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Abstract

Generalized F tests were introduced for linear models by Michal-
ski and Zmyślony (1996, 1999). When the observations are taken in
not perfectly standardized conditions the F tests have generalized F

distributions with random non-centrality parameters, see Nunes and
Mexia (2006). We now study the case of nearly normal perturbations
leading to Gamma distributed non-centrality parameters.
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1. Introduction

The statistics of the generalized F tests are the quotients of linear combina-
tions of independent chi-squares. These tests were introduced by Michalski
and Zmyślony (1996, 1999), first for variance components and later for linear
combinations of parameters in mixed linear models.

These tests derived when we have a quadratic unbiased estimator θ̃ for
a parameter θ and we want to test

H0 : θ = 0

against

H1 : θ > 0.

If θ̃
+

and θ̃
−

are, respectively, the positive and the negative parts of θ̃, when

H0 [H1] holds we have E(θ̃
+
) = E(θ̃

−

) [E(θ̃
+
) > E(θ̃

−

)]. Thus, we are led
to use the test statistic

= =
θ̃
+

θ̃
−

.

The following example shows the importance of these tests. In a balanced
variance components model in which a first factor crosses with the second
that nests a third, the variance component associated with the second factor
is not the difference between two ANOVA mean squares, see Khuri et al.

(1998). Thus, an usual F test cannot be derived for the nullity of this
variance component. This problem is solved using generalized F tests. We
can find a solution for this case, with a practical application of interest, in
Fonseca et al. (2003b).

An exact expression for the distribution of quotients of linear combi-
nations of independent central chi-squares was obtained in Fonseca et al.

(2002), when the chi-squares, in the numerator or in the denominator, have
even degrees of freedom and all coefficients are non-negative. This result
was extended to the non-central case in Nunes and Mexia (2006). On car-
rying out this extension there were used the Robbins (1948) and Robbins
and Pitman (1949) mixtures method for fixed non-centrality parameters.

When the vector of observations is the sum of a vector corresponding
to the theoretical model plus an independent perturbation vector, the dis-
tribution of the generalized F statistics has, see Nunes and Mexia (2006),
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random non-centrality parameters. This kind of model perturbation is
worthwhile to study since it would cover situations in which the collection
of the observations was made on non standardized conditions. If we assume
that the fluctuations in the observation conditions are approximately normal
the non-centrality parameters would tend to be Gamma distributed. So, we
decided to study this case.

Our aim is essentially theoretical. An alternative for our treatment, if
practical applications are the main goal, is given by Imhof (1961). We can
also use the algorithm presented by Davies (1980). This way, the previous
approaches, such as the ones given by Satterthwaite (1946) and Gaylor and
Hopper (1969), may be improved.

This article is organized in the following way. In Section 2 the central
generalized F distributions and some particular cases are presented. Section
3 presents the non-central case of these distributions. This section is divided
in tree Subsections. 3.1 is devoted to the case of random non-centrality pa-
rameters. The expressions of the distributions where the non-centrality pa-
rameters have Gamma distribution for the non-generalized case are obtained
in 3.2. Finally 3.3 deals with the results for the generalized case.

2. Generalized F and related distributions

Let ar
1 and as

2 be the vectors with non-negative components and being at
least one of them not null. Consider also the independent random variables
Ui ∼ χ2

g1,i
, i = 1, ..., r, and Vj ∼ χ2

g2,j
, j = 1, ..., s, the distribution of

r∑

i=1

a1,iUi

s∑

j=1

a2,jVj

will be F +(z|ar
1, a

s
2, g

r
1, g

s
2).

Let consider some particular cases of these distributions. With (vm)−1

the vector whose components are the inverses of the components of vm, the
central generalized F distribution will be

F (z|gr
1, g

s
2) = F+(z|(gr

1)
−1, (gs

2)
−1, gr

1, g
s
2).
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Another interesting case of F +(z|ar
1, a

s
2, g

r
1, g

s
2) will be

F (z|gr
1, g

s
2) = F+(z|(1r, 1s, gr

1, g
s
2).

If r = s = 1, in the first case one will have the usual central F distribution
with g1 and g2 degrees of freedom, F (z|g1, g2), while for the second case one
will have the F distribution, defined for the quotient of independent central
chi-squares with g1 and g2 degrees of freedom, F (z|g1, g2).

In Fonseca et al. (2002) the exact expressions of F +(z|ar
1, a

s
2, gr

1, g
s
2) are

given when the degrees of freedom in the numerator or in the denominator
are even. Moreover, the second case reduces to the first one since

F+(z|ar
1, a

s
2, g

r
1, 2m

s) = 1 − F +(z−1|as
2, a

r
1, 2m

s, gr
1).

An example to show how these expressions may be used to check the pre-
cision of Monte-Carlo methods in tabling such distributions may be seen in
Fonseca et al. (2002).

3. Non-central generalized F distributions

The exact expression of

F+(z|1, as
2, g1, g

s
2, δ) = e−δ/2

+∞∑

`=0

( δ
2)`

`!
F+(z|1, as

2, g1 + 2`, gs
2),

which is the distribution of

χ2
g1,δ

s+1∑

i=2

aiχ
2
gi

,

was obtained in Nunes and Mexia (2006) when g1 is even.

Distributions χ2
g,δ are a mixture of the distributions χ2

g+2j , j = 0, ... The
coefficients in this mixture are the probabilities for non-negative integers of
the Poisson distribution with parameter δ

2 , Pδ/2. Thus, if U ∼ χ2
g,δ, it can be

assumed that there is an indicator variable J ∼ Pδ/2 such that U ∼ χ2
g+2`,

when J = `, ` = 0, ...
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If the Ui ∼ χ2
g1,i,δ1,i

, i = 1, ..., r, and Vj ∼ χ2
g2,j ,δ2,j

, j = 1, ..., s, are
independent, their joint distribution

χ2
gr
1
,gs

2
,δr

1,δs
2

=

r∏

i=1

χ2
g1,i,δ1,i

s∏

j=1

χ2
g2,j ,δ2,j

will be a mixture with coefficients

(3.1) c(`r
1, `

s
2, δ

r
1, δ

s
2) =

r∏

i=1

e−
δ1,i
2

(
δ1,i

2 )`1,i

`1,i!

s∏

j=1

e−
δ2,j
2

(
δ2,j

2 )`2,j

`2,j!

of the

χ2
gr
1
+2`r

1
,gs

2
+2`s

2
=

r∏

i=1

χ2
g1,i+2`1,i

s∏

j=1

χ2
g2,j+2`2,j

.

Using the mixtures method, see Robbins (1948) and Robbins and Pitman
(1949), the distribution of

Z =

r∑

i=1

a1,iUi

s∑

j=1

a2,jVj

will be

(3.2)

F+(z|ar
1, a

s
2, g

r
1, g

s
2, δ

r
1, δ

s
2)

=

+∞∑

`1,1=0

...

+∞∑

`1,r=0

+∞∑

`2,1=0

...

+∞∑

`2,s=0

c(`r
1, `

s
2, δ

r
1, δ

s
2)

F+(z|ar
1, a

s
2, g

r
1 + 2`r

1, g
s
2 + 2`s

2).

Likewise, if indicator variables are considered, the conditional distribution
of Z, when J1,i = `1,i, i = 1, ..., r and J2,j = `2,j , j = 1, ..., s, will be
F+(z|ar

1, a
s
2, g

r
1 + 2`r

1, g
s
2 + 2`s

2). Thus, the expression of F +(z|ar
1, a

s
2, g

r
1, g

s
2,

δr
1, δ

s
2) can be obtained desconditioning in order to the indicator variables.
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Let consider now monotonicity properties for these distributions. With δ1,p

the p-th component of δr
1, there will be

(3.3)

∂F+(z|ar
1, a

s
2, g

r
1, g

s
2, δ

r
1, δ

s
2)

∂δ1,p

=
F+(z|ar

1, a
s
2, g

r
1 + 2qr

p, g
s
2, δ

r
1, δ

s
2) − F+(z|ar

1, a
s
2, g

r
1, g

s
2, δ

r
1, δ

s
2)

2
< 0,

as well as

∂F+(z|ar
1, a

s
2, g

r
1, g

s
2, δ

r
1, δ

s
2)

∂δ2,h

(3.4)

=
F+(z|ar

1, a
s
2, g

r
1, g

s
2 + 2qs

h, δr
1, δ

s
2) − F+(z|ar

1, a
s
2, g

r
1, g

s
2, δ

r
1, δ

s
2)

2
> 0,

where qr
p has all components null, except the p-th that is equal to 1.

The non-generalized case will be used to justify (3.3) and (3.4). With
the independent chi-squares χ2

2, χ2
m,δ and χ2

n,δ′
, there will be

(3.5) pr

(
χ2

m,δ

χ2
n,δ′

+ χ2
2

<
χ2

m,δ

χ2
n,δ′

<
χ2

m,δ + χ2
2

χ2
n,δ′

)
= 1,

so

(3.6) F (z|m + 2, n, δ, δ′) < F (z|m,n, δ, δ′) < F (z|m,n + 2, δ, δ ′),

with 



χ2
m,δ + χ2

2

χ2
n,δ′

∼ F (z|m + 2, n, δ, δ′)

χ2
m,δ

χ2
n,δ′

∼ F (z|m,n, δ, δ ′)

χ2
m,δ

χ2
n,δ′

+ χ2
2

∼ F (z|m,n + 2, δ, δ ′)

.
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3.1. Random non-centrality parameters

So far we have considered the indicator variables J1,i, i = 1, ..., r, and J2,j ,
j = 1, ..., s, to have Poisson distributions with fixed parameters. Let now
assume these parameters to be random variables.

Remark. To understand the ”appearance” of randomized non-centrality
parameters we point out that if the error vector en has normal distri-
bution with null mean vector and variance-covariance matrix σ2Ig, en ∼
N(0n, σ2Ig), with Ig the g × g identity matrix, one will have ‖en‖2 ∼ σ2χ2

g.

With µn the mean vector of the observations vector, ‖en + µn‖2 ∼ σ2χ2
g,δ,

with the non-centrality parameter δ = 1
σ2 ‖µ

n‖2. Let consider a random
perturbation vector of the model, W n, independent of en. The condi-
tional distribution of ‖en + W n‖2, given W n = wn, will be σ2χ2

g,δ(w), with

δ(w) = 1
σ2 ‖w

n‖2. Then, desconditioning in order to W n, we obtain a chi-
square with g degrees of freedom and random non-centrality parameters. In
mixed models, see for example Khuri et al. (1998), Fonseca et al. (2003a)
and Nunes et al. (2006), the F and generalized F tests are quotients of
squares of norms of vectors or of linear combinations of such squares. These
squares may happen to have random non-centrality parameters when, in the
expression, a random perturbation vector W n occurs.

Let consider now the random variables L1,i, i = 1, ..., r and L2,j, j =
1, ..., s, with λLr

1
,Ls

2
(tr1, t

s
2) the joint moment generating function for these

variables and

(3.7) λ
<`r

1
,`s

2
>

Lr
1
,Ls

2
(tr1, t

s
2) =

∂
∑r

i=1
`1,i+

∑s
j=1

`2,j λLr
1
,Ls

2
(tr1, t

s
2)

r∏

i=1

∂t
`1,i

1,i

s∏

j=1

∂t
`2,j

2,j

.

Desconditioning

(3.8)

F+(z|ar
1, a

s
2, g

r
1, g

s
2, l

r
1, l

s
2)

=

+∞∑

`1,1=0

...

+∞∑

`1,r=0

+∞∑

`2,1=0

...

+∞∑

`2,s=0

c(`r
1, `

s
2, l

r
1, l

s
2)

F+(z|ar
1, a

s
2, g

r
1 + 2`r

1, g
s
2 + 2`s

2)
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in order to the random parameters vectors Lr
1 and Ls

2, we will have

(3.9)

F+(z|ar
1, a

s
2, g

r
1, g

s
2, λLr

1
,Ls

2
) =

+∞∑

`1,1=0

...

+∞∑

`1,r=0

+∞∑

`2,1=0

...

+∞∑

`2,s=0

×

λ
<`r

1
,`s

2
>

Lr
1
,Ls

2

(
−

1

2
1r,−

1

2
1s

)

r∏

i=1

`1,i!2
`1,i

s∏

j=1

`2,j!2
`2,j

F+(z|ar
1, a

s
2, g

r
1 + 2`r

1, g
s
2 + 2`s

2).

With qr
i [qs

j ] be the vector with all r [s] components null, except the i-th

[j-th] which is 1, all components of L
r
i = (1r − qr

i )L
r
1 [L

s
j = (1s − qs

j )L
s
2] will

be equal to the ones of Lr
1 [Ls

2] to exception of the i-th [j-th] that is null.
From (3.3) and (3.4) it is easy to obtain

(3.10)





F+(z|ar
1, a

s
2, g

r
1, g

s
2, λL

r
i ,Ls

2

)>F+(z|ar
1, a

s
2, g

r
1, g

s
2, λLr

1
,Ls

2
); i = 1, ..., r

F+(z|ar
1, a

s
2, g

r
1, g

s
2, λLr

1
,Ls

2
)>F+(z|ar

1, a
s
2, g

r
1, g

s
2, λLr

1
,L

s
j
); j = 1, ..., s.

So, when one of the components of Ls
2 [Lr

1] is null, with probability 1, the
values of F +(z|ar

1, a
s
2, g

r
1, g

s
2, λLr

1
,Ls

2
) decrease [increase].

3.2. F distribution with non-centrality parameters with Gamma

distribution

As it was previously seen, if ar
1 = 1r and as

2 = 1s, with r = s = 1 one will
have the F distribution defined for the quotient of independent chi-squares
with g1 and g2 degrees of freedom. So, (3.9) can be rewritten as

(3.11) F (z|g1, g2, λL1,L2
) =

+∞∑

i=0

+∞∑

j=0

λ
<i,j>
L1,L2

(
−

1

2
,−

1

2

)

2i+ji!j!
F (z|g1 + 2i, g2 + 2j).
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Consider now L1 with Gamma distribution with parameters n1 and α1,
L1 ∼ G(n1, α1),

λL1
(t1) =

(
α1

α1 − t1

)n1

, t1 < α1

and consequently

(3.12) λ<i>
L1

(t1) =
(n1 + i − 1)!αn1

1 (α1 − t1)
−n1−i

(n1 − 1)!
.

If L1 is independent of L2, with L2 ∼ G(n2, α2), one will have

(3.13)

λ
<i,j>
L1,L2

(t1, t2) = λ<i>
L1

(t1)λ
<j>
L2

(t2)

=
(n1 + i − 1)!αn1

1 (α1 − t1)
−n1−i

(n1 − 1)!

(n2 + j − 1)!αn2

2 (α2 − t2)
−n2−j

(n2 − 1)!
,

and (3.11) will be

(3.14)

F (z|g1, g2, λL1,L2
)

=

+∞∑

i=0

+∞∑

j=0

(
n1 + i − 1

i

)(
n2 + j − 1

j

)
αn1

1 αn2

2

2i+j(α1 + 1

2 )n1+i(α2 + 1
2)n2+j

F (z|g1 + 2i, g2 + 2j).
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Let consider a particular case of Gamma distribution. If L1 ∼ χ2
n1

and
L2 ∼ χ2

n2
then L1 ∼ G(n1

2 , 1

2) and L2 ∼ G(n2

2 , 1

2), so

(3.15)

λ
<i,j>
L1,L2

(t1, t2) =

(n1

2 + i − 1)!(n2

2 + j − 1)!
1

2

n1+n2

2

(
1

2
− t1

)
−

n1

2
−i(1

2
− t2

)
−

n2

2
−j

(
n1

2
− 1)!(

n2

2
− 1)!

and

(3.16)
F (z|g1, g2, λL1,L2

) =
+∞∑

i=0

+∞∑

j=0

(
n1

2 + i − 1
i

)(
n2

2 + j − 1
j

)

2
n1
2

+i+
n2
2

+j

F (z|g1 + 2i, g2 + 2j),

if L1 and L2 are independent.

3.3. Generalized F distribution with non-centrality parameters

with Gamma distribution

Consider the generalized case and the independent random variables Lr
1 ∼

G(nr
1, α

r
1), with n1,1, ..., n1,r [α1,1, ..., α1,r] the components of nr

1 [αr
1] and

Ls
2 ∼ G(ns

2, α
s
2), with n2,1, ..., n2,s [α2,1, ..., α2,s] the components of ns

2 [αs
2],

λLr
1
(tr1) =

r∏

i=1

λL1,i(ti) =
r∏

i=1

(
α1,i

α1,i − ti

)n1,i

, ti < α1,i, i = 1, ..., r.

Consequently

(3.17) λ
<`r

1>
Lr

1
(tr1) =

r∏

i=1

(α1,i)
n1,i(n1,i + `1,i − 1)!

(n1,i − 1)!(α1,i − ti)n1,i+`1,i
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and

(3.18)

λ
<`r

1
,`s

2
>

Lr
1
,Ls

2
(tr1, t

s
2) = λ

<`r
1
>

Lr
1

(ts2)λ
<`s

2
>

Ls
2

(ts2)

=

r∏

i=1

(α1,i)
n1,i(n1,i + `1,i − 1)!

(n1,i − 1)!(α1,i − ti)n1,i+`1,i

s∏

j=1

(α2,j)
n2,j (n2,j + `2,j − 1)!

(n2,j − 1)!(α2,j − tj)n2,j+`2,j
.

This way, (3.9) can be rewritten as

F+
(
z|ar

1, a
s
2, g

r
1, g

s
2, λLr

1
,Ls

2

)
=

+∞∑

`1,1=0

...

+∞∑

`1,r=0

+∞∑

`2,1=0

+∞∑

`2,s=0

(3.19) ×

r∏

i=1

(
n1,i + `1,i − 1

`1,i

)
(α1,i)

n1,i

s∏

j=1

(
n2,j + `2,j − 1

`2,j

)
(α2,j)

n2,j

r∏

i=1

2`1,i

(
α1,i +

1

2

)n1,i+`1,i
s∏

j=1

2`2,j

(
α2,j +

1

2

)n2,j+`2,j

× F+
(
z|ar

1, a
s
2, g

r
1 + 2`r

1, g
s
2 + 2`s

2

)
.

Let consider now the particular case of chi-square distribution. If the
independent variables

Lr
1 ∼ χ2

nr
1

and Ls
2 ∼ χ2

ns
2
, then Lr

1 ∼ G
(nr

11
r

2
,
1r

2

)
, Ls

2 ∼ G
(ns

21
s

2
,
1s

2

)

and there will be
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λ
<`r

1
,`s

2
>

Lr
1
,Ls

2

(
tr1, t

s
2

)

=

r∏

i=1

(
1

2

)n1,i

2
(n1,i

2
+ `1,i − 1

)
!

(n1,i

2
− 1
)
!
(1

2
− ti

)n1,i

2
+`1,i

s∏

j=1

(
1

2

)n2,j

2
(n2,j

2
+ `2,j − 1

)
!

(n2,j

2
− 1
)
!
(1

2
− tj

)n2,j

2
+`2,j

,

and

(3.21)

F+(z|ar
1, a

s
2, g

r
1, g

s
2, λLr

1
,Ls

2
)

=

+∞∑

`1,1=0

...

+∞∑

`1,r=0

+∞∑

`2,1=0

+∞∑

`2,s=0

×

r∏

i=1

( n1,i

2 + `1,i − 1
`1,i

) s∏

j=1

( n2,j

2 + `2,j − 1
`2,j

)

r∏

i=1

2
n1,i

2
+`1,i

s∏

j=1

2
n2,j

2
+`2,j

× F+(z|ar
1, a

s
2, g

r
1 + 2`r

1, g
s
2 + 2`s

2).
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