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Abstract

Starting from the random extension of the Cantor middle set in
[0,1], by iteratively removing the central uniform spacing from the
intervals remaining in the previous step, we define random Beta(p,1)-
Cantor sets, and compute their Hausdorff dimension. Next we define a
deterministic counterpart, by iteratively removing the expected value
of the spacing defined by the appropriate Beta(p,1) order statistics. We
investigate the reasons why the Hausdorff dimension of this determinis-
tic fractal is greater than the Hausdorff dimension of the corresponding
random fractals.
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1. Introduction

The beta family

fp,q(x) = K xp−1(1 − x)q−1
I(0,1)(x), with p > 0 and q > 0

plays an important role inProbability and Statistics (the appropriate norming
constant being in that context K= 1

B(p,q) , where

B(p, q) =

∫ 1

0
xp−1(1 − x)q−1dx

is the beta function or Euler’s integral of the first kind), namely because of
the broad range of shapes for different values of the parameters.

For special values of the parameters, fp,q also plays an important role in
other areas of Mathematics. Namely,

• for p = q = 2, the logistic parabola f2,2 = Kx (1 − x) is at the basis of
the successful Verhulst model in population dynamics, that has been at
the core of important developments in the area of dynamical systems.
In fact, the numerical solution of the equation x = K x (1 − x) using
the fixed point method has been at the core of fulcral developments on
the theory of fractals, namely of the theory of Feigenbaum bifurcations
and limiting cahotic behaviour;

• for p = q = 1, corresponding in Probability to the uniform law, there
has been the development of stochastic extensions of the deterministic
Cantor set, using self-similarity, but at each step “erasing” a uniformly
distributed middle portion from each interval remaining in the previous
step.

Our research has been aimed at

• using general models fp,q in population dynamics to show that for any
pair (p, q) there exists Ki(p, q) and K∞(p, q) such that Feigenbaum
bifurcations and more and more complex cyclic behaviour can be ob-
served as K > Ki(p, q) increases, until chaotic behaviour is observed
for K > K∞(p, q), [1, 2, 3, 4] and [5];

• defining and characterizing the structure of random Cantor sets when
the middle sets removed at each step have a general fp,q(x) = K xp−1

(1 − x)q−1I(0,1)(x) law, [1] and [8].
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Geometric constructions of random type have been studied by several au-
thors. The Hausdorff dimension is an important structural characteristic of
fractals. Aside from the raw use of the definition, structural properties such
as self-similarity can be used to compute the Hausdorff dimension of a de-
terministic fractals, [6, 7, 9] and [10], and those can be extended to compute
the Hausdorff dimension of a random fractal, [6, 7] and references therein.

In this work we define the random middle third Cantor set, a fractal
which is constructed by recursive elimination of the central spacing gener-
ated by the minimum and maximum of two observations “at random” — in
the usual sense of uniformly distributed — of each interval of the previous
iteration. This name is broadly justified, in the sense that the expected val-
ues of the interval extremes of each iteration coincide with the extremes of
the intervals of the correspondent iteration in the construction of the deter-
ministic middle third Cantor set. Cf. also [11], about new trends in Biology
using fractal models.

The purpose of the present work is to investigate an intriguing question:
although the expected value of what is taken out at each step in the recursive
construction of the random fractal is exactly of the same size of what is taken
out in the corresponding recursive step of the construction of its associated
deterministic set — which, in this sense, can be regarded as the “expected
fractal" — the Hausdorff dimension of a random fractal is almost surely
smaller than the Hausdorff dimension of its deterministic counterpart. So,
intuitively it seems that the random fractal is a lesser portion of [0,1] than
the corresponding expected deterministic fractal.

In Section 2, we present the concepts and framework needed to develop
our research.

In Section 3, we compute the Hausdorff dimension — in intuitive terms,
a parameter that evaluates how dense a set is in Rn, for the appropriate
dimension n of the Euclidian space where it lies — of the random middle third
Cantor set. This section’s purpose is to show that at the first step we almost
surely take a middle interval lesser than the middle interval taken out in its
deterministic expected counterpart; but, on the other hand, there is a trade-
off in subsequent iterations of the procedure — in fact, one more example of
the effects of skewness of the parent distribution, implying that even slight
differences between mean and median have far reaching consequences —, so
that at the end the odds that the remaining points in the random fractal are
less dense in [0,1] than the points remaining in the deterministic fractal are
greater than 1.
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2. Random middle third Cantor set:

preliminaries, definitions and results

One important evolution of twentieth century Mathematics has been the
eruption of fractal geometry. Indeed, fractal sets may give a much better
representation of several natural phenomena than classical geometric figures
do, [6] and [10].

The middle third Cantor set, a famous example of self-similarity of Georg
Cantor, is one of the most well-known and easy to construct fractals; more-
over, it exhibits the most typical characteristics of fractals. This set is con-
structed starting from a closed interval — without loss of generality, the
interval E0 = [0, 1] —, by iterative elimination of the middle subintervals
of the intervals left in the previous step. Hence in the next step we obtain
E1 = [0, 1

3 ] ∪ [23 , 1], and next E2 = [0, 1
9 ] ∪ [29 , 1
3 ] ∪ [23 , 7
9 ] ∪ [89 , 1], . . . . Gen-

erally, En results from the elimination of the intermediate intervals of the
2n−1 subsets which form the set En−1. So, En is formed by the union of
2n intervals, each one with length 3−n. The middle third Cantor set C, is
formed by points that are in En for all n,

C =

∞⋂

n=0

En.

In this work, we adopted the following definition of C:

Definition 1. Let,

• E0 = [0, 1];

• E1 = E0 − (1

3 , 2
3) = [0, 1
3 ] ∪ [23 , 1];

• En−1 =

2n−1⋃

k=1

I
(n−1)
k =

2n−1⋃

k=1

[
a

(n−1)
k , b

(n−1)
k

]
;
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• En =

2n⋃

k=1

I
(n)
k =

2n−1⋃

k=1

([
a

(n)
2k−1, b

(n)
2k−1

]
∪

[
a

(n)
2k , b

(n)
2k

])
, where for each

k = 1, 2, . . . , 2n−1,

a
(n)
2k−1 = a

(n−1)
k ; b

(n)
2k−1 = a

(n−1)
k +

b
(n−1)
k − a

(n−1)
k

3
;

a
(n)
2k = b

(n−1)
k − b

(n−1)
k − a

(n−1)
k

3
; b

(n)
2k = b

(n−1)
k .

The middle third Cantor set is C =

∞⋂

k=1

En.

At first sight, it seems that we remove so much of the interval [0, 1] during the
construction of C that “almost nothing” remains, in the long run∗. Indeed, C

is a set with a non denumerable infinite number of points, containing infinite
points in every neighbourhood of each one of its points. In fact, it is obvious
that the middle third Cantor set C consists of the set of points that belong
to [0, 1] which, when expressed in the basis 3, do not contain the digit 1 in
the corresponding series expansion, i.e.,

∑∞
i=1 αi 3−i with either αi = 0 or

αi = 2, for each i. Note that to obtain E1 from E0 we remove all the points
points with α1 = 1; to obtain E2 from E1 we remove the points with α2 = 1;
and so on.

The Hausdorff dimension, which we formally define below for subsets
from a linear set, is an important metrical invariant which carries information
about the fractal, namely by providing an intuitive insight on the density of
the fractal [10]:

Definition 2. Let E =
⋂∞

k=0 Fk be a fractal set constructed recursively from
the set F0, in which after the k-th iteration, the set Fk is the union of nk

intervals, each of them having length rk −−−→
k→∞

0. The Hausdorff dimension

of the set E is

∗ In the k-th iteration of the procedure of elimination we are taking 2
k−1 intervals of

length 1
3k

; so, since the intervals that we remove are pairwise disjoint, we are taking of a

total “measure”,
∑

∞

k=1
2k−1

3k
= 1, which suggests the rough (and indeed wrong) statement

that the length of C is 0.
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DimH E = lim
k→∞

ln (nk)

ln
(

1
rk

) .

For instance, in what regards the Cantor fractal C, we have

DimH C = lim
k→∞

ln
(
2k

)

ln (3k)
=

ln (2)

ln (3)
≈ 0.63093,

a value between 0 and 1 as expected, because the middle third Cantor set
is much more than a denumerable set of points, but much less than regular
(continuous) curve.

The Hausdorff dimension can be computed using the self-similarity ty-
pical of fractals, [6]. The procedure, presented by Falconer, has the double
advantage of being easier to apply, because it relies on the “self-similarity
ratio” observed in the recursive construction of the fractal, and of having a
straightforward generalization for random fractals.

Although the procedure is in general straightforward to apply, for the
sake of completeness we quote the formal result from Falconer [6]; assume
that S1, S2, . . . , Sm : Rn −→ Rn are similarities, with

|Si(x) − Si(y)| = ci|x − y|, x, y ∈ R
n

where 0 < ci < 1 (ci is called the similarity ratio Si). So, each Si transforms
subsets of Rn in geometrically similar sets.

Further, assume that for pairwise disjoint subsets there exists a non
empty set V , such that

m⋃

i=1

Si(V ) ⊂ V

with V an open and limited set (this is generally referred to as the open set

condition). Falconer’s [6] result may be stated as follows:
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Theorem 1. Suppose that the open set condition is verified for the simila-

rities Si defined on Rn with ratios ci, (1 ≤ i ≤ m). If E is the invariant set

satisfying E =
⋃m

i=1 Si(E), then dimH E = s where s is the solution of the

equation

(1)
m∑

i=1

cs
i = 1.

For the middle third Cantor set C, in the n-th step each of the intervals I
(n−1)
k ,

whose union is En−1, gives rise to two disjoint subintervals I
(n)
2k−1∪I

(n)
2k , and so

En the union of the 2n intervals obtained by this way. The I
(n)
2k−1 is obtained

from I
(n−1)
k applying the similarity S1(x) = 1

3x and the I
(n)
2k is obtained from

I
(n−1)
k applying the similarity S2(x) = 1

3x + 2
3 .

The open set condition is readily verified for S1 and S2 with V = (0, 1).
Therefore, the Ek are invariant to the applications S1 and S2, which represent
the fundamental self-similarities of the middle third Cantor set; consequently,
the Hausdorff dimension of the middle third Cantor set is the real number s

that is the solution of
(

1

3

)s
+

(
1

3

)s
= 1, i.e., DimH C = ln(2)

ln(3) .

The middle third Cantor set can be randomized in several ways. In this
work, we are going to consider only what we call random middle third Cantor

set, defined as follows, in a similar way to the one used to define above middle
third Cantor set C, see Figure 1.

Definition 3. Let U be an uniform random variable defined in the inter-
val (0, 1), i.e., U _ Uniform(0, 1), where U1:2 and U2:2 are the minimum
and the maximum of a random sample of dimension two of U , respectively.
Let,

• G0 = [0, 1] = I
(0)
1 ;

• G1 = G0 −
(
U

(0,1)
1:2 , U

(0,1)
2:2

)
= [0, U

(0,1)
1:2 ] ∪

[
U

(0,1)
2:2 , 1

]
= I

(1)
1 ∪ I

(1)
2 ;

• Gn−1 =

2n−1⋃

k=1

I
(n−1)
k and Gn =

2n⋃

k=1

I
(n)
k , where for each

k = 1, 2, . . . , 2n−1,
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I
(n)
2k−1 ∪ I

(n)
2k = I

(n−1)
k −

(
U

(n−1,k)
1:2 , U

(n−1,k)
2:2

)
,

with U
(n−1,k)
1:2 and U

(n−1,k)
2:2 the minimum and the maximum of a

random sample of dimension two of U
(n−1)
k _ Uniform(I

(n−1)
k ),

respectively.

The random fractal connected to the random variable U , i.e., the random

middle third Cantor set, is FU =

∞⋂

k=1

Gn.

Figure 1. Construction of the random middle third Cantor set.

It is easy to see the reason why we denominate this random fractal random

middle third Cantor set. In fact, with the help of the initial iterations in its
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construction, with the obvious notations I
(1)
1 = [0, U

(0,1)
1:2 ], I

(1)
2 = [U

(0,1)
2:2 , 1]

and the removed interval or spacing S2 = (U
(0,1)
1:2 , U

(0,1)
2:2 ). It is readily

established that

E

[
U

(0,1)
1:2

]
=

∫ 1

0
2x1 (1 − x1) dx1 =

1

3

and

E

[
U

(0,1)
2:2

]
=

∫ 1

0
2x2

2 dx2 =
2

3
.

So, the expected values of the extremes of the spacing S2 in the first step of
the construction of the random middle third Cantor set are coincident with
the corresponding extremes of the middle interval removed in the first step
of the construction of the middle third Cantor set. Let G̃1 be the length
of the random interval G1 and Ẽ1 be the length of the interval E1, then
E[G̃1] = Ẽ1. In a similar way, we can establish the extention for each step
of the construction.

Proposition 1. The expected values of the extremes of the middle subsets

removed from Gn, in the construction of the random middle third Cantor

set FU , are coincident with the corresponding extremes of the middle subsets

removed from En, in the construction of the middle third Cantor set C, i.e.,

E

[
U

(n−1,k)
1:2

]
= b

(n)
2k−1 and E

[
U

(n−1,k)
2:2

]
= a

(n)
2k .

Proof. We have established above that the expected values of the superior

extreme of the interval I
(1)
1 is 1

3 and the expected values of the inferior

extreme of I
(1)
2 is 2

3 . Consider by induction hypothesis that

I
(n)
2k−1 ∪ I

(n)
2k = I

(n−1)
k −

(
U

(n−1,k)
1:2 , U

(n−1,k)
2:2

)

=
[
X,U

(n−1,k)
1:2

]
∪

[
U

(n−1,k)
2:2 , Y

]
,
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where X and Y are the extremes of the random interval I
(n−1)
k ; with E[X]

= a
(n−1)
k and E[Y ] = b

(n−1)
k , k = 1, . . . , 2n−1, it follows that

E

[
U

(n−1,k)
1:2

]
= E(X,Y )

[
E

U
(n−1,k)
1:2 |(X,Y )

[
U

(n−1,k)
1:2

]]

= E(X,Y )

[
X +

Y − X

3

]

= a
(n−1)
k +

b
(n−1)
k − a

(n−1)
k

3
= b

(n)
2k−1

and

E

[
U

(n−1,k)
2:2

]
= E(X,Y )

[
E

U
(n−1,k)
2:2 |(X,Y )

[
U

(n−1,k)
2:2

]]

= E(X,Y )

[
Y − Y − X

3

]

= b
(n−1)
k − b

(n−1)
k − a

(n−1)
k

3
= a

(n)
2k

as by definition a
(n−1)
k = a

(n)
2k−1 and b

(n−1)
k = b

(n)
2k , the result follows.

Let G̃n be the length of the random interval Gn and Ẽn be the length of the
interval En. As an immediately consequence of the above definitions and
result, we can state the following:

Theorem 2. The expected values of the extremes of the subsets I
(n)
k of Gn,

with k = 1, 2, . . . , 2n, in the construction of the random middle third Cantor

set FU , are coincident with the corresponding extremes of the subsets of En,

in the construction of the middle third Cantor set C, i.e., E[G̃n] = Ẽn.
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Proof. Having in mind that I
(n)
2k−1 ∪ I

(n)
2k = [X,U

(n−1,k)
1:2 ] ∪ [U

(n−1,k)
2:2 , Y ],

for each k = 1, 2, . . . , 2n−1, we have

E

[
Ĩ
(n)
2k−1 + Ĩ

(n)
2k

]
= E

[(
U

(n−1,k)
1:2 − X

)
+

(
Y − U

(n−1,k)
2:2

)]

= E

[
U

(n−1,k)
1:2

]
− E [X] + E [Y ] − E

[
U

(n−1,k)
2:2

]

= b
(n)
2k−1 − a

(n−1)
k + b

(n−1)
k − a

(n)
2k

= Ĩ
(n)
2k−1 + Ĩ

(n)
2k .

It follows from Definition 3 that E[G̃n] = Ẽn, as stated.

3. Hausdorff dimensions of Beta(p, 1)-Cantor sets

The random extension of fractals we adopted preserves one of the main
features of fractality, namely self-similarity. In fact, the random Cantor set
F that can be adequate to the following description

F =

∞⋂

n=0

Fn,

where [0, 1] = F0 ⊃ F1 ⊃ . . . ⊃ Fn ⊃ . . . is a decreasing sequence of closed
intervals, where Fn is the union of 2n closed and pairwise disjoint intervals
I(n).

We assume the following conditions:

• Each interval I (n) of Fn contains two intervals of Fn+1 (from the three
intervals with random length in which Fn is divided, the middle interval
is always eliminated in the following step). We designate these intervals

by I
(n+1)
L and I

(n+1)
R . The lower bound of I

(n+1)
L is coincident with the

lower bound of I (n) and the upper bound of I
(n+1)
R is coincident with

the upper bound of I (n).
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• The lengths of the intervals I
(n+1)
L and I

(n+1)
R are random, and we

inforce statistical self-similarity requiring the ratios C
(n)
L =

Ĩ
(n+1)
L

Ĩ(n)
to

have the same probability distribution throughout, for any of the steps
n and n + 1, and for any interval I (n) of Fn, and also because of

the necessity that the ratios C
(n)
R =

Ĩ
(n+1)
R

Ĩ(n)
have the same probability

distribution, for any of the steps n and n+1, and for any interval I (n)

of Fn. Note that, the ratios C
(n)
L and C

(n)
R do not necessarily have the

same probability distribution and they are not independent.

As we assume that, for all steps n, with n = 0, 1, 2, . . ., all the ratios C
(n)
L

have the same probability distribution, we can use in particular the ratio

C1 = C
(0)
L =

Ĩ
(1)
L

Ĩ(0)
=

Ĩ
(1)
L

1
= Ĩ

(1)
L ;

and similarly, as we assume that in each step the ratios C
(n)
R do have the

same probability distribution, we can use in particular the ratio

C2 = C
(0)
R =

Ĩ
(1)
R

Ĩ(0)
=

Ĩ
(1)
R

1
= Ĩ

(1)
R .

Falconer [6], proves the following result:

Theorem 3. With probability 1, the random Cantor set F has Hausdorff

dimension DimH F equal to s, where s is the solution of the equation

(2) E [Cs
1 + Cs

2 ] = 1.

Note that, as in the procedure described in Theorem 1 to calculate the
Hausdorff dimension of a deterministic fractal, based on the self-similarities
caused by its recursive method of construction, s determines the expansion
to which we would subject each element of Fn in order to “reconstruct” Fn−1.
In a sense, the iteration of those “expansions” is, at each step, re-covering
F0 = [0, 1].

In what concerns the random middle Cantor set, Definition 3, we have
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C1 = Ĩ
(1)
L = |U (0,1)

1:2 − 0| = U
(0,1)
1:2

and

C2 = Ĩ
(1)
R = |1 − U

(0,1)
2:2 | = 1 − U

(0,1)
2:2 .

From

E [Cs
1 + Cs

2 ]=

∫ 1

0
xsf

U
(0,1)
1:2

(x)dx+

∫ 1

0
(1 − x)s

f
U

(0,1)
2:2

(x)dx = 4B(s + 1, 2) = 1

we conclude that

DimH FU = s =

√
17 − 3

2
≈ 0.56155

almost surely.

This result is interesting, since it indicates that the random middle third
Cantor set would tend to be less “dense” in [0,1] than the middle third
Cantor set (DimH C ≈ 0.63093), although we have shown above that the
deterministic fractal is the expectation of the corresponding random fractal.

As C1 = U
(0,1)
1:2 has probability density function fC1(x) = 2(1−x)I[0,1](x),

P [C1 ≤ E[C1]] =
5

9
>

1

2
.

On the other hand, the median of C1 is approximately 0.293 < E[C1], and
therefore, in more than half of the cases, the C1 is smaller than 0.293. The
results for C2 are identical.

At first sight it would seem that the expansion factor s needed in
E [Cs

1 + Cs
2 ] = 1 to reconstruct Fn−1 in each iteration would be necessa-

rily smaller than DimH C. However, this intuitive explanation does not take
into account an essential feature; C1 and C2 are mutually dependent!

The explanation is more readily understood in a more general setting.
Observe that is one more example of counterintuitive consequences of skew-
ness, a setting where the concept of scale always has some dose of ambiguity,
and of the very different consequences we can reach when adopting either
mean or median as the appropriate location parameter in a skew distribution.
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Now, suppose that we remove S2 = [X1:2, X2:2] from the interval [0, 1], where
X1:2 and X2:2 are the minimum and maximum, respectively, of two indepen-
dent observations of the population X _ Beta(p, 1). After that, in each
step, we remove the central spacing S2 in each of the intervals remaining
from the previous step. This process corresponds to a new construction of
random type using the distribution Beta(p,1). In a similar way to the one
used to define random middle third Cantor set in Definition 3, we define the
Beta(p, 1)-Cantor sets as follows.

Definition 4. Let X be a Beta(p,1) random variable defined in the interval
(0, 1), i.e., X _ Beta(p, 1), where X1:2 and X2:2 are the minimum and the
maximum of a random sample of dimension two of X, respectively. Let,

• F0 = [0, 1] = J
(0)
1 ;

• F1 = F0 −
(
X

(0,1)
1:2 , X

(0,1)
2:2

)
=

[
0, X

(0,1)
1:2

]
∪

[
X

(0,1)
2:2 , 1

]
= J

(1)
1 ∪ J

(1)
2 ;

• Fn−1 =

2n−1⋃

k=1

J
(n−1)
k and Fn =

2n⋃

k=1

J
(n)
k , where for each

k = 1, 2, . . . , 2n−1,

J
(n)
2k−1 ∪ J

(n)
2k = J

(n−1)
k −

(
X

(n−1,k)
1:2 , X

(n−1,k)
2:2

)
,

with X
(n−1,k)
1:2 and X

(n−1,k)
2:2 the minimum and the maximum of a

random sample of dimension two of X
(n−1)
k _ Beta(p, 1, J

(n−1)
k ),

respectively.

The random fractal connected to the random variable X, i.e., the random

Beta(p, 1)-Cantor set, is Fp,1 =
∞⋂

k=1

Fn.
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In particular, the random middle Cantor set discussed so far, in this new
perspective, is FU = F1,1, since U _ Uniform(0, 1) is U _ Beta(1, 1).

In a correspondent deterministic approach, we consider a “mean fractal”
Cp,1 corresponding to Fp,1, which is the intersection of the sets obtained as
follows: starting from the interval [0, 1], we remove [E [X1:2] , E [X2:2]] which
is the expected spacing, and this procedure is iterated. Formally, we have:

Definition 5. Let X be a Beta(p,1) random variable defined in the interval
(0, 1), i.e., X _ Beta(p, 1), where X1:2 and X2:2 are the minimum and the
maximum of a random sample of dimension two of X, respectively. Let,

• H0 = [0, 1] = J
(0)
1 ;

• H1 = H0 −
(
E

[
X

(0,1)
1:2

]
, E

[
X

(0,1)
2:2

])
= J

(1)
1 ∪ J

(1)
2 ;

• Hn−1 =

2n−1⋃

k=1

J
(n−1)
k and Hn =

2n⋃

k=1

J
(n)
k , where for each

k = 1, 2, . . . , 2n−1,

J
(n)
2k−1 ∪ J

(n)
2k = J

(n−1)
k −

(
E

[
X

(n−1,k)
1:2

]
, E

[
X

(n−1,k)
2:2

])
,

with X
(n−1,k)
1:2 and X

(n−1,k)
2:2 the minimum and the maximum of a

random sample of dimension two of X
(n−1)
k _ Beta(p, 1, J

(n−1)
k ),

respectively.

The “mean fractal” or the deterministic Beta(p, 1)-Cantor set is

Cp,1 =

∞⋂

k=1

Hn.

It is well known that if X is a positive random variable with distribution
function FX(x), and the expectation E[X] exists, it can be computed using
the Riemann integral of the right tail

E[X] =

∫ +∞

0
[1 − FX(x)]dx.
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The distribution functions of the minimum and of the maximum of a random
sample of size two, are

FX1:2(x) = 1 − (1 − FX(x))2 and FX2:2(x) = (FX(x))2

consequently, in case the expectations of the minimum and maximum of a
random sample of size two of a positive random variable with distribution
function FX do exist they may be computed as

E[X1:2] =

∫ 1

0
(1 − FX(x))2 dx

and

E[X2:2] =

∫ 1

0

(
1 − (FX(x))2

)
dx.

Therefore, if X _ Beta(p, 1) then

FX(x) = xpI(0,1)(x) + I(1,∞)(x).

Consequently,

(3) E[X1:2] =
2p2

(p + 1)(2p + 1)

and

(4) E[X2:2] =
2p

2p + 1
.

Let S2 = X2:2 − X1:2 be the random middle spacing, which is removed
in each step of the construction of the random Beta(p, 1)-Cantor set, the
deterministic middle spacing is given by

E[S2] = E[X2:2 − X1:2] =
2p

(p + 1)(2p + 1)
.
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In order to compute the Hausdorff dimension of the random Beta(p, 1)-
Cantor set using the Theorem 3, we only have to bear in mind that

fX1:2(x) =
(
2pxp−1 − 2px2p−1

)
I(0,1)(x)

and

fX2:2(x) = 2px2p−1I(0,1)(x).

Solving the equation (2) in order to s, we have

E [Cs
1 + Cs

2 ] = 1⇐⇒
∫ 1

0
xsfX1:2(x)dx +

∫ 1

0
xsfX2:2(1 − x)dx = 1

⇐⇒
∫ 1

0
xs2pxp−1− 2px2p−1dx+

∫ 1

0
xs

(
2p(1 − x)2p−1

)
dx=1

⇐⇒ 1

p + s
− 1

2p + s
+

Γ(s + 1)Γ(2p)

Γ(2p + s + 1)
=

1

2p
.

On the other hand, to determine the Hausdorff dimension of the deterministic
Beta(p, 1)-Cantor set, we base ourselves in the Theorem 1. Note that, in each
step of the deterministic Cantor set construction, the similarity ratios are
c1 = E[X1:2] and c2 = 1−E[X2:2] to the left and right intervals, respectively.
The expressions of E[X1:2] and E[X2:2] were calculated in (3) and (4). So,
the equation (1) becomes

(E[X1:2])
s + (1 − E[X2:2])

s = 1.
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The probability density function of the random middle spacing S2 is given
by

fS2(z) = 2

(
1

B(p, 1)

)2 ∫ 1−z

0
xp−1(z + x)p−1dx

= 2p2

∫ 1−z

0
xp−1(z + x)p−1dx.

The probability that the random middle spacing S2 is greater than the cor-
responding deterministic E[S2], can be computed by the following way

P[S2 > E[S2]] =

∫ 1

E[S2]
fS2(z)dz.

In the Table 1 we can observe, for some values of p, the probability of the
random middle spacing S2 being greater than the deterministic middle spa-
cing E[S2], as well as the Hausdorff dimensions of the respective random and
deterministic Beta(p, 1)-Cantor sets. We observe that

Table 1. Probabilities of the random middle spacing S2 be greater than the

deterministic middle spacing E[S2] and Hausdorff dimensions of

the random and deterministic Beta(p, 1)-Cantor sets.

p E[S2] Med(S2) P[S2 > E[S2]] DimHFp,1 DimHCp,1

0.1 0.151515 0.026300 0.293280 0.352648 0.557659
0.25 0.266667 0.172200 0.392116 0.436276 0.578127
0.5 0.333333 0.278630 0.434425 0.500000 0.600967
0.75 0.342857 0.299360 0.443826 0.536400 0.617679
1 0.333333 0.292893 0.444444 0.561553 0.630930

1.5 0.300000 0.259473 0.437901 0.595741 0.651179
2 0.266667 0.225220 0.429426 0.618907 0.666305
3 0.214286 0.173688 0.415534 0.649741 0.688046
5 0.151515 0.116921 0.399752 0.685187 0.715013
20 0.046458 0.033219 0.376770 0.761324 0.778206
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• Although the Hausdorff dimensions of both the corresponding random
and deterministic Beta(p, 1)-Cantor sets increase with the parameter
p, we always have

DimHFp,1 < DimHCp,1.

• In what concerns the expected value of random middle spacing S2 and
the probability of the random middle spacing S2 be greater than the
deterministic middle spacing E[S2], we can state that both increase
with the parameter, for p < 1; both quantities are decreasing functions
for p ≥ 1.

So, at first sight this would seem to reinforce the intuitive (but misguided)
idea that the random fractal Fp,1 should have a bigger Hausdorff dimension
than the correspondent “mean fractal” Cp,1. But this an uneducated guess,
not taking into full account the dependence issues and the trade-off in se-
quential steps: the less you take out at one step, the more you will probably
take off in following steps.

To gain a deeper insight, we are going to evaluate the probability that
the sum of the lengths of the intervals removed until the step n in the cons-

truction of the random fractal, which we shall denoted by S
(n)
2,R in what

follows, is greater than the sum of the lengths of the intervals removed until
the step n in the construction of the correspondent “mean fractal”, denoted

by S
(n)
2,D in what follows. This evaluation cannot be done analytically, but

the evaluation is readily performed using Monte Carlo methods.

To make the Monte Carlo simulation for determining these probabilities
and the correspondent 95% confidence intervals, we used in each case 5000
runs.

On the other hand, in order to compute S
(n)
2,D of the “mean fractal” Cp,1,

observe that in the first step we obtain [0, a] ∪ [b, 1], where a = E[X1:2]
and b = E[X2:2]. A straightforward extension is stated in the theorem that
follows.

Theorem 4. The length of the sum of the intervals removed in the constru-

ction of a “mean fractal” Cp,1, until the step n, is given by

S
(n)
2,D = 1 − (a + (1 − b))n

, with n = 1, 2, . . .

where a = E[X1:2] and b = E[X2:2].
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Proof. We are going to proof the result by induction. In the step 1, the
set H1 is formed by 21 intervals, with total length given by a + (1 − b) =
(a + (1 − b))1.

Consider that, in the step n the set Hn is formed by 2n intervals, with
total length given by (a + (1 − b))n, which can be rewritten as

n∑

j=0

(
n
j

)
aj(1 − b)n−j .

In the step n + 1, each one of the 2n intervals, on the step n, lost the
middle interval, given rise to two intervals of lengths

a · ak(1 − b)n−k = ak+1(1 − b)n−k

and

(1 − b) · ak(1 − b)n−k = ak(1 − b)n+1−k,

respectively. Consequently, the set Hn+1 has 2 · 2n = 2n+1 intervals. The
sum of lengths of these intervals is given by

n∑

j=0

(
n
j

)[
aj+1(1 − b)n−j + aj(1 − b)n+1−j

]

= a

n∑

j=0

(
n
j

)
aj(1 − b)n−j + (1 − b)

n∑

j=0

(
n
j

)
aj(1 − b)n−j

=
n∑

j=0

(
n
j

)
aj(1 − b)n−j(a + 1 − b)

= (a + 1 − b)n(a + 1 − b)

= (a + 1 − b)n+1.

So, S
(n)
2,D = 1 − (a + (1 − b))n

, with n = 1, 2, . . ., as stated.

In Table 2 we compute the probability that the accumulated length of the
random middle sets removed in the recursive construction of the random
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Table 2. Estimated probability the probability that the sum of the lengths of the random middle intervals

removed until the step n in the construction of the random fractal exceeds the sum of the lengths

of the intervals removed until the step n in the construction of the correspondent “mean fractal”.

Beta(0.5, 1) Beta(0.75, 1) Beta(1, 1)
Step Est. Prob. 95% Conf. Int. Est. Prob. 95% Conf. Int. Est. Prob. 95% Conf. Int.

1 0.4524 (0.4386; 0.4662) 0.4508 (0.4370; 0.4646) 0.4570 (0.4432; 0.4708)
2 0.5222 (0.5084; 0.5361) 0.5216 (0.5078; 0.5355) 0.5148 (0.5010; 0.5287)
3 0.5704 (0.5567; 0.5841) 0.5500 (0.5362; 0.5638) 0.5516 (0.5378; 0.5654)
4 0.5870 (0.5734; 0.6007) 0.5670 (0.5533; 0.5807) 0.5744 (0.5607; 0.5881)
5 0.6090 (0.5955; 0.6225) 0.5834 (0.5697; 0.5971) 0.5776 (0.5639; 0.5913)
6 0.6266 (0.6132; 0.6400) 0.5906 (0.5770; 0.6042) 0.5936 (0.5800; 0.6072)
7 0.6342 (0.6209; 0.6476) 0.5902 (0.5766; 0.6038) 0.6002 (0.5866; 0.6138)
8 0.6370 (0.6237; 0.6503) 0.5926 (0.5790; 0.6062) 0.6048 (0.5913; 0.6184)
9 0.6442 (0.6309; 0.6575) 0.5964 (0.5828; 0.6100) 0.6084 (0.5949; 0.6219)
10 0.6506 (0.6474; 0.6638) 0.5988 (0.5852; 0.6124) 0.6098 (0.5963; 0.6233)

Beta(2, 1) Beta(3, 1) Beta(20, 1)
Step Est. Prob. 95% Conf. Int. Est. Prob. 95% Conf. Int. Est. Prob. 95% Conf. Int.

1 0.4252 (0.4115; 0.4389) 0.4222 (0.4085; 0.4358) 0.3684 (0.3550; 0.3817)
2 0.4834 (0.4696; 0.4973) 0.4890 (0.4751; 0.5028) 0.4214 (0.4077; 0.4350)
3 0.5176 (0.5038; 0.5315) 0.5182 (0.5043; 0.5320) 0.4376 (0.4238; 0.4513)
4 0.5354 (0.5216; 0.5492) 0.5246 (0.5107; 0.5384) 0.4530 (0.4392; 0.4667)
5 0.5430 (0.5292; 0.5492) 0.5402 (0.5263; 0.5540) 0.4622 (0.4483; 0.4760)
6 0.5462 (0.5324; 0.5600) 0.5476 (0.5338; 0.5613) 0.4724 (0.4585; 0.4862)
7 0.5512 (0.5374; 0.5649) 0.5524 (0.5386; 0.5661) 0.4816 (0.4677; 0.4954)
8 0.5496 (0.5358; 0.5633) 0.5556 (0.5418; 0.5693) 0.4822 (0.4683; 0.4960)
9 0.5528 (0.5390; 0.5665) 0.5616 (0.5478; 0.5753) 0.4888 (0.4749; 0.5026)
10 0.5500 (0.5362; 0.5637) 0.5630 (0.5492; 0.5767) 0.4942 (0.4803; 0.5080)
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Beta(p, 1)-Cantor set Fp,1 is greater than the accumulated length of re-
moved subintervals in the construction bof the corresponding deterministic
Beta(p, 1)-Cantor set Cp,1. While in the first step this probability is less
than 0.5, in the second step, for small values of p, the odds are in favour
that the length of the removed random set exceeds the length of what has
been removed in its deterministic counterpart.

In fact, at each step of the recursive construction of the random fractal
and of its deterministic counterpart, this pattern will apply: the probability
that the accumulated length of the removed intervals in the random case
exceeds the accumulated length of the removed intervals in the corresponding
deterministic fractal increases steadily.

The dependence structure of order statistics, skewness and the conse-
quent unequal mean and median contribute to this surprising reversal, and
this deeper analysis of the situation shows that we should indeed expect that
the random fractal be less dense in [0,1]. Thus, smaller Hausdorff dimension
is a coherent result.
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