al. (2011)).

Since Dorfman’s seminal work, the research on methodologies involving pooled
sample tests has been quite active (Hughes-Oliver, 2006). Moreover, the use of
pooled samples does not refer only to the classification problem (identifying all
the infected individuals in a sample), since it may also be useful in estimating the
prevalence rate p, as Sobel and Elashoff (1975) stated. When the main issue is
the estimation problem, the performing of individual tests is only optional, since
the goal is no longer to dentify the infected individuals. The use only of pooled
samples has also the advantage of anonymity of the infected members, given
that they are not identified. Furthermore, the estimators obtained by applying
compound tests have, under certain conditions, better performance than the tra-
ditional estimators based on individual tests, cf. Sobel and Elashoff (1975), Loyer
(1983) and Garner et al. (1989). The bias, the efficiency and the robustness of
these estimators have been reviewed in several works, such as those from Chen
and Swallow (1990), Lancaster and Keller-McNulty (1998) or Hung and Swallow
(1999). Bilder et al. (2010) propose the use of the package binGroup for the
R software, which includes applications of several compound testing estimators.
Thus, the estimators based on group testing not only allow to obtain monetary
gains (by decreasing the number of performed tests), but also allow to achieve
more accurate estimates, compared to those obtained on the basis of individual
tests.
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Group testing application can be done in several ways (Kim et al., 2007). The
main reason for having different procedures is related to the misclassification
problem, as an individual can be wrongly classified. The sensitivity and the
specificity of the test may be used for measuring the accuracy of the test results.
In particular, the sensitivity of a test generally decreases as the pooled sample
size increases. The choice for a particular group testing procedure depend on the
amount of samples available and the sensitivity, the specificity and the monetary
costs of the process (Liu et al., 2011). For an overview about this problem, known
as the dilution problem, see Hwang (1976), Wein and Zenios (1996), Zenios and
Wein (1998) and Santos et al. (2012).

Thus, when estimating an infection prevalence rate, each laboratory may use
a different procedure even if the sample size is equal. Moreover, the variable mea-
sure for screening the infected individuals could be either qualitative (presence or
absence of the infection) or quantitative (an individual is declared infected if the
amount of substance detected exceeds some threshold l). The aim of this work
is to develop meta-analysis techniques that could allow a researcher to combine
different prevalence rate estimates obtained from possible different experimental
designs and different estimators. This is quite relevant since the meta-analysis
techniques addresses the problem of combining different estimates obtained from
similar processes. If there is any differences between the ways studies are per-
formed, this is usually accounted by the use of some covariate(s). The proposed
method to address this problem involves the process sensitivity and specificity.
Hence, some calculations of these measures are done to some of the most common
methods that resort to group testing: hierarchical algorithms and square array
testing.

The outline of this work is as follows. Section 2 introduces the binomial
model assumption. Section 3 describes some group testing procedures and its
error measures. Some new expressions for the sensitivity and specificity of some
processes are obtained. In the last section, the two paradigms of meta-analysis
are briefly discussed. Subsection 3.3 is the core of this work: it develops an al-
gorithm for combining different estimates with underlying different group testing
procedures. An example is also given and some simulation results are presented to
acknowledge the importance of knowing the error rates of the different procedures
in producing an accurate global estimate.

2. Binomial model

Let X ⌢ Binomial(n, p) where f (x) =
(
n
x

)
px (1− p)n−x and p is unknown and

consider the estimator p̂n = Xn

n . As the estimator mean value is E [p̂n] = p and its

variance is Var [p̂n] =
p(1−p)

n , then p̂n weakly converges, as n → ∞, for a normal



82 J.P. Martins, M. Felgueiras and R. Santos

random variable distribution

(1)
√
n (p̂n − p)

d−→
n→∞

Z ⌢ N
(
0,
√

p (1− p)
)
.

The normal distribution in (1) depends on the unknown parameter p. To over-
come this situation it may be used a variance stabilizing transformation, for
instance (cf. Johnson et al., 1993),

(2) h (x) = 2
√
n arcsin

(√
x
)
.

Next, a variance stabilizing transformation definition is given.

Definition. Let {Xn}n∈N be a sequence of random variables verifying

√
n (Xn − θ)

d→
n→∞

Z ⌢ N (0, σ) ,

then g : R → R is called a variance stabilizing transformation of {Xn}n∈N if
an(g(Xn) − g(θ)) has an asymptotic normal distribution N (0, c) where {an}n∈N
is a sequence of real numbers and c > 0 does not depend on θ.

Holland (1973) defines this type of transformations as asymptotically stabilizing
variance transformations.

Anscombe (1948) has shown that 2
√
n arcsin

(√
p̃
)
, where p̃ = X+3/8

n+3/4 , in-

creases the convergence rate to a normal random variable with unit variance and
mean 2

√
n arcsin

(√
p
)
.

From (1), it is readily established a (1− α)× 100% confidence interval for p

(3)

]{
sin

(
arcsin

(√
p̃
)
− z1−α

2
√
n

)}2

,

{
sin

(
arcsin

(√
p̃
)
+

z1−α

2
√
n

)}2
[
,

where z1−α is the quantile 1−α of the standard normal distribution. This interval
suffers from overconservatism for p near 0 and 1 (cf. Kulinskaya et al., 2008).

One alternative is to use the normal approximation N (ln (p) , (1− p) /np)
to the distribution of ln (p̃). Hence, other nominal (1− α) × 100% confidence
interval for p is

(4)
]
exp

(
ln (p̃)− z1−α ((1− p̃) /np̃)1/2

)
, exp

(
ln (p̃) + z1−α ((1− p̃) /np̃)1/2

)[
.

Both intervals suffer from high variations in its effective confidence as p decreases
to zero. This results from the highly skewed nature of the binomial distribution
when p is not close to 1/2. The log-transformation is more accurate than the
defined by (1) when p is close to zero (cf. Kulinskaya et al., 2008).
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3. Group testing procedures

The accuracy of an estimate of a prevalence rate p is strongly related to the size
of the sample which has been used. However, when group testing procedures are
used it is necessary to assess the quality of the estimate, which is related to the
quality of the results of the experimental test. Thus, consider the problem of
estimating the prevalence rate of some disease and let Xi = 1 denote an infected
individual and Xi = 0 denote a non-infected individual. Let M denote the
chosen procedure. Hence, the test sensitivity is equal to ϕs = P

(
X+

i |Xi = 1
)

where X+
i stands for a positive test result. The test specificity is given by ϕe =

P
(
X−

i |Xi = 0
)
where X−

i stands for a negative test result.

Finally, for evaluating the quality of the procedureM, the pooling sensitivity
and the pooling specificity as defined by Kim et al. (2007) will be used. The
pooling sensitivity or the sensitivity of the process measure the probability of
an infected individual be correctly identified by the methodology M, that is,
ϕM
s = PM (+|Xi = 1). The pooling specificity or the specificity of the process

stands for the probability of a non-infected individual be correctly classified by
the methodology M, that is, ϕM

e = PM (−|Xi = 0). For an individual testing
procedure the sensitivity (specificity) of the process is equal to the test sensitivity
(specificity).

Dorfman’s procedure is just the first procedure presented from a wider fam-
ily called hierarchical algorithms. The extensions of this work (cf. Finuncan
(1964), Sterret (1957), Wein and Zenios (1996)) suggest dividing positive pools
into smaller subpools until eventually all positive specimens are individually
tested.

A multistage hierarchical algorithm is an algorithm that generalizes Dorf-
man’s procedure to more than two stages, that is, a sample is divided at each
stage into smaller nonoverlapping groups until eventually all positive specimens
are individually tested. At each stage, subsamples from the samples that tested
positively are retested. Johnson et al. (1991) computed expressions for the er-
ror rates of these processes: the sensitivity and the specificity of the process
(the authors named these quantities as pooling sensitivity and pooling speci-
ficity, respectively, but only considered the classification problem). Besides, the
authors do not take into account the dilution effect as the sensitivity and speci-
ficity of a compound test must depend on the number of infected individuals in
the group. This is no surprise, since in the literature this effect is usually disre-
garded. Moreover, when the dilution effect is considered (e.g. Wein and Zenios
(1996) and Zenios and Wein (1998)) the construction of hierarchical models to
capture the dilution effect does not measure the influence of dilution and rar-
efaction (decreasing of the amount of substance per volume unit when infected
and non-infected samples are mixed for batched testing) on the sensitivity and
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specificity of the chosen process. We will consider both problems and the dilution
effect to establish the sensitivity and specificity of the processes.

For practical reasons, only two or three stages are usually performed. Hence,
next we just generalize the formula for the sensitivity and the specificity of the
two-stages procedure discussed in Santos et al. (2012) and compute those quan-
tities for the three stages case.

Let us consider an hierarchical algorithm with s stages and let ni denote the
number of individuals at the i-th stage. At the last stage, when the classification
problem is considered, we have ns = 1. However, when we just want to estimate
the prevalence rate, this might not be the case and the condition verified is
just n1 > · · · > ns ≥ 1 (cf. Chen and Swallow (1990), Hung and Swallow
(1999), Lancaster and Keller-McNulty (1998)). For low prevalence rates, the use
of ns > 1 may be justified if a positive outcome when testing a pooled sample of
size ns at the last stage means (almost surely) that only one of the individuals
is infected (cf. Santos et al., 2012). Hence, when ns > 1 we will consider that,
for estimation purposes, an individual Xi is correctly/wrongly classified (X/×)
according to the next table.

Table 1. Correct and wrong decisions at the s-th stage.

Pooled sample at the s-th stage
Infected Not infected

Xi = 0 Test result + X ×
Test result − X X

Xi = 1 Test result + X Not possible
Test result − × Not possible

In an infected sample at the s-th stage, if the test outcome is positive it means
(almost surely) that only one is infected and that the others individuals are
not. Therefore, concerning the estimation problem, all the individuals are well
classified.

Suppose that the tests results are independent. Let I [n] =
∑n

i=1 Xi represent
the number of infected elements in a sample of size n and I [i,n] denote the prob-
ability P(I [n] = i) =

(n
i

)
piqn−i, i = 0, . . . , n. Let X [+,n] [resp. X [−,n]] represent

a positive [resp. negative] result on the compound test with n individuals and
denote ϕ[m,n]

s
= P(X [+,n]|I [n] = m). For s = 2, the sensitivity of the process is

given by the probability of an individual being correctly identified as infected.
This happens when in both stages the pooled or individual sample is classified as
positive
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ϕ
H
sn1 ,n2

= P
(

X
+
1 |X1 = 1

)

=

n1−1
∑

i=0

P
(

X
[+,n2]|X1 = 1, X

[+,n1]
)

P
(

X
[+,n1]

|X1 = 1, I
[n1−1]

= i
)

P
(

I
[n1−1]

= i
)

=

n1−1
∑

i=0

min(i,n2−1)
∑

j=max(0,n2−i−1)

(

i
j

)(

n1−i−1
n2−j−1

)

(

n1−1
n2−1

) P
(

X
[+,n2]

|I
[n2]

= j + 1
)

P
(

X
[+,n1]

|I
[n1]

= i + 1
)

I
[i,n1−1]

=

n1−1
∑

i=0

min(i,n2−1)
∑

j=max(0,n2−i−1)

(

i
j

)(

n1−i−1
n2−j−1

)

(

n1−1
n2−1

) ϕ
[j+1,n2]
s ϕ

[i+1,n1]
s I

[i,n1−1]
.

Note that, disregarding the subject X1, the number of infected individuals dis-
tribution at the second stage given i infected individuals at the first stage is an
hypergeometric distribution H (n1 − 1, n2 − 1, i) where n1 − 1 is the population
size, i is the number of successes within the population and n2−1 is the number of
draws. The specificity of the process is given by the probability of a non-infected
individual being correctly identified

(
X−

1

)
. This is the case when the test out-

come of the pooled sample at the first stage is negative and when it is positive
but, at the second stage, the pooled sample is whether infected or screened as
negative. Hence, four cases have to be considered.

ϕ
H
en1 ,n2

= P
(

X
−

1 |X1 = 0
)

=

a2
∑

i=0

(

P
(

X
[−,n1]

|I
[n1−1]

= i
)

+ P
(

X
[−,n2]

|X
[+,n1]

)

P
(

X
[+,n1]

|I
[n1−1]

= i
))

P
(

I
[n1−1]

= i
)

= [ϕe + ϕe (1 − ϕe)] q
n1−1

+

a2
∑

i=1

[(

1 − ϕ
[i,n1]
s

)

+ P
(

X
[−,n2]

|X
[+,n1]

)

ϕ
[i,n1]
s

]

I
[i,n1−1]

= αq
a2 +

a2
∑

i=1






ϕe

(

a2−i

n2−1

)

(

a2
n2−1

)ϕ
[i,n1]
s +

b2
∑

j=b1

(

i
j

)(

a2−i

n2−j−1

)

(

a2
n2−1

)

(

1 − ϕ
[j,n2]
s

)

ϕ
[i,n1]
s +

(

1 − ϕ
[i,n1]
s

)






I
[i,a2]

,

where α = 2ϕe − ϕ2
e, q = 1 − p, a2 = n1 − 1, b1 = max (1, n2 − i− 1),

b2 = min (i, n2 − 1) and 1 − ϕ
[0,n2]
s stands for ϕe. Observe that n1 and n2 do

not affect the probability of getting a negative outcome when testing a non-
infected pooled sample since the dilution effect occurs when at least one infected
individual is part of the mixed sample. These results are just a straightforward
generalization of Santos et al. (2012) result for n2 = 1.

For s = 3, an infected individual is correctly screened if at every stage the
test outcome is positive. Thus, omitting the sum limits

ϕ
H
sn1 ,n2,n3

= P
(

X
+
1 |X1 = 1

)

=
∑

i

∑

j

∑

k

P
(

X
[+,n3]

|X
[+,n1]

,X
[+,n2]

)

P
(

X
[+,n2]|X

[+,n1]
)

P
(

X
[+,n1]|I

[n1−1]
= i

)

I
[i,n1−1]

=
∑

i

∑

j

∑

k

(

j
k

)(

n2−j−1
n3−k−1

)

(

n2−1
n3−1

)

(

i
j

)(

n1−i−1
n2−j−1

)

(

n1−1
n2−1

) ϕ
[k+1,n3]
s ϕ

[j+1,n2]
s ϕ

[i+1,n1]
s I

[i,n1−1]
,

where i, j, k stand for the number of infected individuals at the first, second and
third stage respectively.



86 J.P. Martins, M. Felgueiras and R. Santos

The specificity of the process is computational demanding since several situations
are possible when a non-infected individual is screened correctly. We will consider
the cases of having the first negative outcome at the first, second and third stage
– ϕH,1

en1 ,n2,n3
, ϕH,2

en1 ,n2,n3
, ϕH,3

en1 ,n2,n3
. The sum upper limits are once again omitted.

Therefore

ϕH,1
en1 ,n2,n3

=

a2∑

i=0

P
(
X

[−,n1]
1 |X1 = 0, I [n1−1] = i

)
I [i,n1−1]

= ϕeq
n1−1 +

a2∑

i=1

(
1− ϕ[i,n1]

s

)
I [i,n1−1].

Concerning the process specificity,

ϕ
H,2
en1 ,n2,n3

=

a2
∑

i=0

P
(

X
[−,n2]

, X
[+,n1]

|X1 = 0, I
[n1−1]

= i
)

I
[i,n1−1]

= [ϕe (1 − ϕe)] q
n1−1

+

a2
∑

i=1

[

P
(

X
[−,n2]

|X1 = 0,X
[+,n1]

)

ϕ
[i,n1]
s

]

I
[i,n1−1]

=
(

ϕe − ϕ
2
e

)

q
a2 +

a2
∑

i=1






ϕe

(

n1−i−1
n2−1

)

(

n1−1
n2−1

) ϕ
[i,n1]
s +

b2
∑

j=b1

(

1 − ϕ
[j,n2]
s

)

(

i
j

)(

n1−i−1
n2−j−1

)

(

n1−1
n2−1

) ϕ
[i,n1]
s






I
[i,n1−1]

and

ϕ
H,3
en1 ,n2,n3

=

a2
∑

i=0

P
(

X
[−,n3], X

[+,n1], X
[+,n2]|X1 = 0, I [n1−1] = i

)

I
[i,n1−1]

=
[

ϕe (1− ϕe)
2]

q
n1−1 +

a2
∑

i=1

[

P
(

X
[−,n3], X

[+,n2]|X1 = 0, X [+,n1]
)

ϕ
[i,n1]
s

]

I
[i,n1−1]

=
[

ϕe (1− ϕe)
2
]

q
n1−1 +

a2
∑

i=1

(

n1−i−1
n2−1

)

(

n1−1
n2−1

) ϕe (1− ϕe)ϕ
[i,n1]
s

+

a2
∑

i=1

b2
∑

j=b1

ϕe

(

n2−j−1
n3−1

)

(

n2−1
n3−1

) ϕ
[j,n2]
s ϕ

[i,n1]
s I

[i,a2]

+

a2
∑

i=1

b2
∑

j=b1

c2
∑

k=1

(

1− ϕ
[k,n3]
s

)

(

j

k

)(

n2−j−1
n3−k−1

)

(

n2−1
n3−1

) ϕ
[j,n2]
s

(

i

j

)(

n1−i−1
n2−j−1

)

(

n1−1
n2−1

) ϕ
[i,n1]
s I

[i,a2],

where c1 = max (1, n3 − j − 1) and c2 = min (j, n3 − 1) Finally,

ϕH
en1 ,n2,n3

= ϕH,1
en1 ,n2,n3

+ ϕH,2
en1 ,n2,n3

+ ϕH,3
en1 ,n2,n3

.

Santos et al. (2012) have shown that, for low prevalence rates, in order to assess
the dilution effect in the misclassification of an individual, knowing what happens
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when just one (or two) infected elements are present in the pooled sample is
sufficient. In that case, the previous formulas can be easily simplified.

Array-based specimen pooling is an alternative to hierarchical group testing
that uses overlapping pools. In its simplest version (square array), a sample of
size n2 is placed in a n × n matrix. Then, all the samples within the same row
and the same column are gathered for batched testing. So, this process involves
at least 2n tests as subsequent individual tests may be performed. In a square
array procedure without further testing, an individual is declared infected if both
experimental tests to its “row” and “column” samples have a positive result.
If individual testing is performed in the suspected infected samples (individuals
whose pooled samples tested positive), a sample is screened as infected if and only
if the row, column and individual test outcomes are all positive. A variant of this
method, the so called square array with master pool testing, involves a initial test
to a mixture with all the n samples. For the simplest case of a n×n square array
testing with no subsequent individual testing, let Xi,j = 1 (Xi,j = 0) denote an
infected (non-infected) individual at the i-th row and j-th column of the n × n
matrix. Denote a positive (negative) result in the i-th row, j-th column and i-th

row and j-th column cell by X+
i,:(X

−

i,:),X
+
:,j

(
X−

:,j

)
and X+

i,j

(
X−

i,j

)
, respectively.

The process sensitivity is equal to

ϕA
s
n2

= P
(
X+

i,j |Xi,j = 1
)

= P
(
X+

i,:,X
+
:,j|Xi,j = 1

)
.

Assuming that given the true status of the i-th row and j-th column, the row
and column tests are conditionally independent of each other,

ϕA
s
n2

=

n−1∑

i=0

P
(
X+

i,:|I [i+1,n−1]
)
I [i,n−1]

n−1∑

j=0

P
(
X+

:,j|I [j+1,n−1]
)
I [j,n−1]

=

n∑

i=1

ϕ[i,n]
s I [i−1,n−1]

n−1∑

j=1

ϕ[j,n]
s I [j−1,n−1]

=
n−1∑

i=1

n−1∑

j=1

ϕ[i,n]
s ϕ[j,n]

s I [i−1,n−1]I [j−1,n−1].

Concerning the specificity, an individual is screened as non-infected if at least the
i-th or j-th columns tests result are negative. Thus,
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ϕA
e
n2

= 1−
n−1∑

i=0

P
(
X+

i,:|Xi,j = 0, I [i,n−1]
)
I [i,n−1]

n−1∑

j=0

P
(
X+

:,j|Xi,j = 0, I [j,n−1]
)
I [j,n−1]

= 1−
(
(1− ϕe) q

n−1 +
n−1∑

i=1

ϕ[i,n]
s I [i,n−1]

)
(1− ϕe) q

n−1 +
n−1∑

j=1

ϕ[j,n]
s I [j,n−1]


 .

For the others cases, Kim et al. (2007) give expressions for both measures. This
square array design is the common example of a two dimensional procedure. Oth-
ers two dimensional designs are possible as well extensions to higher dimensions
(cf. Berger et al. (2000)) although its application in practice is very rare.

4. Meta-analysis with k studies

For the application of the meta-analysis techniques (combination of the infor-
mation provided from different studies) it is necessary to decide on the nature
of the parameter of interest. If there is evidence to assume that the parameter
is the same across the different studies, a fixed effects model (subsection 4.1) is
recommended. But, if the parameter is in fact a random variable with possible
different values in each study, the use of a random effects model is advised (sub-
section 4.2). In this case, the use of covariates in a meta-regression study is an
useful tool for assessing the variance between studies. There are several ways
for deciding the kind of model that best suits the meta-analysis (Hartung et al.,
2008).

4.1. Fixed effects model

Suppose that k studies concerning the estimation of some prevalence rate p1, . . . , pk
are available. In a fixed effects model it is assumed that p1 = · · · = pk = θ.

Let Ei be the estimator used in the i-th study. An overall estimator is given
by

(5) θ̂ =

∑k
i=1 wiEi∑k
i=1 wi

,

where θ̂ is a convex linear combination of the Ei estimators. Since the within
study variances are usually unknown, the weights wi are chosen as the inverse of
the estimated effect size variance

(6) wi =
1

V̂ar (Ei)
,
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in order to reduce the overall estimator θ̂ variance.

As Hartung et al. (2008) point out, it is also useful to attach some quality
index qi to the i-th study along with the nonnegative weights w′

is. Thus, yielding
the following estimator of θ

(7) θ̂∗ =

∑k
i=1 qiwiEi∑k
i=1 qiwi

with estimated asymptotic variance

(8) σ̂2
[
θ̂∗
]
= V̂ar

[
θ̂∗
]
=

∑k
i=1 q

2
iw

2
i V̂ar [Ei](∑k

i=1 qiwi

)2 .

A (1− α)× 100% confidence interval for θ is given by

(9)
]
θ̂∗ − z1−α/2σ̂θ̂∗ , θ̂

∗ + z1−α/2σ̂θ̂∗

[
.

4.2. Random effects model

In a random effects model the parameter p is described by some distribution F .
Let µ stand for the random variable mean value and τ2 stand for the random
variable variance (between study variance). The estimator θ̂∗ of µmay be updated
to (cf. Kulinskaya et al., 2008)

(10) θ̂∗ (τ) =

∑k
i=1 qiwi (τ)Ei∑k
i=1 qiwi (τ)

,

where

(11) wi (τ) = 1/
(
τ2 + σ̂2

i (θi)
)

and σ̂2
i represents the within study variance.

For estimating τ2, the DerSimonian and Laird (1986) estimator defined by

(12) τ̂2DL = max

(
0,

Q− (k − 1)
∑k

i=1 ŵi −
∑k

i=1 ŵ
2
i /
∑k

i=1 ŵi

)
,

where Q is the commonly used Cochran’s statistic (cf. Cochran, 1954). Rukhin,
Biggerstaff and Vagel (2000) provide the equations for the maximum likelihood
estimator and for the restricted maximum likelihhod estimator. Biggerstaff and
Tweedie (1997) provide confidence intervals on τ .
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4.3. Prevalence rate estimation

There are few papers on the issue of combining prevalence rate estimates from
different studies. One of the reasons is that we always have the obvious solution
of presenting an overall estimate as defined in (7) or (10). However, as far as
we known, none performing quality index has been defined for the estimators.
However, two alternatives were presented by Chen and Swallow (1990), but they
do not use an overall estimator. These author’s methods are based in the compu-
tation of the slope of linearized logistic regression model. This process also does
not consider possible different experimental designs.

Our suggestion is to use the probability of denoting a specimen as positive(
X+

1

)
when a methodology M is chosen (cf. Santos et al., 2012)

pM = PM

(
X+

1 |X1 = 1
)
P (X1 = 1) + PM

(
X+

1 |X1 = 0
)
P (X1 = 0)

= ϕM
s p+

(
1− ϕM

e

)
(1− p)

= 1− ϕM
e +

(
ϕM
s + ϕM

e − 1
)
p,

where ϕM
s and ϕM

e stand for the process sensitivity and the process specificity, as
previously defined. Thus, the number of specimens screened as positive follows
a binomial distribution B

(
N, pM

)
. Hence, the expected number of specimens

denoted as defective is equal to NpM. Solving the previous equation in order to
p,

p =
pM + ϕM

e − 1

ϕM
s + ϕM

e − 1
,(13)

we find the following estimator for p

(14) p̃ =

∑N
i=1 Yi

N + ϕM
e − 1

ϕM
s + ϕM

e − 1

for 1−ϕe <
∑N

i=1 Yi

N < ϕs and ϕM
s +ϕM

e > 1 where Yi’s are independent Bernoulli
random variables (Yi = 1(0) stands for a positive (negative) process classification

of the i-th individual) and N is the sample size. The restriction
∑N

i=1 Yi

N < ϕs

could be dropped in practice as the prevalence rate p is low when group testing
procedures are applied (cf. Hung and Swallow, 1999). Hence, it is expected that
condition to verify at least for a reasonable sample size N . For reasonable process
sensitivity and process specificity the inequality ϕM

s + ϕM
e > 1 is also verified.

The condition
∑N

i=1 Yi

N > 1−ϕe is very important as the expected number of false
positives (given by (1 − ϕe)N) is higher than the expected number of infected
individuals (pN). Moreover, the number of individuals screened as positive is also
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raised by the number of infected individuals correctly classified. Our estimator
can not be applied in this case as it will lead to a negative estimate. For avoiding
an overestimation of p we do not recommend the use of any estimator in these
conditions.

When using group testing procedures, it is not always possible to get an
observed value of

∑n
i=1 Yi directly. Loyer (1983) and Hung and Swallow (1999)

discuss the estimation of the prevalence rate in hierarchical algorithms procedures
and Xie et al. (2001) consider the case of square array algorithms.

Let p̃i denote the estimator for p in the i-th study and consider the stabilizing
variance transformation g (x) = 2

√
n arcsin (

√
x) defined in (2). We advise the

use of the estimator of

(15) h (p̃i) =
√
n arcsin

(√
p̃i

)
.

The estimator mean E [h (p̃i)] is asymptotically equal to h (p), i.e., E [h (p̃i)]
.
=

h (p). This estimator mean square error is

(16) MSE [h (p̃i)] = (E (h (p̃i))− h (p))2 +Var [h (p̃i)] .

Thus, we suggest as weights

(17) wi =
1

Var [h (p̃i)]
,

and as quality index

(18) qi =
1

(h (p̃i)− h (p))2
.

Finally, an overall estimator is given by

(19) h (p) =

∑
wiqih (p̃i)∑

wiqi
.

The use of the estimators h (p̃i) reduces the h (p) estimator variance. Besides, it
has the advantage that, even for a small study sample size, an estimate of the
within study variance will not be required. However, note that those estimators
are not unbiased for h (p), since h is a non-linear transformation. Note that the
meaning of an estimate given by p depends on wether a fixed effects or a random
effects model is assumed.

Example 1. Let Xn ⌢ Binomial (n, p) and consider the estimator defined in
(15). Since, as n → ∞,
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(20)
(
arcsin

√
p̃n − arcsin

√
pn

)
d−→

n→∞
T ⌢ N

(
0,

1

2
√
n

)
,

then

(21) h (p) =

∑
wiqi arcsin

√
p̃i∑

wiqi
.

From (17) and (20) we get

(22) wi = 4n

and by (18) we have

qi =
1

(h(p̃i)− h (p))2

=
1

(
arcsin

(√
p̃i

)
− arcsin

(√
p
))2 .(23)

However, the estimator h (p) depends on the unknown parameter θ! To overcome
this problem we suggest the following algorithm.

Algorithm.

Let h0 (p) be an initial estimate and then compute recursively new estimates
according to the relation

(24) hj+1 (p) =

∑k
i=1 wi × qi × hj (p̃i)∑k

i=1wi × qi
.

The process stops when a new estimate differs from the previous one less than
some tolerance ε (previously established). There is a drawback in this process
because

qi =
1

(h (p̃i)− h (p))2

and the denominator may assume the zero value. This is easily overcome, replac-
ing qi by

qi =
1

(max (t, h (p̃i)− h (p)))2
,

where t is some value close to zero. The process convergence is not affected by
this minor change.
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Example 2. The table below contains the data on 13 trials on the prevention of
tuberculosis using BCG vaccination that may be found in Hartung et al. (2008).

Table 2. Data from a meta-analysis study on the effect of BCG.

Study Infected Non-infected

1 4 119

2 6 300

3 3 228

4 62 13536

5 33 5036

6 180 1361

7 8 2537

8 505 87886

9 29 7470

10 17 1699

11 186 50448

12 5 2493

13 27 16886

In study 6 the proportion of infected individuals is at least 3 times higher than
in the other studies. So, suppose that for all studies the process sensitivity is
ϕs = 0.95 and the process specificity is ϕe = 0.995. In this case, studies 4, 7,
9 and 11 to 13 can not be used since the estimate is less than 1 − ϕe = 0.005.
Using the remaining studies, an overall estimate of the prevalence rate is, for a
tolerance ε = 10−6 and t = 10−4, 0.2837%, (note that study 8, with the biggest
sample size, provides a prevalence rate estimate of only 0.07548). If the process
sensitivity and the process specificity of the study 6 is reduced to ϕs = ϕs = 0.9
then the prevalence rate overall estimate reduces to only 0.0982%. This shows the
importance of giving more weight to the estimates obtained from methodologies
with lesser error rates.

The previous example shows the impact of the quality index in the global esti-
mate. However, the example just considered one of the studies different from the
others concerning the process sensitivity and the process specificity. To verify
the differences, in general, between our estimator and an unweighted mean of the
estimates some simulations were performed using the MatLab 6 software. Hence,
to assess the effect of our methodology in the accuracy of the global estimate, a
104 replicas of meta-analysis application were simulated. In this simulation:

• the prevalence rate was generated by an uniform random variable with
values on the interval (0.0001, 0.3);
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• the overall estimator defined in (19) was used in each simulated study with
ε = 10−4 and t = 10−9;

• the number of studies K within each meta-analysis was generated by a
discrete uniform random variable varying on the set {5, 6, . . . , 15}, i.e., K ⌢
UniformDiscrete{5, . . . , 15};

• each study dimension N was dependent on the prevalence rate since a very
low prevalence rate will require a larger sample size. Thus, for:

– p ∈ (0.01, 0.3) N : was generated by a discrete uniform random variable
N ⌢ UniformDiscrete (5, . . . , 1000);

– p ∈ (0.001, 0.01) N : was generated by a discrete uniform random variable
N ⌢ UniformDiscrete (50, . . . , 10000);

– p ∈ (0.0001, 0.001) N : was generated by a discrete uniform random vari-
able N ⌢ UniformDiscrete (500, . . . , 100000);

• each study process sensitivity and specificity was generated by distinct ran-
dom variables with uniform distribution on the interval (0.80, 1).

The following table summarizes the simulation results. For each estimator (un-
weighted and weighted mean) it is given the mean, median, percentiles 5 and 95
and the standard deviation of the bias absolute value.

Table 3. Meta-analysis simulation with 105 replicas.

Estimator
unweighted mean weighted mean

mean 0.001863 0.001279
Bias median 0.000800 0.000802
absolute P5 0.000106 0.000072
value P95 0.005537 0.003435

Std. deviation 0.002978 0.002200

In the simulation, the choice of the unweighted mean of the estimates or of the
weighted mean without a quality index led to similar results. When a quality
index is used, the bias reduces over 20% in average. This shows that although
when using the quality index an initial estimate for the prevalence rate is required,
this is not important for the convergence of our method. For instance, our initial
value was 0.5 although we only consider prevalence rates below 0.1. An alternative
to this procedure may be considered if there is any reliable information about
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variance of the estimators used in each study. In that case the weights wi’s may
be rewritten as (6) or (11) wether a fixed effects model or a random effects model
is being considered.

5. Conclusion

Since there are several processes for estimating the prevalence rate of a disease
(or its mean value), it is necessary to consider the sensitivity and specificity
of the process used for finding each estimate. The use of variance stabilizing
transformations avoids the within study variance estimation, thus reducing the
possible sources of error. The analytical expressions for those quantities could
be implemented in the future in a statistical package in order to favor the exten-
sion of meta-analysis techniques to the problems involving different group testing
procedures.

Acknowledgement

Research partially sponsored by national funds through the Fundação Nacional
para a Ciência e Tecnologia, Portugal − FCT under the project

(PEst-OE/MAT/UI0006/2011).

References

[1] F. Anscombe, The transformation of poisson, binomial and negative-binomial data,
Biometrika 35 (1948) 246–254.

[2] T. Berger, J.W. Mandell and P. Subrahmanya, Maximally efficient two-stage screen-

ing, Biometrics 56 (2000) 833–840.

[3] B.J. Biggerstaff and R.L. Tweedie, Incorporating Variability in Estimates of Het-

erogeneity in the Random Effects Model in Meta-analysis , Stat. Med. 16 (1997)
753–768.

[4] C.R. Bilder, B. Zang, F. Schaarschmidt and J.M. Tebbs, binGroup: a package for

group testing, The R Journal 2 (2010) 56–60.

[5] C.L. Chen and W.H. Swallow, Using group testing to estimate a proportion, and to

test the binomial model , Biometrics 46 (1990) 1035–1046.

[6] W.G. Cochran, The combination of estimates from different experiments , Biometrics
10 (1954) 101–129.

[7] R. DerSimonian and N. Laird, Meta-analysis in clinical trials , Control. Clin. Trials
7 (1986) 177–178.

[8] R. Dorfman, The detection of defective members in large populations , Ann. Math.
Statistics 14 (1943) 436–440.



96 J.P. Martins, M. Felgueiras and R. Santos

[9] H.M. Finuncan, The blood testing problem, Appl. Stat. 13 (1964) 43–50.

[10] F.C. Garner, M.A. Stapanian, E.A. Yfantis and L.R. Williams, Probability Estima-

tion With Sample Compositing Techniques , Journal of Official Statistics 5 (1989)
365–374.

[11] J. Hartung, G. Knapp and B.K. Sinha, Statistical Meta-Analysis with Applications
(John Wiley & Sons, Hoboken, 2008).

[12] P. Holland, Covariance stabilizing transformations , Ann. Stat. 14 (1973) 84–92.

[13] J.M. Hughes-Oliver, Pooling experiments for blood screening and drug discovery,
in: Screening — Methods for Experimentation in Industry, Drug Discovery, and
Genetics, Dean and Lewis (Ed(s)), (New York: Springer, 2006) 48–68.

[14] M. Hung and W.H. Swallow, Robustness of Group Testing in the Estimation of

Proportions , Biometrics 55 (1999) 231–237.

[15] F.K. Hwang, Group testing with a dilution effect , Biometrika 63 (1976) 671–673.

[16] N. Johnson, S. Kotz and X. Wu, Inspection Errors for Attributes in Quality Control
(Chapman and Hall Ltd., NewYork, 1991).

[17] N. Johnson, S. Kotz and N. Balakrishnan, Continuous Univariate Distributions, Vol.
2 (John Wiley & Sons, NewYork, 1993).

[18] H. Kim, M. Hudgens, J. Dreyfuss, D. Westreich and C. Pilcher, Comparison of group

testing algorithms for case identification in the presence of testing errors , Biometrics
63 (2007) 1152–1163.

[19] E. Kulinskaya, S. Morgenthaler and R.G. Staudte, Meta Analysis: a guide to cali-
brating and combining statistical evidence (Wiley, Chichester, 2008).

[20] V.A. Lancaster and S. Keller-McNulty, A Review of Composite Sampling Methods ,
JASA 93 (1998) 1216–1230.

[21] S.C. Liu, K.S. Chiang, C.H. Lin, W.C. Chung, S.H. Lin and T.C. Yang, Cost analysis
in choosing group size when group testing for Potato virus Y in the presence of

classification errors , Ann. Appl. Biol. 159 (2011) 491–502.

[22] M.W. Loyer, Bad probability, good statistics, and group testing for binomial estima-

tion, Am. Stat. 37 (1983) 57–59.

[23] A.L. Rukhin, B.J. Biggerstaff and M.G. Vangel, Restricted maximum likelihood es-

timation of a common mean and the Mandel-Paul algorithm, J. Stat. Plan. Infer.
83 (2000) 319–330.

[24] R. Santos, D. Pestana and J.P. Martins, Extensions of Dorfman’s theory, in: Se-
lected Papers of SPE 2010, Portuguese Statistical Society (Ed(s)), (New York:
Springer, 2012) in print.

[25] K.M. Sobel and R.M. Elashoff, Group testing with a new goal, estimation,
Biometrika 62 (1975) 181–193.

[26] A. Sterret, On the detection of defective members of large populations , Ann. Math.
Statistics 28 (1957) 1033–1036.



Meta-analysis techniques applied in prevalence rate estimation 97

[27] L.M. Wein and S.A. Zenios, Pooled testing for HIV screening: capturing the dilution

effect , Oper. Res. 44 (1996) 543–569.

[28] M. Xie, K. Tatsuoka, J. Sacks and S.S. Young, Group testing with blockers and

synergism, JASA 96 (2001) 92–102.

[29] S.A. Zenios and L.M. Wein, Pooled testing for HIV prevalence estimation exploiting

the dilution effect , Stat. Med. 17 (1998) 1447–1467.

Received 16 March 2013
Revised 12 October 2013




