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Abstract

A major concern with some contagious diseases has recently led
to an enormous effort to monitor population health status by several
different means.

However, some of the implemented monitoring schemes are only
able to follow a non-random sample of individuals from the population,
by relying on volunteer participation as is the case of GRIPNET, for
example, for monitoring symptoms of influenza like illness (ILI) in
Portugal.

This work presents a modeling approach to overcome this poor data
characteristic, allowing its use for the estimation of the true popula-
tion disease picture. We use a state space model, where we run two
processes in parallel — a process describing the non observable states
of the population concerning the presence/absence of disease, and an
observational process resulting from the monitoring.

We then use resampling importance sampling estimation techniques,
in a Bayesian framework, which enables us to estimate the population
states and, thus, the corresponding disease incidence curves.
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1. INTRODUCTION

A sudden outbreak of some contagious diseases as influenza or SARS (severe
acute respiratory syndrome), for example, can be very society disturbing,
being essencial its timely and effective detection in order to contain it. The
awareness of this has led to an huge public and private investment on the
monitoring of population health state, frequently based on symptoms rather
than on confirmed diagnosis — syndromic surveillance. These systems are set
to sound an alarm, that must be further investigated, but they have already
proven to be successful in spotting clusters of cases of disease [1].

Some examples of well established syndromic surveillance systems are
BioSTORM 2], Biological Spatio-Temporal Outbreak Reasoning Module,
AEGIS [3], Automated Epidemiological Geotemporal Integrated Surveil-
lance, ESSENCE II [4], Electronic Surveillance System for the Early Notifica-
tion of Community-Based Epidemics, HealthMap [5], Rede médicos sentinela
do Instituto Dr. Ricardo Jorge, Gripenet [6].

Several of the implemented monitoring schemes have often to trade off
between true and false positives [7] and may suffer from imperfect knowledge
data with many causes. One aspect that we are concerned with has to do
with those schemes that are only able to follow a non-random sample of the
individuals from the population, as a consequence of relying on volunteer
participation. This is the case of GRIPNET for monitoring symptoms of
influenza like illness (ILI) in Portugal.

Gripenet is a syndromic surveillance scheme set up in Portugal in 2005
for detection of ILI diseases. Participation is volunteer and internet based
and people joint to answer weekly questionnaires about symptoms related
to ILI diseases, such as presence/absence of sudden fever, nasal congestion,
etc.. For someone to represent an ILI case (ILI case definition) he/she should
satisfy all of: at least one respiratory symptom (running nose or coughing
or sore throat or chest pain), muscle pain or severe headache, temperature
greater than 38° Celsius and sudden rise of the fever.

For addressing the problem of the poor and non-random data cha-
racteristic associated to some of the surveillances going on we present an
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idea that allows the use of these data for estimating the true population
disease status, based on a state space approach borrowed from wild animal
population dynamics modeling [8, 9, 10|. Monitoring data constitutes an
observational process that runs in parallel with the non-observable states
of the diseased and non-diseased population, allowing their estimation and,
consequently, the estimation of the unknown disease incidence. Estimation is
then carried out by resampling importance sampling, in a Bayesian setting.
Section 2 describes the approach just mentioned and gives details on
the estimation, Section 3 describes the results obtained by applying this
methodology to Gripenet 2006 data and finally Section 4 concludes.

2. A STATE SPACE MODELS APPROACH

2.1. State-space models

A state space model can be used when the development over time of a system
is determined by an unobserved time series, the state process, with which a
parallel time-series of observations is associated, the observation process,
being the relation between the two specified by the state space model itself
[11].

Let ns,t = 0,1,...,7T denote the state process and y;,t = 1,...,7T
the observation process, completely observable and a function of the state
process, either observed with or without error. The population dynamics
is described by the development in time of n;, that is usually modeled to
accommodate random variation and that can consist of several subprocesses.

Represent g(-) and f(-) the probability density (or mass) functions (pdf)
of the state and the observation process, respectively. The state space model
is then described by the initial state, the state process (for which we assume
first order Markovian property) and the observation process pdfs:

go(no; 0)
gt(nt|nt—1, BRI 1 Top 9) = gt(nt|nt—1; 9)

ft(Yt‘nﬁe)v

where @ is a vector of parameters and where we assume that y; given n; is
independent of all other states and observations.
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It is possible and frequently desirable to modularize the state process pdf
into separate but linked sub-processes pdfs, that succeed and describe the
state evolution in time in a way that the input to one pdf is the output of
the previous one. Although we gain flexibility like this, the price to pay is
an increase in the complexity of the state pdf (that have to be integrated
over the sub-processes appropriately) and in the likelihood.

2.2. A state space model for Gripenet

Gripenet was set up in Portugal for doing surveillance on ILI diseases, relying
on volunteer participation of persons through internet weekly questionnaires
about their symptoms on these — typically about 2000-3000 persons join per
year. Naturally that the sample we get is not random and, in order to be
able to use of the information it holds and based on it, we propose a state
space model for modeling the true Portuguese ILI incidence. The data we use
is the 2006 Gripenet answers database [18], during the Influenza epidemic
season — from November 2005 to May 2006.

Let the state of the population in each successive week of epidemic season
2005/2006, {n;, t =0,1,...,T}, be an unobserved vector of the population
with and without ILI symptoms in each week. Let further divide these on
those under surveillance of Gripenet scheme and those that were not:

Ilé = (ni,t(GN) nnzt(G—N) ni,t(GN) nm‘,t(GN)) >

denoting, for week ¢, n;(GN) and n,;;(GN) the ILI symptomatic and the
ILI non-symptomatic population, respectively, under Gripenet surveillance
and n; +(GN) and n,;(GN) the same for those that were not surveilled
by Gripenet. Note that this might further be divided according to other
demographic characteristics such as gender, age, place of residence, known
for all Gripenet respondents.

2.2.1. Population state process

Following an approach for modeling wild animal population dynamics
[8, 9, 10], we choose the population state process to be a stochastic one,
based on the following deterministic general process, n; = Pn;_1, where
P is a development projection matrix ([12], p.33), as we can consider the
population to be divided into two stages: displaying ILI symptoms or not.
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We assume that the births and deaths are negligible during that period, so
that the size of the population remains constant equal to N = n;(GN) +
n%t(GN) + nm,t(GN) + nm,t(GN)

The complexity of the population dynamics can be better captured
and modeled by further sub-dividing the population state process into sub-
processes that consecutively succeed in time, each of which only depend on
the subprocess immediately before. Each subprocess corresponds to a ma-
trix so that the general projection matrix is given by the product of these
matrices, with obvious advantages.

Here we assume that the sub-processes happen during consecutive time
periods in the same order each week, corresponding to matrix C' of population
class transition due to become ILI symptomatic or by recovering from an
ILI setting, and to matrix GN of being or not under Gripenet surveillance
scheme, so that P = GN C.

The corresponding stochastic formulation is done in terms of conditional
expected values of the state process that we assume to be a first order Markov
process:

E[nt|nt—1] =Pny_q,
describing P the average effect of a set of stochastic processes, such that:

E[nt|nt_1] = GNCIlt_l.

Note that, the second subprocess, from now on denominated just Gripenet,
only divides the population into those that are followed by Gripenet scheme
and those who are not.

The Markov hypothesis assures that the process is completely defined if
we know the state process distribution in a certain time ¢ conditionally on
the process in the previous time point, n; ~ Hy[n;_1], which can be further
decomposed according to the sub-processes as:

ug’ ~ Hi [y ] n; = uf™ ~ HiV uf]

where, for each time ¢, utc represents a realization of the state vector after
the subprocess of class transition and qu represents the state vector after
the subprocess Gripenet.
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For the subprocess of class transition, let C'; denotes the probability of a
healthy person become ILI symptomatic (equal to everybody), with binomial
distribution for the number of persons that become symptomatic,

c
uy = X[y
utC ~ Htc(nt_l) : . N .

Upip = IV — Uiy

where those who became ILI are
X [np; 1] ~ Binomial (nm-,t_l(GN) + nnii—1(GN)), C’i) ,

and ugt represents the total new number of ILI symptomatic persons in the
population at time ¢ (what is important for incidence); ugm represents the
non symptomatics and the non-new syntomatics at time t being given by the
total population (constant) minus the new ILI symptomatic persons at time
t. The probability of a healthy person become ILI symptomatic in each week
could perhaps be better modeled if it was considered linearly proportional
to the number of ILI persons in that week.

The second subprocess divides the population into those followed by
Gripenet and those who are not, allowing different participation probabili-
ties for symptomatic and for the asymptomatic. Being p; and p,; the proba-
bilities of the ILI and non-ILI population, respectively, entering Gripenet at
time ¢,

nit(GN) = ugt —n;+(GN)

nm,t(G—N) = Uct — ’I’Lni’t(GN)
n; = ufY ~ HF (uf) -

n;t(GN) :Y[ugt]
Nnit(GN) = ZuC ]

ni,t

where the number of ILI persons and the number of non-ILI persons in
Gripenet at time t are given respectively by:

Y |:uzc,’t] ~ Binomial <ui(’jt, pz) )
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Z[uc ] ~ Binomial (u%t,pm).

ni,t

To summarize, the state process pdfs are then given by:
go(no; 0)

ulaulne1:6) = [ g€l lni136) 6 (mfuf’6) duf’
uy

with parameters (C;, pi, Pni)-

2.2.2. Observational process

The observational data on the population can be a deterministic or a stochas-
tic function of the unknown states and a complete realization of this process
is here denoted by {y:,t =0,1,...,T}.

In Gripenet the observations are the ILI and non-ILI persons being
followed there at week t, y; = (¥it, Ynit), which we assume to constitute
an independent measure with errors of the population states n;;(GN) and
nnit(GN), respectively. As such we have the following error model defining
the observation process pdf, f(y¢|n:;8), assuming a constant coefficient of
variation:

Yigne ~ N(ni i (GN), ¥in; (GN)?)

Ynit|0e ~ N (it (GN), 3005 (GN)?)

el ~ N(ni (GN), $inio(GN)?) x N(13i(GN),Y3n05,(GN)?),
with parameters (11,12).

2.3. Estimation

The natural inference setting here is the Bayesian one. Within that we
have further to specify a prior distribution on 8 = (C;, p;, Pni, V1, %2), 9o(0).
Thus, a complete specification of the probability distribution for states, ob-
servations and parameter vector, including the intermediate states is (with

yT: (y17"'7yT) ):
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C c ..GN GN T
P(n07u17”‘7uT7u1 :nlu"'7uT :nTuy 70)

T
= 0(6) x go(no|0) x [ | {ft(.wlnt,@) x g% (uf In;_1;0) x gV (ng|uy’; 0) }
t=1

All the inferences we might be interested in, not only about the parameters
given the data but also about the population states in each time point ¢ given
all the observations until the previous time point (one-step ahead prediction,
[13]) and also including that time point (filtering [13]) as well as the expec-
tation of the states given all the observations and parameters (smoothing)
result from integrations over these joint distributions, which are often not
trivial.

Consequently, Monte Carlo simulation based approaches are an unavoid-
able alternative, such as sequential importance sampling methods (that we
have chosen) or Markov Chain Monte Carlo Methods, which yields estimates
of the likelihood and simulates from the posterior distributions.

Importance sampling is a technique that is used when direct sampling
from a target pdf p(z) is not feasible, but we can generate samples from an
alternative and easier trial pdf ¢(x), and then weight them properly to use
them as samples from the target distribution. When importance sampling is
done using ¢(z), the resulting sample can be resampled according to conve-
niently chosen weights to become a sample from p(z), and this is sequential
importance sampling, SIS. Sequential importance sampling with resampling,
SISR, is a technique where, for space state models, the generation of the
unknown states is carried out combining the two approaches above:

hd Q(nt) = gt(nt’nt—l)§

e The weights for the SISR are proportional to the observation pdf,
f(yeng, 0). Resampling results in selecting the states that are the
"better" choices according to observations.

For more details see for example [14].

To do estimation we have used the Sequential Importance Sampling
with Resampling algorithm proposed by Liu and West in 2001 [15], descri-
bed next:
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1. Simulate a initial parameter and state vectors from prior: particles
(n[oﬂ,é?m), j=1,...,J (J large).

2. Project each particle forward to the first time period using the state
process distribution:

n@Nfﬁh%mq,j:L“wl

3. Estimate g(n;|y') (filtered state distribution), by using the observation
process distribution to calculate a likelihood weight:

. gl]
wll = (i, 0) Ci=1,

Z Ai(ying, o)
i=1

and then take a weighted resample from the particles.

4. The process is then repeated for subsequent time periods:

(a) Using the state process distribution to project forward to the next
time period;

(b) Correcting the resulting predicted state distribution using the
weighted resample, with weights calculated according to the ob-
servation process:

) (5]
wl) = in (i, 61) =1,

Ejm@mdﬁwb
i=1

This algorithm yields estimates of n;|y’, (y* = (y1,...,¥:)) and parameter
densities at each time point ¢. At the last time point T we get an estimate
of the posterior density of 6.

To overcome a problem of “particle deplection” (particles with relative
large sizes tend to be chosen many times and dominate) we have
implemented Kernel smoothing of parameter vectors at each time step,
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adding a small perturbation to parameter values, increasing the diversity
of parameters values in vicinity of parameter space and auxiliary particle
filter, an initial “auxiliary” resample is taken from the population at time
t, with weights calculated according to the expected likelihood of the states
at time t + 1, given the data as time ¢ + 1. This resampled set of particles
is then projected forward from time t to time ¢ + 1, and “corrected” using
likelihood weights just as with filter, except that the likelihood weights must
take account of the auxiliary resampling stage.

2.4. Detalils for Gripenet model

For the Gripenet model we are not only interested in estimating the number
of new ILI cases each week on the population (incidence), from the pop-
ulation state space, given the observations, but we are also interested in
estimating the model parameters given the data, specially the probabilities
associated with being followed by Gripenet and becoming ILI.

The prior parameters we have considered here are detailed in Table 1.
We have based their choice on prior knowledge about the quantities they
refer to, namely two reports produced by the Instituto Nacional de Saude
Dr. Ricardo Jorge [16] and [17], and some available data about Gripenet
participation numbers [18].

Table 1. Parameter prior distributions considered.

Parameter Prior Distribution Mean Standard Deviation

C; Beta(0.862,11.631)  0.069 0.069
Di Beta(0.9996,4997)  0.002 0.002
Pri Beta(0.9996,4997)  0.002 0.002
U1 Gamma(1,0.1) 0.1 0.1

o Gamma(1,0.1) 0.1 0.1
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The states were initialized like (being N; (respectively, Ny;) the initial num-
ber of ILI (respectively, non-ILI) persons in the population):

nio(GN) = N; — yio
nni,O(G—N) == Nm — Yni,0
nio(GN) = yio

Nni,0(GN) = Ynio

nio(GN) = y; 0 * (L - 1) «— From N;p; = yi0

pi

Nni,0(GN) = Ynio * <p+” - 1) — From N;pp; = Ynio

ni0(GN) = yi0

nnz,O(GN) = Yni,0

Force nio(GN) 4 nni,o(GN) + 1 0(GN) + nyio(GN) ~ 10,000, 000.

We have considered an initial number of iterations of J = 500000.

3. RESULTS ON GRIPENET

Figure 1 depicts the estimated population states and also the observations.
From the panels related to the states in Gripenet, we can see that the esti-
mates are quite nicely mimicking the observation patterns, with some excep-
tions, more towards the end of the estimating period. As such, and taking
this as an indicator of a nice states estimates, we are able, by adding the esti-
mates related to ILI diseased persons, to get an estimate of the ILI incidence
curve. The not so good estimation we got at the end of the time period
considered is probably related to the particle deplection problem mention
before, that might have not be completely solved here.
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Figure 1. State estimates — quartiles — and observations (dots) — from left to
right, ILI and non-ILI not under Gripenet surveillance and ILI and
non-ILI under Gripenet surveillance.

4. DISCUSSION

In this paper we have proposed a method to overcome the lack of represen-
tativeness of data that so often appears in syndromic surveillance schemes.
These data, although it can not be analyzed with the usual statistical tech-
niques to infer for the rest of the population, is valuable and our proposal
allows the desirable extrapolation.

For the particular case of ILI diseases and Gripenet example, the es-
timated number of persons in each population class enables us to estimate
ILI incidence curve and further to compare it to other curves obtained from
different surveillance schemes as, for example in this case, with the sentinel
doctors network.

Of course that this methodology has its weaknesses, namely the com-
puter intensive effort that is associated with its estimation, the necessity of
being able to get informative priors to improve estimation, the fact that the
estimation method used here starts failing if the total times points T" begins
to be too large [10]. Further more, there are some assumptions that we have
to make to simplify the modeling procedures, namely related to the time
points of class transitions, ordering of the sub-processes, time of occurrence
of the observations in relation to the state space flow.
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Nonetheless we believe on its value as it overcomes in an elegant way the
problem of how to analyze this data, how can this data be used in an use-
ful way, as it holds a great potencial for the description of the ILI disease
panorama.

On going work related to this application comprehends the inclusion of
demographic characteristics in the population states definition — Gripenet
respondents fill in a previous questionnaire for these, namely age and gen-
der, which complicates greatly the estimation problem, proportional to the
parameter space and the state space grow in complexity.

Acknowledgements

IN was supported by project “Reinfection thresholds and the management of
recurrent infections”, a Marie Curie Excellence Grant, during part of this re-
search. We acknowledge Doctor M. Gabriela Gomes for the opportunity she
has offered us to work with Gripenet data and for the stimulating discussions
around this work.

REFERENCES

[1] D.L. Cooper, G.E. Smith, M. Regan, S. Large and P.P. Groenewegen, Track-
ing the spatial diffusion on influenza and norovirus using telehealth data:
a spatiotemporal analysis of syndromic data, BMC Medicine (2008) 6:16
d0i:10.1186/1741-7015-6-16.

[2] M.J. O’Connor, D. Buckeridge, M.K. Choy, M. Crubezy, Z. Pincus and M.A.
Musen, BioSTORM: A System for Automated Surveillance of Diverse Data
Sources, AMIA Annual Symposium Proceedings 2003.

[3] B.Y. Reis, C. Kirby, L.E. Hadden, K. Olson, A.J. McMurry, J.B. Daniel and
K.D. Mandl, AEGIS: A robust and scalable real-time public health surveillance
system, Journal of the American Medical Informatics Association 14 (2007),
581-588.

[4] J. Lombardo, H. Burkom, E. Elbert, S. Magruder, S.H. Lewis, W. Loschen,
J. Sari, C. Sniegoski, R. Wojcik and J. Pavlin, A Systems Quverview of
the Electronic Surveillance System for the Early Notification of Community-
Based Epidemics (ESSENCE II), J Urban Health 80 (2 Suppl 1) (2003),
i32-i42.



182

[5]

[6]

7]

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

I. NATARIO AND M.L. CARVALHO

J.S. Brownstein, C.C. Freifeld, B.Y. Reis and K.D. Mandl, Surveillance Sans
Frontiéres: Internet-Based Emerging Infectious Disease Intelligence and the

HealthMap Project, PLoS Med 5 (7) (2008), el51.

S.P. van Noort, M. Muehlen, H. Rebelo de Andrade, C. Koppeschaar, J.M.
Lima Lourengo and M.G. Gomes, Gripenet: an internet-based system to mon-
itor influenza-like illness uniformly across Europe, Euro Surveill. 12 (7) (2007),
pii="722.

M.A. Stoto, M. Schonlau and L.T. Mariano, Syndromic surveillance: it is
worth the effort?, Chance 17 (2004), 19-24.

S.T. Buckland, K.B. Newman, L. Thomas and N.B. Koesters, State-space
models for the dynamics of wild animal populations, Ecological Modeling 171
(2004), 157-175.

L. Thomas, S.T. Buckland, K.B. Newman and J. Harwood, A unified frame-
work for modelling wild population dynamics, Australian New Zealand Journal
Statistics 47 (2005), 19-34.

K.B. Newman, S.T. Buckland, S.T. Lindley, L. Thomas and C. Fernandez,
Hidden process models for animal population dynamics, Ecological Applica-
tions 16 (2006), 74-86.

J. Durbin and S.J. Koopman, Time Series Analysis by State Space Methods,
Oxford University Press 2001.

H. Caswell, Matrix Population Models - 2nd Edition, Sinauer Associates, Inc.
Publishers 2001.

M. West and J. Harrison, Bayesian forecasting and dynamic models - 2nd
edition. Springer 1997.

A. Doucet and A.M. Johansen, A Tutorial on Particle Filtering and Smoothing:
Fifteen years Later, In Handbook of Nonlinear Filtering, eds D. Crisan, B.
Rozovsky, Oxford University Press 2009.

J. Liu and M. West, Combining parameter and state estimation in simulation-
based filtering, In sequential Monte Carlo Methods in Practice, eds A Doucet,
N Freitas, N Gordon, New-York: Springer-Verlag 2001.

Departamento de Epidemiologia do INSA, Gripe 2007 - um estudo sobre com-
portamentos face a "gripe” - relatorio, Instituto Nacional de Satude Dr. Ricardo
Jorge 2007.



ADDRESSING THE PROBLEM OF LACK OF REPRESENTATIVENESS ... 183

[17] Departamento de Epidemiologia do INSA, Médicos Sentinela, o que se fez em
2007 - relatorio de actividades 21, Instituto Nacional de Satde Dr. Ricardo
Jorge 2009.

[18] http://www.gripenet.pt/

Received 5 October 2009



