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Abstract

The decomposition of the r.v. X with the beta second kind distribu-
tion in the form of finite (formula (9), Theorem 1) and infinity products
(formula (17), Theorem 2 and form (21), Theorem 3) are presented.
Next applying Mieshalkin – Rogozin theorem we receive the estima-
tion of the difference of two c.d.f. F (x) and G(x) when sup |f(t)−g(t)|
is known, improving the result of Gnedenko – Kolmogorov (formulae
(23) and (24)).
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1. Introduction

We consider a random variable X with the second kind beta distribution

β2 (x|p , q) =
xp−1

B (p , q) (x + 1)p+q , 0 ≤ x < ∞ , p, q > 0.(1)

The random variable X = Z/ (1− Z) has this distribution when Z has the
first kind beta distribution

g (z) = B−1 (p, q) zp−1 (1− z)q−1 , 0 ≤ z ≤ 1.

∗41 XX. Mieshalkin – Rogozin theorem and estimation of the difference of two c.d.f.
|F (x)−G(x)|
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A quotient X = Y1/Y2 of two independent gamma random variables with
a probability density function fYj (yj |bj) = Γ−1 (bj) y

bj−1
j exp (−yj) , bj >

0, 0 ≤ yj < ∞, j = 1, 2, has also the same distribution with b1 = p, b2 = q.

In [16] Podolski has defined distributions of products and quotients of the
powers of independent random variables with the second kind beta distribu-
tion using Meijer’s G-function [3,9.3] and their generalization; the functions
Hm,n

p,q of Saksena and Mathai [18].
To represent a random variable X with the density function (1) as

the finite product we shall use the Mellin transform MX (s) in the form
of Zolotarev [20]

MX (s) = EXs,

where s is complex number, which gives

MX (s) = Γ (p + s) Γ (q − s) Γ−1 (p) Γ−1 (q) , −p < Re s < q.(2)

We can present the gamma functions in (2) as a finite product [3,8.335].

2. The case of finite product

Appyling the Knar formula [3,8.335]

Γ (nx) = (2π)
1−n

2 nnx−0 , 5
n∏

k=1

Γ
(

x +
k − 1

n

)
, Re x > 0 , n ≥ 2,(3)

to the gamma function in (2), we rewrite (2) for n = n1 and k = k1, after
some simplifications, as

MX (s) =
n1∏

k1=1

Γ ((p + k1 − 1 + s)/n1) Γ ((q + k1 − 1− s)/n1) ·

· Γ−1 ((p + k1 − 1)/n1) · Γ−1 ((q + k1 − 1)/n1) =

=
n1∏

k1=1

gk1 (s), −p < Re s < q, n1 ≥ 2.

(4)
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From the formula (2) it follows that the Mellin transform of random variable
Xk1 with the second kind beta distribution with parameters
(p + k1 − 1)/n1 and (q + k1 − 1)/n1 differs from the factor in the right
hand side of the formula (4) only by a numerical coefficient at s. Because of
MX1/ n = E

(
X1/n

)s
, it follows that each factor gk1 (s) of the product (4)

is the Mellin transform of the random variable X
1/n1

k1
, where the random

variables Xk1 have as densities the functions β2 (x|pk1 , qk1) , where

pk1 = (p + k1 − 1)/n1, qk1 = (q + k1 − 1)/n1, k1 = 1, 2, ..., n1.(5)

Since the finite product of the Mellin transform of independent random
variables satisfies

n∏

k=1

M
X

1/ n
k

(s) = M∏n

1
X

1/ n
k

(s) ,(6)

then by (2) and (4), we have

MX (s) =
n∏

k=1

M
X

1/ n
k

(s) .(7)

Thus from (6) and (7) it follows that

MX (s) = M∏n

1
X

1/ n
k

(s) .(8)

If we now apply the inverse transform of the Mellin transform to both the
sides of the last relation we obtain the following stochastic equality

X
st=

n∏

k=1

X
1/n
k .(9)

The notation X
st=Y means that X and Y have the same distribution

function (d.f.).
The formula (9) means that

Theorem 1. The second kind beta density g (x|p, q) (formula (1)) of a
r.v. X is equal to the density of the geometric mean of n1 independent and
nonnegative r.v.’s Xk1 , k1 = 1, ..., n1, with the second kind beta distribution
with the respective parameters (5).
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Now we use the Mellin transform (4) to each density of the r.v. X
1/n1

k1
for

k1 = 1, ..., n1, replacing the relevant parameters as follows





(p + k1 − 1)/n1 by pk1,k2 = [(p + k1 − 1)/n1 + k2 − 1]/n2

and

(q + k1 − 1)/n1 by qk1,k2 = [(q + k1 − 1)/n1 + k2 − 1]/n2.

(10)

Then we obtain that the random variables X
1/n1

k1
, k1 = 1, 2, ..., n1, can be

presented as

X
1/n1

k1

st=
n2∏

k2=1

(
X

1/n1

k1,k2

)1/n2
,(11)

where the random variables Xk1,k2 have as their density function
β2 (x|pk1, k2 , qk1,k2) .

Repeating r times the above change of parameters we get

X
st=

n1∏

k1=1

n2∏

k2=1

...
nr∏

kr=1

X
1/(n1n2...nr)
k1,k2,...,kr

,(12)

where the random variables Xk1,k2,...,kr have densities functions
β2(x|pk1,k2,...,kr , qk1,k2,...,kr).

3. The case of infinite product

Case 1.
Applying the Knar formula (Gradzstein, Ryzhik [3,8.324])

Γ (x + 1) = 4x
∞∏

k=1

[
Γ

(
1
2

+
x

2k

)
Γ−1

(
1
2

)]
, Re x > −1,(13)

to the gamma functions in (2), we can rewrite (2), after some simplifactions,
as
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MX (s)=
∞∏

k=1

[
Γ

(
1/2 + (p−1+s)

/
2k

)
Γ

(
1/2+(q−1−s)

/
2k

)
·

· Γ−1
(
1
/

2 + (p− 1)
/

2k
)

Γ−1
(
1/2 + (q − 1)

/
2k

)]

=
∞∏

k=1

hk(s),

(14)

where −p < Re s < q, for which we obtain that every factor hk (s) is the

Mellin transform of r.v.
(
X(k)

) 1

2k with the density of X(k) given by

β2

(
x

∣∣∣∣
1
2

+
p− 1
2k

,
1
2

+
q − 1
2k

)
.(15)

Finally, we shall prove that
∏∞

1 hk (s) is the Mellin transform of
∏∞

1

(
X(k)

)1/2k

.

Proof. Since MX (it) = ϕln X (t) , where ϕX (t) is the characteristic
function of X, we have

MX (it) = ϕln X (t) = lim
n→∞

n∏

k=1

ϕ
ln X

1/2k

(k)

(t) = lim
n→∞ϕ∑n

1
ln X

1/2k

(k)

(t)

= lim
n→∞ϕ

ln
∏n

1
X

1/2k

(k)

(t) = ϕ
ln

∏∞
1

X
1/2k

(k)

(t).
(16)

Hence we get

X
st=

∞∏

k=1

(
X(k)

)2−k

.(17)

We have proved
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Theorem 2. The second kind beta density g (x|p, q) (formula (1)) is equal
to the density of the infinite product of independent and non negative r.v.’s(
X(k)

)2−k

with the densities of X(k) determined by (15).

Case 2. Let us now apply the generalization of Knar formula [6]

Γ (z + 1) =

= RRz/(R−1)
∞∏

k=1

R−1∏

n=1

[
Γ

(
z
/

Rk + n/R
)

Γ−1 (n/R)
](18)

to the four gamma functions in the Mellin transform in (2); R > 1 is positive
integer and Rez > −1 . After some simplication we rewrite

MX (s) =

=
∞∏

k=1

R−1∏

n=1

{
Γ

[
(p−1+s)

/
Rk+n/R

]
Γ

[
(q − 1− s)

/
Rk+n/R

]
·

· Γ−1
[
(p− 1)

/
Rk + n/R

]
Γ−1

[
(q − 1)

/
Rk + n/R

]}
=

=
∞∏

k=1

R−1∏

n=1

hk,n(s).

(19)

Let us note that this Mellin transform differs from the product (2) by the
change p, q by pk,n, qk,n determined by

pk,n = (p− 1)
/

Rk + n
/

R, qk,n = (q − 1)
/

Rk + n/R(20)

and by coefficent at s.

Therefore every factor in right hand side of (19) is the Mellin transform
of r.v. which we denote by hk,n(s) and we put
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R−1∏

n=1

XR−k

pk,n, qk,n

st=Xpk,qk
.(21)

So we have proved

Theorem 3. For each R = 2, 3, ..., the density of the product of R−1 r.v.’s
XR−k

pk,n ,qk,n
with the densities g (x|pk,n, qk,n) , where pk,n, qk,n are determined

by (20), is equal to the density of r.v. Xpk, qk
.

Finally, we obtain

X
st=

∞∏

k=1

R−1∏

n=1

XR−k

pk,n,qk,n
.(22)

4. The modified Mieshalkin-Rogozin theorem

Our further aim is to determine an estimation of supremum of a
difference between the two c.d.f. F (x) and G(x) if the sup |f(t)− g(t)| is
known, where f(t) and g(t) are the characteristic functions corresponding
to F (x) and G(x). We shall assume that G(x) is the c.d.f. with the den-
sity determined by formula (1) and F (x) is unknown c.d.f. which we want
to estimate (see below). This problem was treated first by Gnedenko and
Kolmogorov [2], where they give an estimation of such a difference using
the integral

∫ T
−T |f(t)− g(t)|/tdt. Next Dyson [1] showed that is not possible

to determine for any σ > 0, such ε > 0 being dependent on σ only, that
supx |F (x)−G(x)| < σ results from supx |f(t)− g(t)| < ε. A full solution
to this problem was given by Rogozin [17].

Five years later Mieshalkin and Rogozin published a paper [14]
extending the results of [17]. We shall use here the Theorem 1 of the paper
[14] in a somewhat modified form, concerning c.d.f’s supported on [0,∞) .

Let us assume that c.d.f. F (x) and a function of bounded variation
(f.b.v.) G(x) fulfil the following conditions

(C1) F (0) = G(0) = 0,

(C2) G′(x) exists for any x > 0 and |G′(x)| < A < ∞,

(C3) |f(t)− g(t)| < ε for |t| < T,
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where f(t) and g(t) are the characteristic functions of F (x) and G(x),
respectively.

There exists a constant C such that for A, T, ε > 0 and L > 2T the
following inequality holds

sup
x
|F (x)−G(x)| ≤ C [ε ln(LT ) + A/T + γ(L)] ,(23)

where

γ(L) = var G(x)
0<x<∞

− sup
x

var G(y)
x≤y≤x+L

.(24)

It follows from the proof of the Mieshalkin-Rogozin Theorem [14, p. 50]
that

C ≥ 16
[
ln(LT ) + 2−3π−1 + 1

]−1
.(25)

The function G(x) is c.d.f. so evidently var G(x) = 1 and

sup
x

varG(x)
x≤y≤x+L

= sup
x

∫ x+L

x
g (y|p, q) dy = sup

x
[G (x + L)−G(x)] .

Let us compute the derivative

dβ2(x|p, q)/(dx) =

= [1/B (p, q)] (x + 1)−2(p+q) xp−2 (x + 1)p+q−1 [− (q + 1)x + p− 1] .

(26)

It vanishes for

x0 = (p− 1)/(q + 1) > 0 for p > 1, q > 0.(27)

Therefore
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sup
x

varG(y)
x≤y≤x+L<∞

= [1/B(p, q)] sup
x

∫ x+L

x
yp−1

/
(1 + y)

p+q
dy(28)

and for the derivative of the right hand side we have also

d varG(y)
x≤y≤x+L

/
dx =

= [1/B(p, q)]
[
(x + L)p−1 (1 + x + L)−p−q − xp−1 (1 + x)−p−q

]
.

(29)

For x < x0 the derivative is positive. This means that initial successive
increments of the c.d.f. G(x) on the segment of the lenghts L increase to the
size of the interval [x0 − L, x0) , where x0 is a point in which the derivative
vanishes. For x > x0 the derivative is negative and vanishes when x →∞.

Therefore

sup
x

varG(y)
x≤y≤x+L

= G (x0)−G (x0 − L)(30)

and in (24) γ(L) should be substituted by

γ(L) = 1−G (x0) + G (x0 − L) .(31)

References

[1] F.J. Dyson, Fourier transforms of distributions functions Canad J. Math. 5
(4) (1953), 554–558.

[2] B.W. Gnedenko and A.N. Kolmogorov, RozkÃlady graniczne sum zmiennych
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