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Abstract

The approximate upper percentile of Hotelling’s T2-type statistic is de-
rived in order to construct simultaneous confidence intervals for comparisons
with a control under elliptical populations with unequal sample sizes. Ac-
curacy and conservativeness of Bonferroni approximations are evaluated via
a Monte Carlo simulation study. Finally, we explain the real data analysis
using procedures derived in this paper.
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1. INTRODUCTION

Simultaneous confidence intervals for comparisons with a control among mean
vectors are considered under k independent elliptical populations with unequal
sample sizes. In order to construct them, it is necessary to obtain the upper
percentile of T2, .. which is Hotelling’s T?-type statistic. However, it is difficult
to obtain upper percentiles exactly even when populations have the multivariate
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normal distribution. In order to obtain conservative approximate simultaneous
confidence intervals, Bonferroni’s inequality is applied to T?-type statistic. Under
elliptical populations with equal sample sizes, the first and the modified second
order Bonferroni approximations for pairwise multiple comparisons are discussed
by Seo [6]. Under elliptical populations with unequal sample sizes, these are
discussed by Okamoto and Seo [5] and Okamoto [4]. This paper gives them for
comparisons with a control, and their accuracy and conservativeness are evaluated
via a Monte Carlo simulation study. Finally, an actual procedure is explained
using the school-record data of the second-year student in a junior high school in
Tokyo. Also, for graphical approaches using weighted Bonferroni, see e.g. Bretz
et al. [1].

For the j-th population, a p x 1 random vector /) is said to have an elliptical
distribution with parameters u) (p x 1) and AW (p x p) if its density function
is of the form

F(@D)) = P AD |2, {(w(j) ~pDYAD T 0 u(j))}
for some non-negative function g;, where c},]) is a normalizing constant and
AU is a positive definite. The characteristic function of the vector ) is
¢;(t) = exp(it’ u))y; (¥ AU)E) for some function v, and E[z)] = pb) and
»U) = Cov[z)] = —2¢9(0)A(j), if they exist. Throughout this paper, we
assume ¥ = X0

W — .
{7(0)/(45(0))} — 1.

.. = 2 We define the kurtosis parameter as Kj =

2. A FIRST ORDER BONFERRONI APPROXIMATION

Consider simultaneous confidence intervals for comparisons with a control among
k independent p-dimensional mean vectors under elliptical populations. Let
mgj),...,az%j_ (j = 1,...,k) be N; independent observations on ) that has
an elliptical distribution with mean vector p9) and common covariance matrix
>.. Let the j-th sample mean vector, the j-th sample covariance matrix and the

pooled sample covariance matrix be

1 N]-
=) — Z ()
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respectively, where v = Z?:l N; — k.

Letting the first population be a control, the simultaneous confidence intervals
with the given confidence level 1 — « for comparisons with a control among mean
vectors are given by

a'(pt — ptm)y e [a’(i(l) —z™) + ¢, dlma’Sa} ,
(1) Va € R? — {0}, 2 <m <k,

where dj,, = 1/N; +1/N,,, R? — {0} is the set of any nonnull real p-dimensional
vectors and the value t,, (=t > 0) satisfies as follows:

Pr{ Imx,3>152} = q,

where

T = dii (3 =) 57 (o - ™)
g =7 _ 4 1k

By using the first term of Bonferroni’s inequality for Pr { ke > t2}:

k
Pr{T2..>t} <> Pr{T?, >},

the approximate upper percentile t3, of T2 is given by

max-c

Z Pr{T}, >t} =

Without loss of generality, we assume ¥ = I, and N = max{Ny, Na,..., N;}.
Put rj = N;/N for j=1,....k, s =1/( Z 1 73) and Wiy, = /T /(11 + ).
Letting

0 — ) 4 L)
J

N;
w) — Z (J) — ,u(j))'

)
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we have
T12m - TllmS_lTlmv
where
Tim = wlmz(l) —w 1Z(m)
k

St =1,— \/_Z\/—Z(J+_

Z (J +SQZ’FZ(J
7=1

=1

+o0,(N7H).

Z_: Z \/7“7"]'(2(“ 70) 1 70) Z(z‘)) _ skI,

i=1 j=i+1

Using the joint density function of 2U) and Z() which is derived by Iwashita 2],
the asymptotic expansion of the characteristic function of T2, can be written as

. ,E
Blexp(itT)] = u ¥ |1+ 717 ()

O 4 o)1 (@) - >] +o(NY),

where u =1 — 2it, i = v/—1 and
1 1 1

05?7)1 = —sp2 +=p(p+2) [(—w%m— 28w%m) K1+ (—wﬁﬂ — 25w72n1> Ko, — sm] ,
2 1 Tm,

1 1 1
ch = —25p —p(p+2) [(Ew‘fm— 48wfm> F1+ (r—wfnl— 48w72n1> Fom + Sﬂr] :
m
2
&2 = sp(p+2)

1 14 2 Loy 2

+-p(p+2) Wiy, — 6swi,, | k1 + Wy, — 65wy, | K + 38Ky |
2 1 Tm
k

Ry = S E leij.

J=1

Using above result, the distribution of T3, can be expanded as
Pr(TZ, > t%) = Pr(xi > %) + N Zc j)Pr Xp+2j > %)+ o(N 1),

and its upper 100« percentile can be expanded as

2 2 1 Lo _ 1 @ O
tlm,x2(a)—xp(oz) Xp() pclm p(p+2)clmxp(a) +o(N7),
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where Xg(a) is the upper 100a percentile of the y? distribution with p degrees of
freedom. Therefore, we have the first order Bonferroni approximate upper 100«

percentile of T2, .. as follows:

Leela) = x; (ki1> - 2N(k1— 1)X12’ (kfl)

@) xz{l 0 - e (7)

Also, since Hotelling’s T2-statistic under normality is an F'-statistic, we obtain
another approximate upper 100« percentile of T as follows:

max -C
.2 () = v g X o B 1 N o
Lt v—p+1 PP k1) oNk-1)"P\k—1

(3) xzk:{(—clerSp) (lﬁcﬂ—é‘)% (ki1>}’

where Fj, ,_p1+1(a/(k — 1)) is the upper 100(a/(k — 1)) percentile of the F-
distribution with p and v — p + 1 degrees of freedom.

3. A MODIFIED SECOND ORDER BONFERRONI APPROXIMATION

The first order Bonferroni approximation becomes conservative too much when
the number of populations or the kurtosis parameter is large. In this section, a
modified second order Bonferroni procedure, which uses the first and the second
terms of Bonferroni’s inequality, is described to improve conservativeness of the
first order Bonferroni approximation.

Let Y1 = wmz(l) — wglz( ) Yoy = wlgz(l) — ’U)31Z(3), s Y1 = wlkz(l) —
w1 z®). Bonferroni’s 1nequahty for Pr{T2,. .. > t?} is given by

ZPr {871y > 2} = Bult?) < Pr{T2y . > 17} < ZPr (Y5 7'y, > 2}

where

E

-2 k—
Be(t?) = Z Pr {y;S_lyi > 12, yg»S_lyj > t2}.
1 j=i+1

;_A

7
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The first order Bonferroni approximation t7, is defined as a critical value that
satisfies the equality

k-1

ZPr {y;S7ly; >t} = o
i=1

The second order Bonferroni approximation 3, is defined as a critical value that
satisfies the equality

k—1
ZPI‘ {y;‘gilyi > t%c} - /BC(tgc) = Q.
=1

The modified second order Bonferroni approximation t?w . is defined as a critical
value that satisfies the equality

k—1
> Pr{yiSTly, > i} = o+ B(th.),
i=1
where
k-1 k

J=2 h=j+1

In order to obtain the modified second order Bonferroni approximation 2 . it is

necessary to evaluate Pr{Tfj > 2., T > t2.}. For convenience, we discuss the

joint characteristic function of T%, and T%: Elexp(iti T3, + itoaT)] as follows.

Elexp(it1 T3 + itoTE)]

1 1
=FK exp(itlTl(Ql) + Z‘tQTl(;)) (1 + \/_NDI + ND2>:| + 0(]\7_1)7

where

Dy = ZtlTl(g) + itQTl(g),

. ith)? . ito)? o
Dy — ity 7 4 U 5 C @@y i + 2@ G )T @72,

and

L _ L _
Tiy = 7119712, 113" = T13713,

k k
T1(22) =Tl SZ \/7"_jZ(j) T12, Tg) =—Ti3 SZ \/T_J'Z(j) 713
j=1 J=1
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k
2 =T SZZJ) )’ +S2ZZ\/T2 VAQNAS — skl | T12,
Jj=1 i=1 j=1
k
Tl(g’ —7'13 sZz —i—szzz\/?TZ( z) — skl | T13,
j=1 i=1 j=1
and
— (1) (2) —= — 2
T12 = W1 =2 — WoZz w]p = W12 = , W2 = W21 =
L+ 1o 1 +7“2
_ (1) (3) _ _ r3 _
T13 = W32~ — W4z, W3 =W13 = , W4 =wW31 =
r1+7rs3 1 +7“3

Using the joint density function of 2) and Z\), we obtain an asymptotic ex-
pansion for the expectation of exp(itlTl(;) + ithl(;)) in elliptical distributions as
follows.

Elexp(iti T\ + ith(l))]

=U 2+ —pp+2)U 27

8N
1
X - —{(uy — Dugw? + (ug — Dugwi — 2(uy — 1)(ug — Vv 2Ky
1 1
+7“ (1 — 1)*ulwiky + T—u%(z@ — 1) 2wiks| + o(N7Y),
2 3

where U = ujug — (u1 — 1)(ug — 1)vg, ug = 1 — 2ity, ug = 1 — 2ite, vg = w%w%.

Let )\1 =1- 2(1 — Uo)’itl, )\2 =1- 2(1 — ’l)o)’itg, then Uy = ()\1 — ’UQ)/(l — ’UQ),
U = ()\2 — Uo)/(l — Uo) and

where
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Repeating such calculations about expectation of zU) and Z), an asymptotic
expansion for the joint probability Pr {Tl > 2., Tfh > t%c} is given by

Pr {Tu >t T2 > tlc}

4 = (32)

= (1 - UO) . g
m=0
1 —
[Gp+m(n2) + N {dlgg+m(n2)0g+m(nz) + d2g%+m(n2)}} + o(N 1)7
where
1
= 4t2
772 2(1 — ) 1lc»
Gem(n2) = /OO gry4 geim(t) = ;tgﬂn_le_t
= o m 2T r (%7 + m)
and

dy = 32 2 {32507 (p — 2m + 2n2) + 8svidyy + di2}

2
"2 2
dy = ——-2——{32sqv}(2m + 1) + 8sv1dy; + das } .
? 16qv%(p+2m){ qui(2m +1) + Bsvndan + doa}

di1 = 2[3(m — novg) + v1ve {202 (201 — 1) + q}] K1
[21}1102 dvimg + q) + 9Im + o {vl 4w1 —13) — 9}] Kj
+ [2010F (4vime + ) + 9m + n2 {v1 (w3 — 13) — 9}] Ky,
+ [2v1 {p + 6m — 6m2(2v1 + 1) + 2}] Ky,

(2m2 — Q)U%(U% — 2vp) +m —na(v1 + 1)} K

r
8
+ [7“ (212 — q)vlw2 + 5m — 5na (v + 1)]
j

8
+ [5(2772 — q)v%wi‘ + 5m — 5na(vy + 1)] Kh,
dop = [4’[}017% {4’[)0(?)2 — 4) + 4vy — 1} + {—8@0 + 2(’00 + 1)02 + 1} q2
—{p — 2vona(4va(vo — 4) +21) + 2} q] k1
+ [2v0m3 {—8(vo + 1)wi + 8vg + 3}

+ vomp { —8(vg — 4)wi + 8vg — 41} ¢ + 5m? + 2(p + 2)* (vy + 1)w3
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+ (p+m+2)m {—8(vy + L)wi + 8uvy + 13}] &,

+ [2v0m3 {—8(vo + 1)w3 + 8vg + 3}
+ voma { —8(vo — 4)wj + 8vp — 41} g + 5m? + 2(p + 2)%(vo + 1)w?
+ (p+m+2)m {=8(vy + L)w3 + 8vo + 13}] 5y,

+ [2v1(p + 6m — 120912 + 2)q] Ky,

dao = [4 {(m — 2vom2)q — 2vom3 }

+ % [{(’02 —2)2+vl (21}1 —v%+4)}q2

+ 4o (201 — vy + 2)(ve — 2)q + 4@077%(1)2 — 2)2 ]]m

Svgws
| P 2~ ) 2o+ (01 = D) + (o — Sl — 200
J

Svow?
+ [ - 2 (212 — q) {2v0m2 + (v1 — 1)q} + (m — 5vgna)q — 2”0?7%] Kh,
q=p+2m+2 w = wy, w2 = W1, W3 = Wip, W4 = Wpy, V1 = Vo — 1,
Vg = w% + w%.

Therefore, the modified second order Bonferroni approximate upper 100« per-

centiles of T2, . are obtained as follows:

2 2 _ 1 2
tM.X2.c(a) - Xp (PYC) 2N(k _ 1)Xp (PYC)
k
1 0 1 @ 2
(5) X Z { - m 1mXp (’YC) )
2 _ vp . 1 2
tpela) = —— = Py [Ep-p+1 () = S NGE—D)% (e)

(©) » z {<_m o) = (gl =) o)

where v, = {a—l—ﬁct )/ (k—=1).
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4. ACCURACY AND CONSERVATIVENESS OF APPROXIMATIONS

In order to evaluate accuracy and conservativeness of the first and the modi-
fied second order Bonferroni approximations for comparisons with a control, the
Monte Carlo simulation for the upper percentiles of T2, . is implemented for var-
ied parameters. In the simulation, the k£ populations have the same distributions,
and consider three types of distributions: the multivariate normal (x = 0), the
e-contaminated normal (k = 1.78 with e = 0.1 & o = 3) and the e-contaminated
normal (k = 3.24 with ¢ = 0.1 & o = 4) (see Muirhead [3] p.32).

Table 1 gives the simulated and approximate values of the upper percentile
of Thnax -« (= VT2.x..) and lower tail probabilities for the following parameters:
p=25,k=10,N; (=N)=10,20,40,80 (5 =1,...,k), r=1and o = 0.05. Val-

ues ty.,2, t1.F, tary2 and ty.p stand for approximations t%x%(a), \/ e (),

,/t?w.xg.c(a) and /13, p..(a) found in (2), (3), (6) and (6), respectively. Py.,2,

Pi.p, Pyy2 and Pyp stand for lower tail probabilities Pr{T2,, . < t%_XQ},
Pr{TZ.c.c < tiph Pr{Tface < th,2} and Pr{T .
t* is a simulated value and Pr{T2. . <t*}=1-a.

If lower tail probability is larger than 1 — o = 0.95, we can construct con-
servative simultaneous confidence intervals from (1). For large N, the first order
approximation always constructs conservative simultaneous confidence intervals
because the effect of the asymptotic expansion is ignored. However, there is no
guarantee to which the modified second order approximation always constructs
them. Also, 1.,2 and ty.,2 tend to be influenced of the asymptotic expansion. In
Table 1, for large N, lower tail probabilities of the first order approximations are
about 0.96 regardless of k, and those of the modified second order approximations
are just 0.95.

Table 2 gives the simulated and approximate values of the upper percentile of
Tiax.c and lower tail probabilities for the following parameters: p = 5, k = 10,
r = 0.5, a = 0.06 and N = 10, 20, 40, 80; the sample sizes of the first 5
populations are N and the rest of them are rN, that is, the sample size of the
first population which is control is N. Table 3 gives them for the following
parameters: p =5, k=10, r = 0.5, = 0.05 and N = 10, 20, 40, 80; the sample
sizes of the first 5 populations are r/N and the rest of them are N, that is, the
sample size of the first population which is control is V.

ax-c ax-c < 3, r}, respectively.

ax-c

In Table 2, lower tail probabilities are smaller than those in Table 1 on the
whole. For x = 0, lower tail probability of P;.,2 is less than 0.95 even when it
is used the first order approximation because of the asymptotic expansion. Note
that the first order approximation leads to conservative simultaneous confidence
intervals for large N. Although the modified second order approximation may
not lead to them, lower tail probabilities are actually equal to 0.95 or almost
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close to 0.95.

In Table 3, although lower tail probabilities of first order approximations are
quite large, the modified second order approximations have rectified conserva-
tiveness considerably as N increases. There is a case that lower tail probabilities
of the modified second order approximations are less than 0.95; however, these
errors are few. The modified second order Bonferroni approximations construct
conservative simultaneous confidence intervals with good accuracy for many pa-
rameters.

5. EXAMPLE

We explain the real data analysis using the procedures proposed in this paper.
We use the school-record data of the second-year student in a junior high school
in Tokyo which appears in the website of the Institute of Statistical Science
(http://www.statistics.co.jp/). We divided into three populations according to
the score of physical education. The first population (Il;) consists of students
of 80 or more points. The second population (Ilz) consists of students of 60
or more points. The third population (II3) consists of students of 40 or more
points. Let the first population be a control. We compare the score of main
5 subjects (Japanese, Social studies, Mathematics, Science and English) of the
second and the third populations with that of the first population. Table 4 is
these data. We assume that these data are distributed as elliptical populations.
Parameters are as follows: p = 5,k = 3,N; = 46, Ny, = 37,N3 = 32,1 =
1,79 = 37/46,r3 = 32/46 and a = 0.05. Kurtosis parameters are calculated as
k1 = —0.0933, kg = —0.0443, k3 = —0.1458 using &#** derived by Seo and Toyama
[7]. The sample mean vectors are

z(M) = (65.6739, 46.7609, 51.3261, 52.6957, 50.6739)’,
z(?) = (49.8378, 33.1892, 39.7297, 43.7297, 34.6486)’,
z® = (52.8125,43.6563, 51.3750, 56.3438, 43.3125)’.

The pooled covariance matrix S is

361.898 322.611 323.133 301.460 379.691
322.611 437.395 369.877 361.251 442.165
S = 323.133 369.877 529.256 400.391 505.424
301.460 361.251 400.391 433.421 449.286
379.691 442.165 505.424 449.286 753.499

and T2, is calculated as T2 = 17.0499 and T% = 32.6876. The first order

Bonferroni approximate upper 95 percentiles of T2, .. (2) and (3) are calculated
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as ], (0.05) =3.722 and t7 » 1,(0.05) = 3.735. Also, B.(t7.) in (4) is calculated
as ﬁc(t%.xg.c) = 0.0020 and 66(75%)(2.1;) = 0.0019. Therefore, the modified second
order approximations (6) and (6) are calculated as t?\4.x2.c(0.05) = 3.707 and
t?\/[,F.C(O.OIi) = 3.721. For example, let a = (1,0,0,0,0)’, then the simultaneous

confidence intervals for comparisons with a control (1) are constructed as

a'(p — p®) e [0.265,31.407]
a'(pM — pu®) e [-3.370,29.093]

using the modified second order approximation t?w.XQ.C(O.OIi). This shows a sig-
nificant difference between scores of Japanese for the first and the second popula-
tion. As other examples, let @ = (1/5,1/5,1/5,1/5,1/5)’, then the simultaneous
confidence intervals for comparisons with a control (1) are constructed as

a'(p — u®)) e [-3.484,29.883]
a'(p — pu®)) e [-13.465,21.317]

using the modified second order approximation t?\/l.xg.c(O.%). Therefore, there is
no significant difference in scores of main 5 subject by physical education group.

Although it becomes the same conclusion at the first and the modified second
order Bonferroni approximations in this example, a different result may come out

when sample size is small and kurtosis parameter is large.

k=10,p=5,a=0.05,r =1

K N tl-x2 tl-F P1~X2 Pl-F tM,X2 tM-F PM~X2 PM-F t*

0 10 | 4.27 4.32 955 .960 | 4.22 4.26 .947 953 | 4.24
20 | 4.17 418 958 959 | 4.11 4.12 .949 951 | 4.11
40 | 412 412 958 959 | 4.05 4.06 .950 950 | 4.06
80 | 4.09 4.09 .958 .958 | 4.03 4.03  .950 950 | 4.03
1.78 | 10 | 4.43 4.48 970 974 | 4.38 4.43 .966 970 | 4.23
20 | 425 4.26 .960 961 | 4.19 4.20 .952 953 | 4.17
40 | 4.16 4.16 .959 959 | 4.09 4.09 .950 951 | 4.09
80 | 4.11 4.11 .959 959 | 4.05 4.05 .950 950 | 4.05
3.24 110 | 456 4.61 970 973 | 452 456  .966 970 | 4.37
20 | 4.32 433 963 964 | 4.25 4.26 .956 957 | 4.21
40 | 419 4.20 .960 960 | 4.12 4.13 951 952 | 4.11
80 | 4.13 4.13 959 959 | 4.06 4.06 .950 950 | 4.06

Table 1. Simulated and approximate values and lower tail probabilities for equal
sample sizes.
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k=10,p=5,a=0.05,N, = N,r=0.5
K N tl-x2 t1.F Pl-x2 P.r tM-XQ tM.F PM-X2 Py.r t*
0 10 | 4.34 4.43 946 .957 | 4.31 4.40 .941 953 | 4.38
20 | 4.20 4.23 953 955 | 4.17 4.19  .948 950 | 4.18
40 | 4.13 4.14 .955 956 | 4.09 4.10 .949 950 | 4.10
80 | 4.10 4.10 .955 955 | 4.06 4.06  .950 950 | 4.06
1.78 | 10 | 4.64 4.72 959 .966 | 4.62 4.71  .957 965 | 4.56
20 | 4.36 4.38 .957 959 | 4.33 4.35 .954 957 | 4.30
40 | 4.21 422 956 .956 | 4.18 4.19  .952 952 | 4.17
80 | 4.14 4.14 .955 .956 | 4.10 4.10 .950 951 | 4.10
324 110 | 4.86 4.94 .968 973 | 4.86 4.94  .967 973 | 4.66
20 | 4.48 4.50 .962 963 | 4.46 4.48  .960 962 | 4.38
40 | 4.28 4.28 957 958 | 4.25 4.25 954 954 | 4.22
80 | 4.17 4.17 956 .956 | 4.14 4.14  .951 951 | 4.13
Table 2. Simulated and approximate values and lower tail probabilities for un-
equal sample sizes (N; =N (i =1,...,5), Nj=rN (j =6,...,10)).
k=10,p=5a =0.05,N; =rN,r =0.5
K N tl_XQ t.r Pl-x2 P.r tM-X2 tM.F PM-X2 Py.p t*
0 10 | 4.34 4.43 954 .964 | 4.26 4.34 .944 954 | 4.31
20 | 4.20 4.23 961 963 | 4.11 4.13  .948 951 | 4.12
40 | 4.13 4.14 .962 962 | 4.04 4.04  .949 950 | 4.04
80 | 4.10 4.10 .962 .962 | 4.00 4.00 .949 949 | 4.01
1.78 1 10 | 4.80 4.88 980 .983 | 4.74 4.82 977 981 | 4.38
20 | 4.45 4.47 970 971 | 434 4.35 .960 962 | 4.24
40 | 4.26 4.26 .966 .966 | 4.14 4.14  .953 953 | 4.11
80 | 4.16 4.16 .964 .964 | 4.05 4.05  .949 949 | 4.05
324 |10 | 5.15 5.22 .987 989 | 5.13 520  .987 989 | 4.47
20 | 4.64 4.65 .976 977 | 455 4.56  .970 971 | 4.32
40 | 4.36 4.36  .969 970 | 4.23 4.24 957 958 | 4.17
80 | 4.21 4.21 .965 .965 | 4.09 4.09 .951 951 | 4.08

Table 3. Simulated and approximate values and lower tail probabilities for un-
equal sample sizes (N; =rN (i=1,...,5), N;j=N (j =6,...,10)).
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11, 1, 113
No.|Ja So Ma Sc En|Ja So Ma Sc En|Ja So Ma Sc En
1164 36 20 31 26 | 42 31 47 44 32129 21 26 30 6
2| 68 59 60 63 63|95 &7 77 100 87| 77 54 58 84 57
3|68 53 41 57 71|74 60 57 78 71|42 16 29 43 2
4181 53 78 81 80|66 43 54 72 53139 19 5 32 10
51| 58 62 40 66 46 | 27 29 34 40 40| 31 14 8 16 2
6| 72 41 36 44 31|50 28 29 31 7139 21 49 56 16
7132 28 32 41 10| 36 4 15 43 32|48 63 T2 83 67
818 83 73 81 68|54 21 43 28 14 | 55 42 85 86 80
9|68 28 60 69 36|49 18 27 20 28 |8 8 75 84 61

10|81 50 61 63 49|26 15 13 19 8141 34 28 43 18
11 163 32 43 52 56 (|7 63 74 72 72|18 90 87 100 90
12|77 64 8 71 71|69 49 30 34 40|83 8 58 71 92
13191 69 100 8 91|70 57 60 61 76|56 54 37 59 7
14 1 64 40 30 49 41 (43 32 74 55 39|32 7 14 18 7
1558 17 31 23 25|35 23 17 38 36|73 8 94 8 95
16 |42 16 27 22 20|46 53 34 30 27|74 66 65 78 76
17 |87 8 77 78 76|87 8 84 93 77|36 27 62 58 66

Table 4. The school-record data of the second-year student in a junior high school
in Tokyo.
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