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Abstract

It is shown that commutativity of two oblique projectors is equiva-
lent with their product idempotency if both projectors are not necessar-
ily Hermitian but orthogonal with respect to the same inner product.
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1. Introduction

For a given subspace L of the complex vector space Cn let Lc denote a
complement of L in Cn, i.e., L∩Lc = {0} and L+Lc = Cn. An operator P

such that Px = x for x ∈ L and Px = 0 for x ∈ Lc is called a projector on
L along Lc and is denoted by PL|Lc. Such operators are characterized by
the idempotency condition

P2 = P.(1.1)
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It is well known that if (1.1) holds, then P is a projector on R(P),
the range of P, along R(Q), where Q = I − P. Thus, any idempotent
operator we will call a projector or oblique projector and write P instead of
PR(P)|R(Q) .

Now let us assume that Cn is equipped with the inner product <,>

defined with the use of a positive definite matrix V. Then any two vectors
x and y are said to be V-orthogonal if x∗Vy = 0, where the star super-
script denotes the conjugate transposing operation. Moreover, all vectors in
Cn that are V-orthogonal to every vector in a given subspace L form the
V-orthogonal complement of L. Since such complement is determined ex-
clusively by the subspace L and the matrix V, the projector on L along the
V-orthogonal complement of L is termed as V-orthogonal. Such projectors
are characterized (see e.g. [1] p. 268) by adding to the condition (1.1) the
second requirement in the form

VP = P∗V.(1.2)

An operator fulfilling (1.1) and (1.2) we will denote by PV.

When V = I, i.e., the inner product is standard, we will use the term
orthogonal instead of V-orthogonal and write P instead of PI. It does not
lead to any confusion, since R(Q) is indeed the I-orthogonal complement of
R(P), if P is idempotent and Hermitian.

Attention of many authors was focussed on the problem of commuta-
tivity of orthogonal projectors. Baksalary [2] collected forty-five conditions
equivalent to the equality

P1P2 = P2P1(1.3)

and presented them with some specific statistical implications. However,
the most elegant equivalency condition states that (1.3) takes place if and
only if the product P1P2 is a projector itself, i.e.,

(P1P2)
2 = P1P2.

More precisely, in such a case, the product P1P2 is the orthogonal
projector. In the present paper it is shown that this equivalency can be
directly extended also to specific but non-Hermitian projectors.
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2. Results

First let us recall that any oblique projector can be treated as V-orthogonal
one with a special choice of V. This possibility follows from the following

Lemma 1. Let L and M be any two complementary subspaces of Cn. Then,

for any positive scalars α and β, the matrix

V = αP∗
L|MPL|M + βP∗

M|LPM|L

is positive definite and the subspaces L and M are V-orthogonal.

The crucial point of this early result of Baksalary and Kala [3] states that
there always exist a positive definite V such that

PL|M = PV
L = PV,

the last equality follows because L = R(PV). Although the matrix V is not
unique, the projector PV

L is. It admits a representation

PV
L = L(L∗VL)−L∗V,

where L is any matrix such that L = R(L) and the minus superscript denotes
a g-inverse of the matrix involved. The matrix V in the above representation
need not to be positive definite. It can be non-negative definite only, but
such that L ⊂ R(V). For a definition of a special projection in such case
see Rao [4].

The operator PV is idempotent but not Hermitian. However, the
following properties can easily be checked.

Lemma 2. For any two V-orthogonal projectors PV
1 and PV

2 the matrices

VPV
1 , VPV

1 PV
2 PV

1 , V1/2PV
1 PV

2 PV
1 V−1/2

are Hermitian and non-negative definite.
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Properties of the first and second matrix in Lemma 2 play a key role in the
proof of the following theorem extending the results contained in [2].

Theorem 1. For any two V-orthogonal projectors PV
1 and PV

2 the following

two conditions:

PV
1 PV

2 = PV
2 PV

1 , commutativity,(2.1)

(

PV
1 PV

2

)2
= PV

2 PV
1 , idempotency,(2.2)

are equivalent.

Proof. The sufficiency of commutativity condition, in view of idempotency
of both projectors PV

1 and PV
2 , is obvious. For the necessity, first observe

that by the property of the first matrix in Lemma 2, we have

(

VPV
1 PV

2

)∗
= VPV

2 PV
1 .(2.3)

Now consider the product

(

VPV
1 PV

2 −VPV
1 PV

2 PV
1

)

V−1
(

VPV
1 PV

2 −VPV
1 PV

2 PV
1

)∗

=
(

VPV
1 PV

2 −VPV
1 PV

2 PV
1

)(

PV
2 PV

1 −PV
1 PV

2 PV
1

)

= VPV
1 PV

2 PV
1 −VPV

1 PV
2 PV

1 PV
2 PV

1 ,

(2.4)

which, in view of (2.2), reduces to the zero matrix. In consequence

VPV
1 PV

2 = VPV
1 PV

2 PV
1 .
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But the matrix on the right hand side is Hermitian, as stated in Lemma 2.
Thus, by (2.3) again,

VPV
1 PV

2 = VPV
2 PV

1 ,

which completes the proof, since V is non-singular.

The result above can be supplemented by forty-four equivalent con-
ditions collected by Baksalary [2]. Of course, some minor modifications
are indispensable. For example, the condition (A2) of his Theorem 1, in our
notation

A∗B = A∗PBPAB,

where A = R(A) and B = R(B), now takes the form

A∗VB = A∗VPV
B PV

AB.

In a similar way the recent results of Baksalary and Baksalary [5] can also
be extended. It is also possible to rewrite the most general result on this
area. It is established in [6], with the original proof based on a simple
property of powers of Hermitian and non-negative definite matrices. The
appropriate modification of this result, which, however, has only purely
theoretical character, is presented bellow together with a direct adaptation
of the proof.

Theorem 2. For any two V-orthogonal projectors PV
1 and PV

2 , let

PV
(m;i) denote an m-factor product of PV

1 and of PV
2 , with PV

i being

the first factor and PV
i , PV

j occurring alternately, i, j = 1, 2; i 6= j. Then

the commutativity condition (2.1) is equivalent with any statement of the

following form:

PV
(p;i) = PV

(q;j) for some p, q ≥ 2 and i, j = 1, 2,

except for the trivial case p = q and i = j.
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Proof. As it was observed in [6], for any non-negative definite matrix W,
the equality Wk = Wl for some k < l is equivalent with idempotency of
W. Applying this result to the matrix V1/2PV

1 PV
2 PV

1 V−1/2, which, by the
property of the third matrix in Lemma 2, is non-negative definite, and using
the obvious equality

(

V1/2PV
1 PV

2 PV
1 V−1/2

)k
= V1/2

(

PV
1 PV

2 PV
1

)k
V−1/2,

we have that

(

PV
1 PV

2 PV
1

)k
=

(

PV
1 PV

2 PV
1

)l
for some k < l

implies
(

PV
1 PV

2 PV
1

)2
= PV

1 PV
2 PV

1 PV
2 PV

1 = PV
1 PV

2 PV
1 .

This, in turn, implies that the product (2.4) reduces to the zero matrix,
which leads to commutativity of PV

1 and PV
2 . Having the equivalence

(

PV
1 PV

2 PV
1

)k
=

(

PV
1 PV

2 PV
1

)l
for some k < l ⇐⇒ PV

1 PV
2 = PV

2 PV
1 ,

the rest of proof follows the lines exactly as in [6].

3. Comments

Under the commutativity condition (2.1) the product PV
1 PV

2 is the V-
orthogonal projector on R(PV

1 ) ∩ R(PV
2 ). It is so, because in that case

VPV
1 PV

2 is a Hermitian matrix. This conclusion corresponds to the early
result of Rao and Mitra [7]. Their Theorem 5.1.4 states that if two oblique
projectors, in our notation PV

1 and PW
2 with V not necessarily equal to

W, commute, then the product PV
1 PW

2 is a projector and it projects on
R(PV

1 ) ∩ R(PW
2 ) along N(PV

1 ) + N(PW
2 ), where N(PV

i ) is the null space
of the matrix PV

i .
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It is well known that the reverse implications, in general, are not true.
Considering the following projectors:

P1 =









1 0 0

1 0 0

0 0 1









= PV, with V =









3 −1 0

−1 1 0

0 0 1









,

P2 =









1 0 0

0 0 0

1 0 0









= PU, with U =









3 0 −1

0 1 0

−1 0 1









,

P3 =









1 −1 0

0 0 0

1 −1 0









= PW, with W =









3 −3 −1

−3 5 1

−1 1 1









,

it can be checked that:

(P1P2)
2 = P1P2, but P1P2 6= P2P1 (= P2),

(P2P3)
2 = P3, but P2P3 6= P3P2 (= P2),

(P3P1)
2 = P3P1 = 0 = P{0}|Cn , but P3P1 6= P1P3 (= P3).

The commutativity of two oblique projectors can be judged by the
use of the result of Gross and Trenkler [8]. According to their criterion,
two projectors PV

1 and PW
2 commute if and only if the product PV

1 PW
2

is a projector on R(PV
1 ) ∩ R(PW

2 ) along N(PV
1 ) + N(PW

2 ) and rank
(PV

1 PW
2 ) = rank(PW

2 PV
1 ).

In the example above the product P1P2 is a projector, but not on
R(P1) ∩ R(P2) = {0}. The products P2P3 as well as P3P2 are both pro-
jectors on R(P1) = R(P2), but not along N(P2) + N(P3) = Cn. Finally,
the product P3P1 fulfils the first requirement, but not the second, since
rank(P3P1) = 0 6= 1 = rank(P1P3).
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Many others necessary and sufficient conditions for commutativity of two
oblique projectors are delivered in [9] and also in [5]. One that links the
commutativity with idempotency property states that PV

1 and PW
2 commute

if and only if all four products:

PV
1 PW

2 , PV
1 QW

2 , QV
1 PW

2 , QV
1 QW

2 ,

where QV
1 = I−PV

1 and QW
1 = I−PW

1 , are projectors. Note, however, that
according to Theorem 1, if both projectors are orthogonal with respect to the
same inner product, then idempotency of each of these products separately
implies the commutativity of PV

1 and PV
2 .

Summerizing, we can say, in view of Theorems 1 and 2, that the equiva-
lence between the commutativity condition (2.1) and the idempotency con-
dition (2.2) is not related with the Hermitianness of the projectors involved,
but with their common V-orthogonality.
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