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Abstract

A random variable X is geometrically infinitely divisible iff for every
p € (0,1) there exists random variable X, such that X 4 ZZipl) Xp ks
where X, ’s are i.i.d. copies of X,,, and random variable T'(p) indepen-
dent of {X 1, Xp.2,...} has geometric distribution with the parameter
p. In the paper we give some new characterization of geometrically in-
finitely divisible distribution. The main results concern geometrically
strictly semistable distributions which form a subset of geometrically
infinitely divisible distributions. We show that they are limit laws for
random and deterministic sums of independent random variables.
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1. INTRODUCTION

In many economic and physical phenomena we can often find a common
feature, namely an observed quantity is a sum of very large amount of small
summands which do not depend on each other. In such models an essential
role play infinitely divisible, stable and semistable distributions.



80 M.T. MALINOWSKI

In some problems we encounter with a situation that the number of sum-
mands is not deterministic, but rather random. Then a modeling with ran-
dom sums is needed.
For example, consider a System with Rapid Repair, Gertsbach (1990).
In this system, if the operating unit with a random lifetime X fails, it is
immediately replaced by identical unit available with a probability ¢ =1—p
close to one. A lifetime of the system is then a random variable which is a
random sum of the form
T(p)
Xk,
k=1

where Xj’s are ii.d. copies of X, random variable T'(p) independent of
X}i's has geometric distribution with a parameter p, i.e. P(T(p) = n)
=p(1—-p)" ! neN.

These assumptions about summands X} and random variable T'(p) we
will assume throughout the paper.

If X has an exponential law we have that for every p € (0,1)

S
S

(p)

X, <

1

X,

ol
I
| =

where ”2” denotes equality of distributions. So one can say that exponential
distribution is invariant under geometric summation.

In this paper we consider these random variables X for which the
following condition is satisfied

T(p)
Fpe®1) Ja>0 XLa) X
k=1

We will call them geometrically strictly semistable random variables.
Random variables X satisfying somewhat stronger condition, namely

T(p)
¥p e (0,1) Jalp) >0 X La(p) . Xi,
k=1
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are well characterized already, see Rachev and Samorodnitsky (1994). These
random variables and their distributions we will call geometrically strictly
stable. In Rachev and Samorodnitsky (1994) it is noticed that geometrically
strictly stable distributions form a subset of so called geometrically infinitely
divisible distributions. Indeed, since random variable X is geometrically
infinitely divisible iff (see Rachev and Samorodnitsky, 1994)

4 T (p)
Vpe (0,1) 3X, X =) X4,
k=1

the previous statement is obvious.

It is worth to indicate that geometrically infinitely divisible distributions
are infinitely divisible in the classical sense (see Rachev and Samorodnitsky,
1994), so one can think about Lévy processes generated by such laws.

From now on we will use the following abbreviations and notations

r.v. — random variable,

ch.f. — characteristic function,

GID - geometrically infinitely divisible,
GSSe — geometrically strictly semistable,

ID - infinitely divisible,

SSe  — strictly semistable,
) — a set of all characteristic functions,
RT — aset (0,+00),

Ry —aset R\ {0}.

We will also use the convention that if X is GID (GSSe, ID) r.v., then also
its ch.f. and its distribution will be called GID (GSSe, ID).

The paper is organized as follows: in Section 2 we give some remarks
on GID distributions and we formulate the new characterization of GID
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distributions; in Section 3 we consider a subclass of GID distributions,
namely GSSe distributions. We show there that GSSe distributions are
the limit laws of weighted random sums of i.i.d. r.v.’s; and in Section 4,
GSSe distributions are presented as the limit laws of deterministic sums of
independent, but not necessarily identically distributed r.v.’s.

2. A NEW CHARACTERIZATION OF GEOMETRICALLY INFINITELY
DIVISIBLE RANDOM VARIABLE

The GID r.v.’s appeared as the answer to the question of V. M. Zolotarev
who asked about such r.v.’s X for which the following condition is satisfied:

(1) Vpe (0,1) 3X, XL, X +X,,
where €,, X, X, are independent r.v.’s, and ¢, has distribution:
P(e, =0)=p, Plep=1)=1—p.
It can be check that the condition (1) is equivalent with the following one

T(p)
(2) Vpe (0,1) 3X, X3 X,
p K

k=1

which become the commonly accepted condition defining GID r.v. The
pioneering note on GID r.v. is the paper of Klebanov et al. (1984). Since
then the GID distributions gained in popularity. Very important result in
this area is the one to one correspondence between GID and ID distributions.
Namely, for ch.f. ¢ we have (see Klebanov et al., 1984)

(3) ¢is GID iff exp{l—1/¢} is ID ch.f,

or equivalently
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(4) @isID iff is GID ch.f.

1—Ilnep

In this section we want to present some results concerning GID distribution.
Let ¢, ¢, denote ch.f.’s of X and X, respectively. Since for the ch.f. of

T(p)
the random sum Z Xp r we have
k=1
T(p) T(p)
Eexp{ ity Xppp = IEE |expqit» Xpi 0| T(p)
k=1 k=1

= Zp(l —p)" ' (exp {z’t Z Xpyk}>
n=1

k=1
= > p(1—p)" ()"
n=1

pep(t)
1= (1=p)ep(t)’

then the condition (2) can be rewritten as

_ pep(t)
1—(1=plep(t)

(5) Vpe (0,1) 3o, € ® VEte R (1)

From (5) we see that for GID ch.f. ¢(t) and every p € (0, 1) the function

o(t)
p+ (1 —p)e(t)
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is generally a ch.f. Moreover it is the ch.f. of the r.v. X, appearing in the
condition (2). It is possible to infer more about this ch.f.

Proposition 1. Let X be GID r.v. with ch.f. ¢.

(i) The function

¥

(6) ¢a = m

is also the GID ch.f. for every a > 0.

(ii) For a > 0 function v, is ch.f. of the r.v. Xp(q), where {Xs,s > 0}
is a Lévy process such that Xy has ch.f. exp{l — 1/¢}, and r.v. T'(a)
independent of {Xs,s > 0} has exponential distribution with mean
equal to a.

Moreover,

( for a=1,
X, for a€(0,1),
Xra)
T(1/a)
Z Xy for a>1,
k=1

where X, is given by (2).

Proof.
(i) From (4) we can write ¢(t) = 1/(1 —Int(t)), where v is the ch.f. of
some ID distribution. Hence

B 1
S 1-In(y(t))

Since for a > 0 the function ¢® is ID ch.f. then again by (4) we infer
that 1, is GID.

Ya(t)
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(ii) It is known from subordination of Lévy processes (see Sato, 1999, pp.
197-198) that if {Xs, s > 0} is the Lévy process with X; having ch.f.
of the form IEexp{itX;} = /) and {)s,s > 0} is a subordinator
(an increasing Lévy process) with Laplace transform IF exp{—uY;} =
e®9(=") 4 > 0, then the subordinated process {Z, = Xy, s > 0} is a
Lévy process with ch.f. IF exp{itZ,} = e59(/(t),

In our case {XS, s > 0} is the Lévy process with ID ch.f.
Eexp{itX,} = e!=1/¢® (Y. s > 0} is a Gamma process with
S

FEexp{—u)s} = <1+au) (See Sato, 1999, p. 203). Thus Z; has ch.f.

FEexp{itZ,} = <1 i i 1/¢(t))>s _ <%)s.

Hence

d
Z1 =Xy, = A

since Y < I'(a).
For the second part of (ii) notice that

e if a = 1 then of course ¥, = y;

e if a € (0,1) then ¢, = m‘p_aw is by (5) the ch.f. of r.v. X,
for p = a, which appears in the condition (2) from the definition of
geometric infinite divisibility of X;

e if ¢ > 1 then

(1/a)p = Yt b
Yo = = (= 1/a)7 = (1/a) Z —1/a)
k=1
T(1/a)
is the ch.f. of the r.v. Z X
k=1
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It can be shown that for a > 0 the opposite implication to this from
Propostion 1 (i) holds, but the following weaker remark is also true.

Remark 1. Let ¢ be a ch.f. If for some a > 0 the function ¢, = ¢/
(a + (1 —a)p) is GID ch.f., then the ch.f. ¢ is also GID.

Proof. The proof is simple and will be omitted. [ |

In the rest of this section we characterize GID distributions as limit
distributions. To get this we will need the following lemma, and from now

on we will assume that if T'(p) = 1 then Zgipl)*l X, =0.
Lemma 1. For the r.v.’s Yy, p € (0,1) we have
T(p) T(p)-1

ZY}%’“ i>Y, whenp - 0 <= Z Y,k i>Y, when p — 0,
k=1 k=1

. d . . . .
where Y is some 1.v., and "—"” denotes the convergence in distribution.

Proof. Let ¢,, 1 denote the chf’s of Y, and Y respectively. If

Zfipf Yok 4, Y, when p — 0, then we can write

pep(t)  p0
T (1-pem TR

. —0 . . .
Since py,(t) ©= 0 then the denominator of this fraction also has to tend to

zero, thus (1 — p)ep(t) e 1, and consequently ¢, (t) P~ 1. Hence

— lim pep(t) — lim p
YO T D@ P T— (- P’
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It can be checked that p/(1 — (1 — p)p,(t)) is a ch.f. of random sum

Zgipl)_l Y, k. The proof of the second implication is similar and will be
omitted. m

The next theorem shows that for characterization of the GID r.v. X we
can use some weaker conditions than (2) or the one which is formulated in
Theorem 2.2. (v) of Rachev and Samorodnitsky (1994), i.e.

T(p)
¥pe (0,1) 3X, > Xpx -5 X, when p — 0.
k=1

Theorem 1. For a r.v. X the following conditions are equivalent:

(a) X is GID;

(b) for every sequence {p,} C (0,1) there exist r.v.’s Y,,, n € IN, such that

T(pn)
(7) Z Yok 4, X, when n — oo;
k=1
(c) there exist a sequence {p,} C (0,1), p, "—> 0, and the r.v.’s Yy,
n € IN, such that the convergence (7) holds.

Proof.

(a)= (b). Since X is GID then by (2) for every p € (0,1) there exists
r.v. X, such that Zgipl) Xpk < X. Now it is to enough to define the r.v. Y,
as having the same distribution as X, for each p,, from any chosen sequence
{pn} C (0,1) and we have

T(pn) d d
Z Y,r =X — X, when n — oc.
k=1

The implication (b)= (c) is trivial.
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For the implication (c)=- (a) notice that from Lemma 1 we have

T(pn)_l d
S, = Z Y, » — X, when n — oo.
k=1

Let ¢, denotes the ch.f. of Y,,. Then

_ Pn
L — (1= pn)en(t)

Un

is a ch.f. of S,,. Notice that for every s € (0,1)

% _ pn/(pn+3(1 _pn))
s+ (1 - S)% 1- (1 - pn/(pn + 3(1 - pn)))(/)n

Vs =

and it is a ch.f. of the r.v. ng” Y, i, where r, = pn /(P + s(1 — pp)).

Since ¥, = s7s/(1 — (1 — $)7s), then ¢, and S, are GID. Now applying
Theorem 2.2. (ii) of Rachev and Samorodnitsky (1994), which states that
the set of GID r.v.’s is closed under convergence in distribution, we infer
that X is GID. ]

3. THE GEOMETRICALLY STRICTLY SEMISTABLE LAWS

In the paper of Lin (1994) one can find the informations on characterizing
some distributions connected with geometric compound, i.e. with distri-
bution of random sums, where the number of summands is geometrically
distributed r.v. More precisely, we find there considerations on r.v.’s X for
which the following condition is satisfied

T(p)
(8) x<a Z Xy for some p € (0,1) and some real a.
k=1
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The general result on this problem states (see Lin, 1994, Theorem 3) that
the r.v.’s X satisfying (8) have ch.f. ¢ of the form

(14 [t|*h(t))"t for t€ IR,

p(t)=1 or ¢(t) =
1 for t=0,

where |a|* = p, and h is complex-valued function such that h(at) = h(t) for
every t € IRy. Moreover, it was proved that if condition (8) holds with a such
that |a| > 1, then X = 0 almost everywhere. It is mentioned that relation (8)
practically means the invariance of a rarefaction of renewal process
{Sp,n € IN}, where S, = > Xj.

In this paper we will interested in r.v.’s X for which
4 T(p)

(9) Ipe(0,1) 3ae(0,1) XEad X
k=1

and we will call them GSSe r.v.’s, although in the paper of Mohan et
al. (1993) one can find these r.v.’s under the name of geometrically-right-
semistable. In some places we write GSSe(p,a) as we want to indicate the
numbers p and a from (9).

In view of Theorem 3.1 of Mohan et al. (1993), which states that ch.f. ¢
is geometrically-right-semistable iff exp{1 — 1/} is ch.f. of right-semistable
distribution, we infer that

1/(1 + |t|*R(t)) is GSSe ch.f. iff exp{—|t|*h(t)} is SSe ch.f.

The changes of the distribution names are done due to present state of
semistable distribution theory (see Sato, 1999, Maejima, 2001). However,
remembering that the first results on semistable distributions belong to
P. Lévy we find out that a € (0,2], see Lévy (1937).

Until now the GSSe r.v.’s were considered only as r.v.’s satysfying the
stability condition (9) (Mohan et al., 1993, Lin, 1994). Our aim is to prove
that GSSe distributions are limit laws.
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Theorem 2. For a r.v. X the following conditions are equivalent:
(a) X is GSSe;
(b) there exist p € (0,1) and {a,} C IR" such that
(")

(10) an Z in>X, when n — o0;
k=1

(c) there exist p € (0,1), {an,} C R" and a r.v. Y such that

T(p") 4
an Z Y, — X, when n — o0;
k=1

n—~o0o

(d) there exist a sequence {pp,} C (0,1), pp =3 0, Ppi1/Pn — p €
(0,1], a sequence {a,} C R" and a r.v. Y such that

T(pn) d
an Z Y, — X, when n — oo.
k=1

Moreover, if X is GSSe(p,a) then the constants a,, in (10) can be repleaced
by

(1 +o(1)),
where a = Inp/lna.

Proof. Let p, ¥ denote the ch.f.’s of X and Y respectively.

(a)=-(b). From the definition of GSSe r.v. X we note that for its ch.f.
@ the following condition is satisfied
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for some p,a € (0,1). Consequently by the mathematical induction we
obtain that

p"p(at)
t) = for every n € IN.
A0 = T (et y

This proves (10) with a,, = a™.
The implications (b)=(c) and (c)=-(d) are trivial.

(d)=(a). Since (d) holds then

pn¢(ant) nio>o
=1 pyplay P

for every t € IR.

From Theorem 1 we infer that ¢ is GID and consequently ID ch.f., so it
never takes the value zero. Hence

1= =pa)v(ant) _ Ylant) =1 oo, 1

1
! pnb(ant)  putland) o)

Since ppY(ant) "% 0 then, in view of the previous convergence,

P(ant) =3 1. Thus

n—oo

P (W(ant) = 1) =31~ 1/p(t)
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and

[P (W (ant) = 1) =" 1= 1/p(1),
where [x] denotes the greatest integer number not greater than x.

Notice that

[pr ] I (ant) = [p")((ant) — 1) <1 + M) |

P(apt) — 1

Hence

[pn I p(ant) = 1 = 1/0(2),

and consequently
lant)Pn = exp{l - 1/p(1)).

Because the function exp{l — 1/¢(¢)} is continuous at ¢ = 0 and it
is a limit of ch.f’s sequence, then by Lévy—Cramer continuity theorem it
is ch.f. of some distribution. Since [p,!]/ [p;}rl] "% p then limit func-
tion is ch.f. of some SSe distribution (see Maejima and Samorodnitsky,
1999). Now applying Theorem 3.1 of Mohan et al. (1993) we infer that ¢

is GSSe.

For the last statement notice that since X is GSSe(p,a), then X 4
azgipl) X and its ch.f. ¢ is of the form p(t) = 1/(1 + [t|*h(t)), where
a = Inp/Ina and h(t) is some complex-valued function with a property
that h(at) = h(t), t € IRy.

Notice that for the function A we have

n—oo

h(p”/o‘(l +0(1))t) = h(a™(1 4+ o(1))t) = h((1 + o(1))t) — h(t)

for every t € IRy.
Hence for the ch.f. v, of the sum p™/*(1 + o(1)) Zfipln) X}, we have
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"/ (L+ (1 + o(1))t|*h(p™/* (1 + o(1))t))
L= (L =pm)/ (L+[p"/*(1+ o(1))t|*h(pm/*(1 + o(1))t))

1 n—00 1

1+ (11 o())oft[eh(p/a(l + o)) L+ [t[h(t)

for every t € IRy. The convergence at the point ¢ = 0 is obvious. [ |

Theorem 3. R.v. X is GSSe iff there exist a sequence {pn} C (0,1), p, =%
n—oo

0, sequence {a,} C RT, a, =3 0, apy1/an — a € (0,1) and a r.v. Y
such that

T (pn)
(11) an, Z Yi 4 X when n — .
k=1

Proof. If X is GSSe then (9) holds. Going similar as in the proof of im-
plication (a)=(b) of previous theorem, we see that (11) holds with p,, = p",
ap = a"™ and Y such that Y 4 X.

For the opposite implication note that, going similar as in the proof of
implication (d)=(a) of previous theorem, we have

Plant)P "X exp{1 — 1/p(1)},

where ¢, ¢ are ch.f.’s of r.v.’s X and Y. This convergence implies that
exp{l —1/p(t)} is ID ch.f.

Denote v(t) = exp{1 — 1/p(t)}. Since
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il P11/ pn ']
<¢ (CLnJrl . ant> ) nlos ’Y(t)

and

—1

[pn ]
'lﬂ (an+1 . ant> nlo>o ”y(at)

an

we infer that [p;}_l]/[p;l] "Fp~! >0 and
(12) (at) = ~y(t)".
Assuming that p > 1 we obtain

’y(t) = fy(a”t)l/p" "F1 for every t € IR,

it means y(t) = 1 and therefore ¢(t) = 1. Hence, for nontrivial case, we
have p € (0,1) and (12) means that v is SSe ch.f. Now by Theorem 3.1 of
Mohan et al. (1993) we state that ¢ is GSSe ch.f. |

From the Theorem 1 and Theorem 2 one can see that GSSe distributions
are GID. Consequently every GSSe distribution is ID.

4. DECOMPOSABILITY OF GSSE LAWS

In this section, with a help of decomposability concept, we shall notice that
GSSe r.v.’s are limits (in the sense of convergence in distribution) of not
random, but deterministic sums of independent r.v.’s.

Let us remind, a r.v. X, its ch.f. and its distribution are decomposable,
see Loeve (1945), iff
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(13) X<LeX + X, forsomece (0,1) and some r.v. X,
X, X, are independent. R.v. X is called then c-decomposable.

Proposition 2. The GSSe(p,a) r.v.’s are a-decomposable.

Proof. It is enough to notice that for r.v. X which is GSSe(p,a) we can
write

Loeve (1945) in Theorem 4 stated that for 0 < ¢ < 1 the rv. X is ¢
decomposable if and only if there exists r.v. Y such that

oo
(14) X £3 ty,
k=0

He noticed also that Y has the same distribution as X. in (13).
From Theorem 1 and Theorem 2 of Loeve (1945) we find out that the
class of c-decomposable laws coincides with the class of limit distributions

for the sums
n
an Z Zka
k=1

where Z1,Zs,...,Z, are independent, but not necessarily identically dis-
tributed r.v.’s, and {a,} is a sequence of positive numbers such that

an =30,  api1/an —3 c€(0,1).

Moreover, Loeve (1945) obtained the following characterization for the r.v.
Y appearing in (14)

d
anZ, — Y, when n — oo.
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Thus we have the following statement which this time characterizes GSSe
r.v.’s as limits of nonrandom sums of independent, but not necessarily iden-
tically distributed r.v.’s.

Proposition 3. Let p,a € (0,1). A r.v. X is GSSe(p,a) iff there exist a
sequence {a,} C R, a, "0, apt1/an "% a, and independent r.v.’s

Z1,25, ... such that

n
d
anZZk—>X, when n — 00,

k=1
and
4 T(p)-1
anZy — a Z X, when n — oo.
k=1
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