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Abstract
Some useful tools in modelling linear experiments with general
multi-way classification of the random effects and some convenient
forms of the covariance matrix and its inverse are presented. Moreover,
the Sherman-Morrison-Woodbury formula is applied for inverting the
covariance matrix in such experiments.
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1. INTRODUCTION AND SUMMARY

Any linear statistical experiment involves some varieties called factors or
effects. One can distinguish two kinds of the effects: fixed and random.
The allocation of the fixed effects determines the expectation of the
observation vector, while the allocation of the random ones determines
the variance-covariance matrix.

Many statistical operations, such as linear estimation, quadratic
estimation, and testing, require inverting the covariance matrix (see, e.g.,
Rao, 1973, Kleffe and Seifert, 1986, or Jiang, 2004). From mathematical
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point of view, the last problem reduces to inversion of a "patterned"
matrix (cf. Graybill, 1983). In spite of the great progress in the subject,
the attention of statistical literature focus on so called balanced models,
being expressible in terms of the Kronecker product (among others Searle
et al., 1992, and Jiang, 2004). Similar results, for inverting matrices in a
quadratic subspace, were obtained by Zmyslony and Drygas (1992). This
technique is very elegant but it is not applicable in the unbalanced models.
In the last case some explicit results have been presented for the hierarchical
classification only (see Stepniak, 1974, 1991, Stepniak and Niezgoda, 1995)
in quite different terms.

This paper is a further step in this direction. The initial technique,
introduced in Section 2, is illustrated by the balanced hierarchical and cross
classification. In fact the results presented in Section 3 are very close to these
by Jiang (2004), but they are more direct in use and proof. Section 4 deals
with inverting covariance matrices in the unbalanced classification. Some
explicit results for 2-way case are derived by Sherman-Morrison-Woodbury
formula of matrix analysis.

2. MULTI-WAY CLASSIFICATION

Formal definition of the multi-way classification (cf. Stepniak, 1983) will be
preceded by example.

Suppose 24 experimental units are submitted to three independent
classifications with 2, 3 and 2 subclasses, respectively. Denote by S;;
the set of experimental units belonging to the j-th subclass in the i-th
classification. For example

Si1 = {1,2,5,8,10,13,18,20, 21,22, 23},

Sio = {3,4,6,7,9,11,12,14,15,16,17, 19, 24},
Syt = {4,6,8,15,16,17, 18},

Se = {10,11,12, 13, 14, 20},

Sas = {1,2,3,5,7,9,19, 21,22, 23,24},

Sg1 ={1,2,3,4,5,6,7,8,9,10,11, 12,13, 14},
Sso = {15,16,17, 18,19, 20,21, 22, 23, 24}.
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To each S;; corresponds a column vector Nj; = (nq,... ,na4)T of zeros and

ones, where

1 itkels;
ne =
0 otherwise,

for k=1,...,24. In our example
Ny = (1,1,0,0,1,0,0,1,0,1,0,0,1,0,0,0,0,1,0,1,1,1,1,0)7,
N2 = (0,0,1,1,0,1,1,0,1,0,1,1,0,1,1,1,1,0,1,0,0,0,0,1)7,
Noy = (0,0,0,1,0,1,0,1,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0)7,
Nay = (0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,1,0,0,0,0)7,
Noz = (1,1,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1)7,
N3 = (1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0) 7,
N33 = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1)7.

Then the observation vector X = (Xl,...,X24)T, corresponding to the
experimental units, may be presented in the form

2 3 2
X=p+ ZNUG’U + ZN2ja2j + ZN?;ja?;j +e,
=1 j=1 j=1

where p = (up, ..., poy)T is the expectation of X, a;; is the effect of the j-th
subclass in the i-th classification, while e = (e, ... ,624)T is the vector of
the experimental errors.

Assuming all these effects are independent random variables with the
expectation zero and the variances

Var(e;) =0 for j=1,...,24, and,

Var(a;;) =o0; for i=1,2,3 and possible j,
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one can write the variance-covariance matrix of X in the form
3
V =oolos + E oiVi,
i=1

where

2
Vi=) NN,
j=1
3
Vo= NojNy,
j=1

2
Vo =D NajNg;.
j=1

Now we are ready to introduce a formal definition of multi-way classification.

Let n, g and kq, ...,k be positive integers such that ¢ <n and k; < n,
t=1,...,q. Moreover, let N;;,i=1,...,q; 7 =1,...,k;, be n-dimensional
columns of zeros and ones satisfying

k;

(1) ZNZ] 1n7 1= 17 7q7
j=1

and

(2) NgNij/:07i:17---7QSj7éjla

where 1,, means the column of n ones.

Definition 1. Any choice of such columns is said to be an allocation of n
experimental units in g-way classification with kq,...,k, subclasses and is
denoted by A(n,q;k1,...,kg/Nij,i=1,...,¢;5=1,...,k;).

To each allocation corresponds the covariance matrix of the form

q
(3) V=ool,+ Y oiVi,
i=1
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where
(4) V; = ZN NL, o i=1,..,q

We shall assume that g > 0 and g; >0fori=1,...,q.

It is worth to note that the notion of the allocation does not specify
any relationship between the individual classifications. Some specifications
of this kind lead to the well known terms such as cross and hierarchical (or
nested) classification (cf. VanLeeuwen et al., 1999). Let us mention that an
allocation A(n,q;k1,...,kq/Nij,i =1,...,¢;5 = 1,...,k;) is hierarchical if
the matrices

(5) Vi—=Vigq for i=1,...,q—1

have nonnegative entries. General definition of cross classification is more
complex.

The structure of the covariance matrix simplifies in so called balanced
case (cf. Searle et al., 1992, and Jiang, 2004). We shall illustrate our notion
by examples with balanced hierarchical and cross classification.

Suppose n and ki, ..., kq satisfy the condition n = r[[? ; k; for some
integer r. Then one can set

Nlj:E1j®1k1®---®1kq®1ra J=1....k

N2j:1k1®E2]®®1kq®1r’ j:l,...,kQ,

Noj =1k @l @ @ By @ 1y, j= 1o, by,

where ® denotes the Kronecker product and E;; means the k;-dimensional
column with one on the j-th place and zeros besides.

Definition 2. Any allocation A(n,q; k1, ..., kq/Nij,i=1,...,q¢;5=1,...,k;)
satisfying the condition (6) for some r is said to be balanced cross allocation.

For such allocation the matrices V;, defined by (4), reduce to
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m:Ik1®Jk2®---®qu®Jra

Vo=Jiy @I, @... @ Jg, @ Jp

%:Jk1®Jk2®®qu®Jr,

where J;, denotes k x k matrix of ones.
We note that the matrices Vi,...,V, appearing in (7) satisfy the
conditions

(8) szgvi for i=1,...,q,

and

(9) ViV; =ViVi=——J, fori=1,...q and j#i.
vy

Thus we get the following corollaries

Corollary 3. In the balanced cross allocation the matrices I,,V1,...,V, and
Jn belong to a commutative quadratic subspace.

Corollary 4. The inverse of the covariance matriz V in the balanced cross

classification may be expressed as a linear combination of I,,Vi,...,V,
and J,,.
Now suppose k—”q and k;jll are integers for i = 1,...,q — 1. Then one can set

Nij=FE;j@lg®1l,®...01, for j=1,... ki,

NQj: E2j®182®"'®15q fOI‘j:l,...,kQ,
(10)

qu: qu®15q for j:L...,kq,

where s; = =, i=1,...,¢— 1 and s, = 7-.
v q
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Definition 5. Any allocation A(n, q; k1, ..., kq/Nij,i=1,...,q¢;5=1,... k)
satisfying the condition (10) is said to be the balanced hierarchical allocation.

This implies that

Vi=Ily®J,®J,®...0Js,_; ®Js

q ?

‘/2:Ik1®I31®J32®---®JSq_1®JS

q

(11)

V=11, 014, ®I,®..0 L, ®Js,.

It is worth to note that the matrices Vi,...,V, appearing in (11) satisfy the
conditions

q
(12) ViViy = ViV = (H s>v - kﬁv for ¢ < 7,

Thus we get the following corollaries.

Corollary 6. In the balanced hierarchical allocation the matrices I,
Vi,..., Vg belong to a commutative quadratic subspace.

Corollary 7. The inverse of the covariance matriz V' in the balanced hierar-
chical allocation may be expressed as a linear combination of I,,,V1,...,V,.

In the next section we derive some explicit forms for inverse of the covari-
ance matrices in the balanced hierarchical and cross classification. Such a
possibility comes from the fact that in a commutative quadratic subspace
there exists a basis of multually orthogonal projectors (cf. Seely, 1971).

3. INVERTING COVARIANCE MATRIX FOR BALANCED CLASSIFICATION

We shall start from the balanced cross classification.

Theorem 8. Let A(n,q;ki,...,kq/Nij,i = 1,...,¢;5 = 1,...,k;) be bal-
anced cross allocation i.e. allocation defined by (6)—(7) with the covariance
matriz V = ool + > .1, 0;Vi. Then
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V-l
(13) ‘ ¢ .
Pi
Z T Jn )
M Al oyt > err)
wheTepi:g—éforizl,...,q.

Proof. Define matrices

1
—Jn for ¢ =0,
(14) P "
(2 kl ‘
EVZ'—PO for i=1,...,q.

We note that P? = P; for i = 0,...,q and P,P; = 0 for i # j. Thus

Py, Py, ..., P, are orthogonal projectors on the corresponding orthogonal
subspaces of R™. In consequence, one can write

—00<I —ZP) +UoZP +Zal (P, + Py)

¢ _Zp>+Z<1+pzk)p+(1+zpzk)po]

=0

We observe that the last row represents the canonical form of V. Therefore,

1 1 1 1
UO_<n Z Z) Zl+ 1"‘21 1sz 0}

L
i=0 i=1 Pik;
1 . pi it }
= =1, - i p _p,
oo [ ;1+pikﬂi EREDS Ry
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q
n 1 1
; ki \1+ pig 1+Z?:1ij%

and, by (14), the desired result is proved. [

In particular, for ¢ = 1 the formula (13) reduces to

1
(15) vlo — [In __ M Vl],
0o 1+ pia

where a = - (cf. Stepniak, 1974).
Now let us pass to the balanced hierarchical classification.

Theorem 9. Let A(n,q;ki,...,ky/Nij,i = 1,...,¢;5 = 1,...,k)
be balanced hierarchical allocation i.e. allocation defined by (10)—(11) with
the covariance matriz V = ool + 23:1 o;Vi. Then

Vfl

(16) 1

1 [ S p p
=5 RV Vi — L_vy,|.
o0 ; (I+n3_, k—;)(l +ny i k_;) 1+ 70,

Proof. Define matrices

k
—1V1 for i =1,
n
(17) Qi =
ﬁVi—ki_lVi,l for i=2,...,q.
n n
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We note that Q? = @Q; for i =1,...,q, QiQy =0 for i # i and 3\, Q; =
%VZ Thus one can write

q q 9 1
v:ao(zn—zczi)mozczﬁnz%m
i=1 i=1 i=1 ' j=1

:ao:<In—§q:Qi> +iQi+niZ_§ZQ1}

:go:<1n—§q:Q,~> +i<1+ni%>@l}.

=1 =1 Jj=t
Therefore
1 I I 1
V—lz—[<fn—§j@i>+z Q}
q Pt
g0 i—1 o L) %
p
- [I qu "o Q}
- —_— |¥fn — 1
g0 =1 L+mn Z?*Z Z_]
and, by (17), the desired result is proved. [

Remark 10. For ¢ = 1 the formula (16) reduces to (15).

Remark 11. For ¢ = 2 the form (16) coincides with Stepniak (1991, formula
(3)) and with Stepniak and Niezgoda (1995, formula (7)).

An alternative way for inverting the covariance matrix in the balanced hier-
archical classification is indicated by Corollary 7. Namely, the inverse V!
may be obtained by solving the equation

q q
(In +) pV> (In +)° w) =1I,
=1 i=1
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with respect to x1,...,x,. This can be rewritten as a system of equations

Pqgt+ xq +n%ﬂ:q =0,
q

q

xj )
pl—i-wz—i-nZ—xl—i-npij;rlk—j:O for i=q—1,...,1.

From the first one we get immediately

Tg = ,Oq
1 + kY pq
and, by substitution to the second one,
pq—l

LTg—1 = — pq
(oS ) (0R)

Next, by successive substitutions,

s )(z o5

The final result coincides with (16).

T = — for i=¢—2,...,1.

4. INVERTING COVARIANCE MATRIX FOR UNBALANCED CLASSIFICATION

The method of inverting based on the orthogonal decomposition does not
extend for the unbalanced case. On the other way, solving linear equations,
used in Stepniak and Niezgoda (1995) for the unbalanced hierarchical clas-
sification is not easy. LaMotte (1972) suggests for this case a step-by-step
procedure which is, however, rather far from the explicitness.

In the unbalanced cross classification the problem of inverting appears
even more complex and, as far, it has not been undertaken in statistical
literature, at least in the analytic form. We are just taking an effort in this
area.
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The following result (cf. Horn and Johnson, 1985, p. 19, or Golub and Van
Loan, 1989, p. 51) plays a key role in our consideration.

Lemma 12 (Sherman-Morrison-Woodbury formula). Suppose a nonsingu-
lar matriz A of n x n has a known inverse A~' and consider a matriz

B= A+ FGH,

where F isn xr, H isr xn, and G is r X r and nonsingular. If, moreover,
B is nonsingular, then

Bl=A"1'—A'F(G '+ HA'F)'HA™L

By using this lemma one can obtain a recurrent formula for inverting the
covariance matrix in the unbalanced g-way classification. An explicit result
will be provided for g = 2.

Given 2-way allocation A(n,2;k1,ka/Nij,i = 1,25 = 1,...,k;) define
scalars

’I’LZ:NiZ;NM, ’izl,...,kl,
’I’L.j:Ng]-Ngj, jzl,...,kg,

’I’Lij:NiZ;-NQj, ’L'Zl,...,k‘l;jzl,...,kg,

01
p=—, and A= —,
oo oy

and matrices

N :[Nl,...,Nkl], where Nz:le for iZl,...,kl,

nXkl

nl-j
1+ pn,.

k1
M :[Ml,...,MkQ], where Mj:Mj(P):N2j—PZ NM'
i=1

fOI'jzl,...,]CQ,
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1
D = D(p) = pdia,
k1 xk1 (p) P 8 1 =+ pn. 1 + pnkl
and
C C(p, A
WS, (p, A)
i k1 n2 it n;1n k1 n;1n 17
- _ il _ Ttttz . — il iky
)\+n'1 p;1+pni. p;l—i—pni. pzl—}—pnl.
il n;9Mi1 1 il n2 il Ni9Nik
_ et i _ 2 _ _Tatike
le—i—pm. )\+n'2 p‘_ 14 pn;. le—i—pni.
i=1 i=1 i=1
k1 Mgy Mil Tikp 1052 k
ikoTti 2 (2 Z 2
I pz; 1+pn;. Z 1 +pnz k2 pz 1+pn

Now we are ready to state the main result in this paper.

Theorem 13. The inverse of the covariance matriz in 2-way allocation
A(n,2; k1, ke /Nij,i =1,2;5 =1,...,k;) may be presented in the form

1
(18) vl= — [l - NDNT — MCM™],
0

where N, M, D and C are defined above.

Proof. In this situation one can write

Voot o 3NN 42D NN ).
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Let us set in Lemma 12 A = I, + p3 % N;NL, G = M}, and F =
HT = [Nay,..., Nog,]. Tt is well known (cf. Stepniak, 1974) that A~! =
I, — NDNT. Now the desired result follows by a routine algebra. [
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