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Götz Trenkler

Department of Statistics, Dortmund University of Technology,

Vogelpothsweg 87, D–44221 Dortmund, Germany

e-mail: trenkler@statistik.uni-dortmund.de

Abstract

In an invited paper, Baksalary [Algebraic characterizations and
statistical implications of the commutativity of orthogonal projectors.
In: T. Pukkila, S. Puntanen (Eds.), Proceedings of the Second
International Tampere Conference in Statistics, University of Tampere,
Tampere, Finland, [2], pp. 113–142] presented 45 necessary and suffi-
cient conditions for the commutativity of a pair of orthogonal
projectors. Basing on these results, he discussed therein also statisti-
cal aspects of the commutativity with reference to problems concerned
with canonical correlations and with comparisons between estimators
and between sets of linearly sufficient statistics corresponding to
different linear models. In the present paper, parts of this analysis
are resumed in order to shed some additional light on the problem
of commutativity. The approach utilized is different than the one
used by Baksalary, and is based on representations of projectors in
terms of partitioned matrices. The usefulness of such representations
is demonstrated by reinvestigating some of Baksalary’s statistical
considerations.
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1. Introduction

In an invited paper, published in the Proceedings of the Second Interna-
tional Tampere Conference in Statistics, Jerzy K. Baksalary [2] presented
45 necessary and sufficient conditions for the commutativity of a pair of or-
thogonal projectors. Basing on these results, he discussed statistical aspects
of the commutativity with reference to problems concerned with canonical
correlations and with comparisons between estimators and between sets of
linearly sufficient statistics corresponding to different linear models. Sub-
sequently, we resume parts of this analysis to shed some additional light
on the problem of commutativity. In Section 2 we restate Theorem 1 in
Baksalary [2] taking into account conditions which depend on orthogonal
projectors. However, unlike Baksalary [2] who restricted his considerations
to the real case only, our results are presented within the complex frame-
work, what means that the projector matrices may contain complex entries.
The next section is devoted to canonical correlations, whereas in Section 4
we follow Baksalary’s traces to reinvestigate the equalities between ordinary
least squares estimator (olse), generalized least squares estimator (glse),
and best linear unbiased estimator (blue) in the general linear model. The
paper is concluded with the section providing some further algebraic char-
acterizations of the commutativity of orthogonal projectors.

Let Cm,n denote the set of m × n complex matrices and let Rm,n be
its subset composed of real matrices. The symbols F∗, F′, R(F), N (F),
and rk(F) will stand for the conjugate transpose, transpose, column space,
null space, and rank of F ∈ Cm,n, respectively. Moreover, In will be the
identity matrix of order n, and for given F ∈ Cn,n we define F = In − F.
The key role in the present paper is played by the notion of an orthogonal
projector. Recall that a matrix P ∈ Cn,n is called an orthogonal projector
if P2 = P = P∗ (P2 = P = P′ in the real case), i.e., P is idempotent
and Hermitian (idempotent and symmetric in the real case). An essential
property of an orthogonal projector P ∈ Cn,n is that it is expressible as FF†
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for some F ∈ Cn,m, where F† ∈ Cm,n is the Moore-Penrose inverse of F, i.e.,
the unique solution to the equations

FF†F = F, F†FF† = F†, (FF†)∗ = FF†, (F†F)∗ = F†F.

Since R(FF†) = R(F), we say that PF = FF† is the orthogonal projector
onto R(F) and, consequently, QF = In − FF† is the orthogonal projector
onto R(QF) = R⊥(F), where R⊥(F) denotes the orthogonal complement of
R(F), i.e., the subspace consisting of all vectors orthogonal to R(F).

For matrix F ∈ Cn,n of rank r, Hartwig and Spindelböck [5, Corollary
6] derived the following representation

(1.1) F = U

(

ΣK ΣL

0 0

)

U∗,

where U ∈ Cn,n is unitary and the matrices K, L satisfy KK∗ + LL∗ = Ir,
Σ = diag(σ1Ir1

, ..., σtIrt
) is the diagonal matrix of singular values of F,

σ1 > σ2 > ... > σt > 0, r1+r2+...+rt = r = rk(F). Using this representation
and the fact that every orthogonal projector P ∈ Cn,n is expressible as FF†,
straightforward calculations show that P can be written as

(1.2) P = U

(

Ir 0

0 0

)

U∗,

where r = rk(P).

Let now Q ∈ Cn,n be another orthogonal projector. It is clear that,
referring to (1.2), it can be expressed as a partitioned matrix of the form

(1.3) Q = U

(

A B

B∗ D

)

U∗,

where A ∈ Cr,r and D ∈ Cn−r,n−r are both Hermitian.

The following 6 lemmas provide results which will be useful in the
forthcoming sections. The first of them concerns relationships between
submatrices A, B, and D involved in the matrix Q given in (1.3).
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Lemma 1. Let Q ∈ Cn,n be the orthogonal projector represented as in (1.3).
Then:

(i) A = A2 + BB∗,

(ii) B = AB + BD,

(iii) D = D2 + B∗B,

(iv) R(B) ⊆ R(A),

(v) R(B) ⊆ R(A),

(vi) R(B∗) ⊆ R(D),

(vii) R(B∗) ⊆ R(D),

(viii) rk(Q) = rk(A) − rk(B) + rk(D).

Proof. Conditions (i)–(iii) are straightforward consequences of the
idempotency of Q.

Inclusion (iv) is established on account of condition (i) combined with
A = A∗, by noting that

R(A) = R(AA∗ + BB∗) = R(AA∗) + R(BB∗) = R(A) + R(B),

where the second equality follows from the fact that AA∗ and BB∗ are both
nonnegative definite. Clearly, the next three conditions are obtained in a
similar way.

The proof of identity (viii) is more involved. In view of Lemma 1(iv),
applying Corollary 19.1 in Marsaglia and Styan [6] to matrix Q of the form
(1.3) leads to

(1.4) rank(Q) = rank(A) + rank(D −B∗A†B).

As can be shown by referring to the relationships between matrices A, B,
and D, the difference occurring in the latter summand on the right-hand
side of (1.4) satisfies D −B∗A†B = Q

D
. Hence,

(1.5) rank(Q) = rank(A) + n − r − rank(D).
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Further, since formula (2.12) in Tian and Styan [8] entails

rank(D2 −D) = rank(D) + rank(D) − n + r,

on account of Lemma 1(iii), we get

rank(D) = n − r + rank(B) − rank(D).

Substituting this equality into (1.5) yields condition (viii).

Another consequences of (1.2) and (1.3) are given in what follows.

Lemma 2. Let P and Q be the orthogonal projectors represented as in (1.2)
and (1.3), respectively. Then:

(i) PQ = QP if and only if B = 0,

(ii) PQ = Q if and only if D = 0.

Proof. Equivalence (i) is obtained straightforwardly, whereas to establish
statement (ii) use was made of Lemma 1(iii), according to which D = 0

implies B = 0.

In what follows we make repeatedly use of the two facts which can be
directly shown. Namely, for suitable matrices F and G,

(1.6) rk(F∗G) = rk(PFPG),

(1.7) R(FG) = R(FPG).

Important tools for considering the orthogonal projectors onto given
column spaces are provided by the next lemma.

Lemma 3. Let P,Q ∈ Cn,n be the orthogonal projectors. Then:

(i) P + P(PQ)† is the orthogonal projector onto R(P) + R(Q),

(ii) P−P(PQ)† is the orthogonal projector onto R(P) ∩R(Q).
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Proof. Statements (i) and (ii) constitute equivalences (3.1) ⇔ (3.6) and
(4.1) ⇔ (4.8) in Piziak et al. [7], respectively.

Using Lemma 3 we obtain the following representations of the orthog-
onal projectors onto sums and intersections of certain subspaces, including
their dimensions.

Lemma 4. Let P and Q be the orthogonal projectors represented as in (1.2)
and (1.3), respectively. Then:

(i) PR(P)+R(Q) =U

(

Ir 0

0 PD

)

U∗,

where dim[R(P) + R(Q)]= r + rk(D),

(ii) PR(P)+N (Q) =U

(

Ir 0

0 PD

)

U∗,

where dim[R(P)+N (Q)]=n+rk(B)−rk(D),

(iii) PN (P)+R(Q) =U

(

PA 0

0 In−r

)

U∗,

where dim[N (P) + R(Q)]= n − r + rk(A),

(iv) PN (P)+N (Q) =U

(

PA 0

0 In−r

)

U∗,

where dim[N (P)+N (Q)]=n−rk(A)+rk(B).

Proof. The proof is limited to the observations that the matrices repre-
senting projectors given in the theorem are obtained on account of
Lemma 3(i), whereas the expressions for the dimensions of the correspond-
ing subspaces are consequences of the fact that there is one-to-one corre-
spondence between an orthogonal projector and the subspace onto which
it projects.
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Lemma 5. Let P,Q ∈ Cn,n be the orthogonal projectors represented as in

(1.2) and (1.3), respectively. Then:

(i) PR(P)∩R(Q) =U

(

QA 0

0 0

)

U∗,

where dim[R(P) ∩R(Q)] = rk(A) − rk(B),

(ii) PR(P)∩N (Q) =U

(

QA 0

0 0

)

U∗,

where dim[R(P) ∩N (Q)] = r − rk(A),

(iii) PN (P)∩R(Q) =U

(

0 0

0 QD

)

U∗,

where dim[N (P) ∩R(Q)] = rk(D) − rk(B),

(iv) PN (P)∩N (Q) =U

(

0 0

0 QD

)

U∗,

where dim[N (P) ∩N (Q)] = n − r − rk(D).

Proof. The proof is based on the same observations as the proof of the
preceding lemma, with the reference to Lemma 3(i) replaced with the one
to Lemma 3(ii).

The next lemma concerns ranks of functions of P and Q.

Lemma 6. Let P,Q ∈ Cn,n be the orthogonal projectors represented as in

(1.2) and (1.3). Then:

(i) rk(PQ) = rk(QP) = rk(A),

(ii) rk(In −PQ) = n − rk(A) + rk(B),

(iii) rk(PQ) = r − rk(A) + rk(B),
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(iv) rk(P + Q) = r + rk(D),

(v) rk(P −Q) = r − rk(A) + rk(B) + rk(D),

(vi) rk(PQ + QP) = rk(A) + rk(B).

Proof. Conditions (i), (iv), and (vi) are established directly by finding the
orthogonal projectors onto the column spaces of the functions of P and Q on
the left-hand side of the equations constituting them. The remaining three
conditions are obtained similarly, but here one needs a formula for rk(A).
It is derived on account of equality (2.12) in Tian and Styan [8], which, in
view of Lemma 1(i), entails rank(A) = r + rank(B) − rank(A).

Observe that the proofs delivered so far may be also applied to the or-
thogonal projectors represented by matrices of real entries. Then the matrix
U occurring in the representations of P and Q is to be chosen orthogonal
(instead of unitary) and the conjugate transpose is to be replaced with the
ordinary transpose.

2. Algebraic characterizations of commutativity

Our first theorem is closely related to Theorem 1 in Baksalary [2]. The
A-numbers given in the right-hand side column refer to this theorem.

Theorem 1. Let P,Q ∈ Cn,n be the orthogonal projectors. Then the

following statements are equivalent:

(i) PQ = QP, (A1)

(ii) PQ = (PQ)2, (A7)

(iii) QPQ = QPQPQ, (A8)

(iv) QPQ = QPQPQ, (A9)

(v) QPQ = 0, (A10)

(vi) PQ = PR(P)∩R(Q) , (A11)

(vii) PQ = PPR(P)∩R(Q)Q, (A12)
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(viii) PQ is the orthogonal projector onto R(P)∩ [N (P) +N (Q)], (A13)

(ix) PQ is the orthogonal projector onto R(P) ∩N (Q), (A14)

(x) PQ is the orthogonal projector onto [R(P) +R(Q)]∩N (Q), (A15)

(xi) P + Q−PQ is the orthogonal projector onto R(P) +R(Q), (A16)

(xii) R(QR(P)∩R(Q)P) and R(QR(P)∩R(Q)Q) are orthogonal, (A19)

(xiii) R(P) ∩ [N (P) + N (Q)] and R(Q) ∩ [N (P) + N (Q)]

are orthogonal, (A20)

(xiv) R(P) ∩ [N (P) + N (Q)] and R(Q) are orthogonal, (A21)

(xv) R(PQ) ⊆ R(Q), (A22)

(xvi) R(PQ) ⊆ R(P) ∩R(Q), (A23)

(xvii) R(PQ) = R(P) ∩R(Q), (A24)

(xviii) R(QP) = R(P) ∩ [N (P) + N (Q)], (A26)

(xix) R(QP) = R(P) ∩N (Q), (A27)

(xx) [R(P) + R(Q)] ∩N (Q) = R(P) ∩ [N (P) + N (Q)], (A28)

(xxi) [R(P) + R(Q)] ∩N (Q) = R(P) ∩N (Q), (A29)

(xxii) R(P) = [R(P) ∩R(Q)] ⊕ {[R(P) + R(Q)] ∩N (Q)}, (A30)

(xxiii) R(P) = [R(P) ∩R(Q)] ⊕R(QP), (A31)

(xxiv) R(P) + R(Q) = R(Q) ⊕ [R(P) ∩N (Q)], (A33)

(xxv) rk(PQ) = dim[R(P) ∩R(Q)], (A34)

(xxvi) dim{R(P) ∩ [N (P) + N (Q)]} = rk(P) − rk(PQ), (A35)
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(xxvii) dim{[R(P) + R(Q)] ∩N (Q)} = rk(P) − rk(PQ), (A36)

(xxviii) rk(QP) = rk(P) − rk(PQ), (A37)

(xxix) rk(Q + P) = rk(P) + rk(Q) − rk(PQ), (A38)

(xxx) dim[R(P) ∩N (Q)] = rk(QP), (A39)

(xxxi) dim[R(P) ∩N (Q)] = rk(P + Q) − rk(Q), (A40)

(xxxii) dim[R(P) ∩N (Q)] = rk(P) − dim[R(P) ∩R(Q)], (A41)

(xxxiii) dim[R(P) ∩N (Q)] = dim{R(P) ∩ [N (P) + N (Q)]}. (A42)

Proof. According to Lemma 2(i), condition (i) holds if and only if B = 0.
In the following we show that all other 32 conditions listed in the theorem
are also equivalent to B = 0.

First observe that condition PQ = (PQ)2 can be equivalently expressed
as the conjunction A = A2, B = AB, which by Lemma 1(i) is equivalent
to BB∗ = 0, i.e., B = 0.

Next, note that condition (iii) is equivalent to A2 = A3, AB = A2B,
and B∗B = B∗AB. Since A is Hermitian, A2 = A3 implies A = A2, and
by Lemma 1(i) we have B = 0. The reverse direction is trivial. Correspond-
ingly, the equivalence (iv) ⇔ (i) is obtained by replacing in condition (iii)
the orthogonal projector P with the orthogonal projector P. Hence, it is
seen that (iv) is equivalent to QP = PQ, i.e., PQ = QP.

The proof referring to condition (v) is also obtained by direct calcula-
tions with the use of Lemma 1(i).

Further, by utilizing the formula for PR(P)∩R(Q) given in Lemma 5(i)
it follows that PQ = PR(P)∩R(Q) holds if and only if B = 0 and QA = A,

with the latter of these conditions meaning that A = PA . However, in view
of Lemma 1(i), the former of these conditions ensures that A is idempotent,

and, since A is Hermitian, it is seen that A
†

= A, which in turn means that
B = 0 ⇒ QA = A.

For the proof referring to condition (vii) note that

PPR(P)∩R(Q)Q = PR(P)∩R(Q)Q = U

(

QAA QAB

0 0

)

U∗.
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Thus, condition (vii) can be expressed as QAA = A and QAB = B. The
former of these equations can be rewritten as QA(Ir − A) = Ir − A, and
hence further simplified to PA = A. Since A is Hermitian, the following

chain of equivalences holds PA = A ⇔ A
2

= A ⇔ A2 = A ⇔ B = 0.
Applying Lemma 3(ii) to PR(P) = P and PN (P)+N (Q) given in (1.2)

and Lemma 4(iv), respectively, leads to

(2.1) PR(P)∩[N (P)+N (Q)] = U

(

PA 0

0 0

)

U∗.

Since

(2.2) PQ = U

(

A −B

0 0

)

U∗,

in view of Lemma 1(i), it is seen that condition (viii) is equivalent to B = 0.
The next equivalence, i.e., (ix) ⇔ (i), is established in a similar way, with
the use of the formula for PR(P)∩N (Q) given in Lemma 5(ii).

Since PN (Q) = Q, on account of Lemma 1(vi), from Lemma 3(ii) we
get

(2.3) P[R(P)+R(Q)]∩N (Q) = U

(

A −B

−B∗ PD −D

)

U∗.

Comparing (2.2) with (2.3) leads to the conclusion that condition (x) holds
if and only if B = 0 and PD = D. However, in view of Lemma 1(iii),
the former of these equalities ensures that D is idempotent, and, since D

is Hermitian, it is seen that B = 0 implies PD = D. This implication is
utilized also in the next step of the proof, in which from (1.2), (1.3), and
Lemma 4(i) we have

P + Q−PQ = PR(P)+R(Q) ⇔ U

(

Ir 0

B∗ D

)

U∗ = U

(

Ir 0

0 PD

)

U∗.

In consequence, the equivalence (xi) ⇔ (i) is satisfied if and only if B = 0

and PD = D, what can be reduced to B = 0 only.
From (1.2), (1.3), and Lemma 5(i) it follows that

QR(P)∩R(Q)P = U

(

PA 0

0 0

)

U∗
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and

QR(P)∩R(Q)Q = U

(

PAA PAB

0 0

)

U∗,

whence it is seen that the column spaces of these matrices are orthogonal if
and only if PAA = 0 and PAB = 0. The former of these conditions can
be expressed as PA = A, whereas, on account of Lemma 1(v), the latter
one is equivalent to B = 0. Thus, the assertion is established by the same
arguments as those utilized in the proof referring to condition (vi).

In view of Lemma 1(v), applying Lemma 3(ii) to PR(Q) = Q and
PN (P)+N (Q) given in (1.2) and Lemma 4(iv), respectively, leads to

(2.4) PR(Q)∩[N (P)+N (Q)] = U

(

PA −A B

B∗ D

)

U∗.

As easy to observe, on account of Lemma 1(v), the products of projectors
(2.1) and (2.4) are equal to zero if and only if B = 0. Similarly, the column
spaces of projectors (2.1) and Q are orthogonal if and only if (i) holds.

Condition (xv) can be equivalently expressed as QPQ = PQ, which is
known to be satisfied if and only if P and Q commute; see e.g., Theorem
in Baksalary et al. [3]. Correspondingly, condition (xvi) can be expressed
as PR(P)∩R(Q)PQ = PQ. From (1.2), (1.3), and Lemma 5(i) it follows
that condition (xvi) holds if and only if QAA = A, QAB = B. Since the
same conjunction was obtained in the proof referring to condition (vii), the
equivalence (xvi) ⇔ (i) is obtained.

Direct calculations with the use of Lemma 1(i) and Lemma 1(iv) show
that the Moore-Penrose inverse of PQ is of the form

(2.5) (PQ)† = U

(

PA 0

B∗A† 0

)

U∗.

Hence, we obtain

(2.6) PR(PQ) = U

(

PA 0

0 0

)

U∗,

and comparing this projector with PR(P)∩R(Q), given in Lemma 5(i), leads
to the conclusion that condition (xvii) holds if and only if PA = Q

A
, or,
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equivalently, R(A) = N (A). This condition is equivalent to A2 = A, which
in turn means that B = 0.

Conditions (xviii) and (xix) involve column space R(QP). Since

QP = U

(

A 0

−B∗ 0

)

U∗,

and, as can be verified by direct calculations with the use of Lemma 1(i)
and Lemma 1(v),

(QP)† = U

(

PA −A
†
B

0 0

)

U∗,

it follows that

(2.7) PR(QP) = U

(

A −B

−B∗ B∗A
†
B

)

U∗.

Hence, the corresponding assertions are established by comparing the pro-
jector (2.7) with PR(P)∩[N (P)+N (Q)] given in (2.1) and PR(P)∩N (Q) given in
Lemma 5(ii), respectively. Analogously, the proofs corresponding to the next
two conditions are obtained by comparing (2.3) with (2.1) and PR(P)∩N (Q),
respectively.

Applying Lemma 3(i), with the use of Lemma 1(v), to PR(P)∩R(Q) given
in Lemma 5(i) and formulae (2.3) and (2.7) gives

(2.8) P[R(P)∩R(Q)]⊕{[R(P)+R(Q)]∩N (Q)} = U

(

QA + A −B

−B∗ PD −D

)

U∗,

(2.9) P[R(P)∩R(Q)]⊕R(QP) = U

(

QA + A −B

−B∗ B∗A
†
B

)

U∗,

respectively. Thus, equivalences (xxii) ⇔ (i) and (xxiii) ⇔ (i) are established
directly by comparing (2.8) and (2.9) with PR(P) = P. (Parenthetically
note that combining matrices (2.8) and (2.9) leads to the conclusion that
R(QP) = [R(P)+R(Q)]∩N (Q). Actually, it can be shown that PD−D =

B∗A
†
B.)
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The next condition involves the column space R(Q) ⊕ [R(P) ∩N (Q)],
which is, on account of Lemma 1(iv), attributed to

PR(Q)⊕[R(P)∩N (Q)] = U

(

QA + A B

B∗ D

)

U∗.

Hence, by comparing this projector with PR(P)+R(Q) given in Lemma 4(i)
shows that also condition (xxiv) holds if and only if B = 0.

The proof corresponding to condition (xxv) is obtained simply by com-
paring the latter part of Lemma 5(i) with Lemma 6(i).

The proof is concluded with the general observation that the equiva-
lences between each of conditions (xxvi)–(xxxiii) and (i) are obtained on
account of conditions: (viii) of Lemma 1; (i), (ii) of Lemma 5; (i), (iii),
(iv) of Lemma 6, formulae (2.1), (2.3), and the properties of the rank of a
matrix, by utilizing the fact that rk(P) = r.

The theorem is followed by a comment that condition (A32) listed in
Baksalary’s [2] Theorem 1, i.e., R(P) + R(Q) = R(Q) ⊕ {R(P) ∩ [N (P) +
N (Q)]}, does not yield a characterization of commutativity. This fact is
based on the observation that PR(P)+R(Q) , given in Lemma 4(i), always co-
incides with PR(Q)⊕{R(P)∩[N (P)+N (Q)]} . This can be shown by using Lemma
3(i) and formula (2.4).

3. Canonical correlations

In the present section, inspired by Section 3.1 in Baksalary [2],
it is assumed that all matrices under investigation have real entries. As in
Baksalary [2, Section 3.1], consider the linear model of the form

(3.1) Ma = {y,Wγ + Zδ, σ2In},

in which y ∈ Rn,1 is an observable random vector with expectation E(y) =
Wγ + Zδ and with dispersion matrix Cov(y) = σ2In, where W ∈ Rn,w,
Z ∈ Rn,z are known, while γ ∈ Rw,1, δ ∈ Rz,1, and σ2 > 0 are unknown
parameters. It was shown therein that the number of nonzero canonical
correlations between W′y and Z′y is equal to s = rk(W′Z), whereas the
number of canonical correlations equal to one is s1 = rk(W)+rk(Z)−rk(W :
Z). If now P = WW† = PW and Q = ZZ† = PZ, with P and Q having
representation as specified in the Introduction, then, using Lemma 6(i), we
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have s = rk(PQ) = rk(A). Furthermore, on account of Lemma 1(viii) and
Lemma 6(iv), we get s1 = rk(P) + rk(Q) − rk(P + Q) = rk(A) − rk(B).
With the use of these observations, we can formulate the following theorem,
which is closely related to Theorem 2 in Baksalary [2].

Theorem 2. Let P,Q ∈ Rn,n be the orthogonal projectors and let y, Z,

and W be as specified in the linear model (3.1). Moreover, let s and s1 be

the numbers of zero and unit canonical correlations between W ′y and Z′y,

respectively. Then the following conditions are equivalent:

(i) PQ = QP,

(ii) s = s1,

(iii) Cov(W′Qy,Z′Py) = 0,

(iv) W′QW = W′QPQW.

Proof. As stated in Lemma 2(i), condition (i) is satisfied if and only if
B = 0. We show that also the three remaining conditions given in the
theorem are equivalent to B = 0.

First observe that condition (ii) can be expressed as rk(A) = rk(A) −
rk(B). Since B = 0 ⇔ rk(B) = 0, the equivalence (ii) ⇔ (i) is established.

For the proof referring to condition (iii), note that it is satisfied
if and only if W′QPZ = 0, or, equivalently, rk(W′QPZ) = 0.
On account of (1.6), we have rk(W′QPZ) = rk(PR(QW)PR(PZ)), where

rk(PR(QW)PR(PZ)) = rk(PR(QP)PR(PQ)). From (1.2) and (1.3) it is seen
that

PQ = U

(

0 0

B′ D

)

U′,

and direct calculations with the use of Lemma 1(iii) and Lemma 1(vi)
confirm that

(PQ)† = U

(

0 BD†

0 PD

)

U′.

In consequence, on account of Lemma 1(iii),
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(3.2) PR(PQ) = U

(

0 0

0 PD

)

U′.

Hence, utilizing Lemma 1(vi), from (2.7) and (3.2), we have

PR(QP)PR(PQ) = U

(

0 −B

0 B′A
†
B

)

U′.

Thus, clearly rk(W′QPZ) = 0 if and only if B = 0.
Finally, condition (iv) can be rewritten as W′QPQW = 0 which is

satisfied if and only if W′QP = 0, or, equivalently, rk(PPR(QP)) = 0.

Since, as can be directly verified with the use of Lemma 1(iii) and Lemma
1(viii), the Moore-Penrose inverse of

QP = U

(

0 −B

0 D

)

U′

is of the form

(QP)† = U

(

0 0

−D
†
B′ PD

)

U′,

on account of Lemma 1(vii), we obtain

PR(QP) = U

(

BD
†
B′ −B

−B′ D

)

U′.

In consequence, it is seen that rk(PPR(Q P)) = 0 if and only if B = 0. The
proof is complete.

4. Comparison among three estimators

Similarly as in the previous section, also in the present one it is assumed
that the matrices under investigation have real entries. Following Baksalary
[2, Section 3.2], consider the general linear model of the form

(4.1) M = {y,Xβ, σ2V},
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where X ∈ Rn,x, V ∈ Rn,n are known (with possibly X not of full column
rank and V singular), β ∈ Rx,1 is unknown, and y, σ2 are as defined in
(3.1). We are interested in the equations

olse(Xβ) = blue(Xβ),

glse(Xβ) = blue(Xβ),

where
olse(Xβ) = PXy,

glse(Xβ) = X(X′V†X)†X′V†y,

and
blue(Xβ) = Ty,

with T being any solution to the matrix equations T(X : VQX) = (X : 0).

(4.2) olse(Xβ) = blue(Xβ) ⇔ PXV = VPX,

(4.3) glse(Xβ) = blue(Xβ) ⇔ PVPX = PX.

Following Hartwig and Spindelböck [5, Corollary 6], denoting rk(V) = r,
let us write

V = U

(

G 0

0 0

)

U′,

where G ∈ Rr,r is positive definite and U ∈ Rn,n is orthogonal. In conse-
quence,

PV = VV† = U

(

Ir 0

0 0

)

U′.

If PX takes the role of the projector Q defined in (1.3), we may write

PX = U

(

A B

B′ D

)

U′,

and straightforward calculations show that the right-hand sides conditions
in (4.2) and (4.3) satisfy

(4.4) PXV = VPX ⇔ B = 0, AG = GA,



130 O.M. Baksalary and G. Trenkler

(4.5) PVPX = PX ⇔ D = 0.

In what follows we restate Theorem 3 in Baksalary [2], with its part (i)
modified on account of (1.7).

Theorem 3. Let M be the general linear model of the form (4.1). Then:

(i) olse(Xβ) = blue(Xβ) ⇔ PXPV = PVPX holds along with

R(VPR(X)∩R(V)) ⊆ R(X),

(ii) glse(Xβ) = blue(Xβ) ⇔ PXPV = PVPX holds along with

R(X) ∩R⊥(V) = {0}.

Proof. It is easily seen that PXPV = PVPX ⇔ B = 0. Moreover, the
latter condition on the right-hand side of statement (i) can be rewritten in
the form

(4.6) PXVPR(X)∩R(V) = VPR(X)∩R(V) .

Note that PR(X)∩R(V) has the same form as PR(P)∩R(Q) given in Lemma
5(i). In consequence, equality (4.6) can be expressed as AGQA = GQA

and B′GQA = 0. Since, on account of Lemma 1(i), B = 0 holds if and only
if QA = A, the conjunction of PXPV = PVPX and (4.6) is equivalent to
B = 0 and AGA = GA. In view of the fact that A and G are symmetric,
condition AGA = GA can be simplified to AG = GA, and thus, we have
obtained the right-hand side of (4.4).

For the proof of equivalence (ii) first observe that condition R(X) ∩
R⊥(V) = {0} can be expressed as PR(PX)∩R(QV) = 0, where PR(PX)∩R(QV)

= PR(Q)∩R(P) = PN (P)∩R(Q), with the last projector given in Lemma 5(iii).

In consequence, condition R(X) ∩ R⊥(V) = {0} is satisfied if and only if
Q

D
= 0. Combining Q

D
= 0, which means that D is nonsingular, with

B = 0, which, on account of Lemma 1(iii) ensures that D is idempotent,
leads to the conclusion that

PXPV = PVPX, R(X) ∩R⊥(V) = {0} ⇔ D = 0.

Thus, in view of (4.5), the proof is completed.
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In part (a) ⇔ (f) of his Theorem 4, Baksalary [2] has shown the
equivalence of conditions

Cov[blue(Xβ)] = Cov[glse(Xβ)],

blue(Xβ) = X(X′V†X)†X′V†y + X(X′QVX)†X′QVy.

In what follows we demonstrate that the four other equivalent conditions
given in Theorem 4 in Baksalary [2] can be expressed in terms of
orthogonal projectors. For this purpose, denoting rk(X) = r, let us write
the model matrix X in its singular value decomposition

(4.7) X = U

(

Ω 0

0 0

)

U′
1,

where U ∈ Rn,n, U1 ∈ Rx,x are orthogonal matrices, and Ω ∈ Rr,r is the
diagonal matrix of singular values of X; cf. Ben-Israel and Greville [4, p. 15].
From (4.7) it follows that

(4.8) XX′ = U

(

Ω2 0

0 0

)

U′,

with the elements of Ω2 being the nonzero eigenvalues of XX′. Accordingly,
we assume that

(4.9) PV = U

(

A B

B′ D

)

U′.

Now we get the following result, which involves conditions (b)–(e) of Bak-
salary’s Theorem 4, with conditions occurring in points (b) and (e) restated
on account of equality (1.7). Furthermore, point (d), originally being a con-
junction of two conditions, is in the theorem below replaced with a single
condition only.

Theorem 4. Let M be the general linear model of the form (4.1). Then

the following conditions are equivalent:

(i) R(XX′PV) ⊆ R(PV),

(ii) XX′PV = PVXX′,
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(iii) R(X′XX′PV) ⊆ R(X′PV),

(iv) PXPV = PVPX and R(XX′PR(X)∩R(V)) ⊆ R(PV).

Proof. First observe that from (4.8) and (4.9) it follows that

(4.10) XX′PV = U





Ω2A Ω2B

0 0



U′,

(4.11) PVXX′ = U





AΩ2 0

B′Ω2 0



U′.

Since Ω is nonsingular, it is thus seen that condition (ii) holds if and only
if B = 0 and Ω2A = AΩ2. Clearly, by taking the square roots, the latter
condition can be simplified to ΩA = AΩ.

On the other hand, condition (i) can be equivalently expressed as
PVXX′PV = XX′PV, where

(4.12) PVXX′PV = U





AΩ2A AΩ2B

B′Ω2A B′Ω2B



U′.

In consequence, from (4.10) and (4.12) it is seen that condition (i) is satisfied
if and only if B = 0 and AΩ2A = Ω2A. Taking the conjugate transposes on
both sides of the latter condition gives AΩ2A = AΩ2. Thus, Ω2A = AΩ2,
i.e., ΩA = AΩ. Since, by Lemma 1(i), B = 0 yields the idempotency of A,
the reverse implication is easily seen, and thus the equivalence (ii) ⇔ (i) is
established.

Further, condition (iii) can be expressed as X′R(XX′PV) = X′R(PV),
or, alternatively,

(4.13) X′PR(XX′PV) = X′PV.

In view of Lemma 1(i), applying formula M† = M′(MM′)† for any real
matrix M (see e.g., Example 18 in Ben-Israel and Greville [4, Chapter 1])
to (4.10), gives

(XX′PV)† = U





AΩ2(Ω2AΩ2)† 0

B′Ω2(Ω2AΩ2)† 0



U′.
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Hence, again referring to Lemma 1(i), we get

(4.14) PR(XX′PV) = U





Ω2AΩ2(Ω2AΩ2)† 0

0 0



U′.

In consequence, using (4.7), (4.9), and (4.14), we can rewrite condition (4.13)
in the form

(4.15) U1





Ω3AΩ2(Ω2AΩ2)† 0

0 0



U′ = U1





ΩA ΩB

0 0



U′.

It is seen that (4.15) is satisfied if and only if B = 0 and Ω2AΩ2(Ω2AΩ2)† =
A. Since the latter of these conditions means that A is the orthogonal
projector onto R(Ω2A), it follows that AΩ2A = Ω2A. Hence, we arrive
at B = 0 and ΩA = AΩ. To establish the converse implication, first note
that on account of B = 0, Lemma 1(i) combined with A′ = A ensures that
A† = A. Hence, from Example 22 in Ben-Israel and Greville [4, Chapter
4] it follows that ΩA = AΩ ensures (Ω2AΩ2)† = Ω−2AΩ−2, and, thus,
identity (4.15) is clearly fulfilled.

For the proof referring to condition (iv), observe that from (4.7) it
follows that

PR(X) = U





Ir 0

0 0



U′.

Hence, on the one hand, PXPV = PVPX ⇔ B = 0, and, on the other
hand, it is seen that PR(X)∩R(V) is of the same form as PR(P)∩R(Q) given
in Lemma 5(i). In consequence, condition (iv), being satisfied if and only
if PXPV = PVPX and PVXX′PR(X)∩R(V) = XX′PR(X)∩R(V) , can be

equivalently expressed as B = 0 and AΩ2QA = Ω2QA. In view of Lemma
1(i), the former of these conditions ensures that the latter can be simplified to
AΩ2A = Ω2A, so it is seen that (iv) is equivalent to B = 0 and ΩA = AΩ.
The proof is complete.

It is worth emphasizing that condition (d) in Theorem 4 of Baksalary [2]
constitute the conjunction PXPV = PVPX and R(X′XX′V) = R(X′V),
whereas the corresponding condition (iii) in Theorem 4 above is void of the
commutativity condition.

The next theorem corresponds to part (A1) ⇔ (S4) of Theorem 5 in
Baksalary [2].
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Theorem 5. Let M be the general linear model of the form (4.1). Then

the following statements are equivalent:

(i) PXPV = PVPX,

(ii) there are no unit canonical correlations between PXy and QXy.

Proof. It was mentioned in Baksalary [2, p. 123] that t1 = rk(VX) −
dim[R(X) ∩ R(V)] is the number of the unit canonical correlations be-
tween PXy and QXy. Hence, using (1.6), it follows that t1 = rk(PVPX) −
dim[R(PX)∩R(PV)]. Setting PV = P and PX = Q, with matrices on the
right-hand sides being of the forms (1.2) and (1.3), respectively, by Lemma
5(i) and Lemma 6(i) we get t1 = rk(A) − [rk(A) − rk(B)]. Thus, t1 = 0 is
equivalent to rk(B) = 0, i.e., PXPV = PVPX.

5. Further characterizations of commutativity

There are many further, alternative, characterizations of the commutativity
of a pair of orthogonal projectors. In the subsequent two theorems involv-
ing orthogonal projectors P,Q ∈ Cn,n, we provide conditions equivalent to
PQ = QP expressed, respectively, in terms of the ranks and ranges.

Theorem 6. Let P,Q ∈ Cn,n be the orthogonal projectors. Then the

following conditions are equivalent:

(i) PQ = QP,

(ii) rk(In −PQ) + rk(PQ) = n,

(iii) rk(PQ) = rk(P) − rk(PQ),

(iv) rk(P −Q) = rk(P + Q) − rk(PQ),

(v) rk(PQ + QP) = rk(PQ).

Proof. The theorem is derived straightforwardly from Lemma 6.

The last theorem provides some results involving the ranges of functions
of P and Q.
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Theorem 7. Let P,Q ∈ Cn,n be the orthogonal projectors. Then the

following conditions are equivalent:

(i) PQ = QP,

(ii) R(PQ) ∩R(P −Q) = {0},

(iii) R(PQ) ⊆ R(QP),

(iv) N (PQ) ⊆ N (QP),

(v) [R(P) + N (Q)] ∩R(Q) = R(P) ∩ [N (P) + R(Q)],

(vi) R(PQ) and R(QP) are orthogonal.

Proof. We show that each of conditions (ii)–(vi) is equivalent to B = 0.
First note that direct calculations with the use of conditions (i), (v), (vi) of

Lemma 1, and already mentioned identity PD = B∗A
†
B + D, lead to the

conclusion that the Moore-Penrose inverse of

P−Q = U





A −B

−B∗ −D



U∗

is of the form

(P −Q)† = U





P
A

−A
†
B

−B∗A
†

−PD



U∗.

Hence,

(5.1) PR(P−Q) = U





PA 0

0 PD



U∗,

and applying Lemma 3(ii) to (2.6) and (5.1) gives, after some rearrange-
ments,

PR(PQ)∩R(P−Q) = U





PB 0

0 0



U∗.

Thus, the equivalence (ii) ⇔ (i) is seen.
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The proofs corresponding to the next two conditions are based on the
facts that (iii) is equivalent to QP(QP)†PQ = PQ, whereas (iv) to
QP(PQ)†PQ = QP. Hence, the assertions follows straightforwardly with
the use of (1.2), (1.3), (2.5), Lemma 1(i), and Lemma 1(iv).

Next, using Lemma 4(ii) and Lemma 4(iii), from Lemma 3(ii) we get

P[R(P)+N (Q)]∩R(Q) = U





A B

B∗ PD −D



U∗,

PR(P)∩[N (P)+R(Q)] = U





PA 0

0 0



U∗,

from where part (v) ⇔ (i) follows.
The proof is concluded with the observation that the equivalence (vi)

⇔ (i) is established by direct calculations.

Many further necessary and sufficient conditions for the commutativity
of the orthogonal projectors P,Q ∈ Cn,n can be formulated, including the
ones referring to the eigenvalues. For instance, it is known that all eigen-
values of PQ belong to the set [0, 1]; see e.g., Lemma 2 in Anderson et

al. [1]. However, the projectors P and Q commute if and only if PQ has no
eigenvalues belonging to the set (0, 1). Related results of this type will be
reported in a forthcoming paper.
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