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Abstract

Commutative Jordan algebras are used to drive an highly tractable
framework for balanced factorial designs with a prime number p of
levels for their factors. Both fixed effects and random effects models
are treated. Sufficient complete statistics are obtained and used to
derive UMVUE for the relevant parameters. Confidence regions are
obtained and it is shown how to use duality for hypothesis testing.
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1. Introduction

A factorial design where all the factors have the same number of levels is
balanced factorial. In this work we use Commutative Jordan Algebras (CJA)
to carry out the study of the balanced factorial designs where factors have
a prime number of levels.
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As we shall see the framework provided by CJA is highly treatable both for
fixed effects and random effects models. In both cases we obtain complete
sufficient statistics as well as UMVUE for the relevant parameters. Confi-
dence regions are obtained and it is shown how, through duality, hypothesis
testing may be carried out.

1.1. Commutative Jordan algebras

A CJA A is a vector space constituted by symmetric commuting matrices
that contain the squares of their matrices. Seely (1971), showed that all
the CJA have only one principal base constituted by orthogonal projections
matrices, all of them mutually orthogonal.

Let Q1, ...,Qw be the matrices from the principal basis of a CJA A. If
Q1 = 1

n1n1′n = 1
nJn, where 1n is a matrix n × 1 with elements equal to 1,

the CJA will be regular. Moreover, if
∑w

j=1 Qj = In, where In is the n× n

identity matrix, the CJA will be complete.

In this work we only consider regular and complete CJA.

Let Q be an orthogonal projection matrix belonging to A. We have

(1) Q = e

w∑

j=1

ajQj

with aj = 0 or aj = 1, j = 1, . . . , w.

Let R(Qj) = ∇j, j = 1, ..., w, be the range spaces of the matrices Qj,
j = 1, ..., w. We have, see Mexia (1995), Qj = A′

jAj , j = 1, ..., w, if the row
vectors of Aj constitute an orthonormal basis for ∇j, j = 1, ..., w. If A is
a complete CJA, the line vectors of

(2) P =
[
A′

1...A
′
n

]′

constitute an orthonormal basis for Rn since we have

(3) In =

w∑

j=1

Qj =

w∑

j=1

A′
jAj.

and P is an orthogonal matrix associated to A.

Inversely, the matrices Qj = A′
jAj , j = 1, . . . , w, are symmetric and

idempotents and, as QjQj′ = 0n×n, j 6= j′, are mutually orthogonal consti-
tuting the principal basis of a CJA associated to P.
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If A is a complete and regular CJA with principal basis ℵ={Q1, . . . ,Qw},

we have Q1 = 1
nJn =

(
1√
n
1n

)(
1√
n
1′n

)
, so A1 = 1√

n
1′n is the first row of

an orthogonal matrix P associated to A, constituted by elements equals to
1√
n
. The matrix P will be, see Mexia (1988), orthogonal and standardized.

1.2. Prime basis factorials

We will consider the factorial design pN , with N factors each one having
a prime number p of levels. The p levels are numbered from 0 to p − 1
and the treatments are represented by vectors x = (x1, . . . , xN ), with xj =
0, . . . , p − 1, j = 1, . . . ,m, whose components are the factors levels.

If in G [p] = {0, . . . , p − 1} we define the addition and the multiplication
module p, where the results from the usual operations are replaced by the
rest of their division by p, we have the Galois field G[p] with support [p].
So, the vectors x will belong to the vector space G [p]N whose vectors have
N components belonging to G [p].

The treatments may be identified by the vectors xN ∈ G [p]N with
components xj ∈ G [p], j = 1, . . . , N . This treatments my be ordered by the
indexes:

(4) j = 1 +

N∑

i=1

xip
i−1.

Let L [p]N be the family of the linear functions

(5) L (x) =

N∑

j=1

ajxj , aj = 1, . . . , p − 1.

The values of these functions are obtained using the module p arithmetic.

Let also Lr[p]N be the family of reduced linear functions, i.e. the func-
tions whose first non null coefficient is 1.

As L [p]N is a vector space with dimension N and each one of the N

coefficients can take p values, in L [p]N will exist pN functions of which

pN − 1 are not null. There are pN−1
p−1 reduced linear functions.

For more details about prime basis factorials see, for exemple, Day and
Mukerjee (1999).
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1.3. Incidence matrices

For each function L ∈ Lr[p]N we can assign a matrix C(L) = [cij(L)]p×pN

where

(6) ci,j (L) =

{
0; L (xj) 6= i − 1

1; L (xj) = i − 1,

with xj the vector with index j.

Then, with K obtained deleting the first row equal to 1√
p1

′p from a p×p

standardized orthogonal matrix, we take

(7) B(L) =
1

q
KC(L)

with q = p
N−1

2 .

In Mexia (1988) it was prooven that the matrix

(8) P
(
pN

)
=

[
1

p
N
2

1pN ,B′ (L1) , . . . ,B′ (Lw)

]′

with w = pN−1
p−1 , is orthogonal standardized. This matrix will be associated

to the CJA A
(
pN

)
with principal basis ℵ(pN ) = { 1

pN JpN , Q (L1) , . . . ,

Q (Lw)}, Q (Lj) = B′ (Lj)B (Lj), j = 1, . . . , w.

2. Fixed effects model

We will use the CJA to construct the model and make the inference. Let
us assume that we are working with the reduced linear functions L1, . . . , Lw

with w = pN′−1
p−1 for which we have the matrices Bj = B (Lj), j = 1, . . . , w,

and the orthogonal matrix

P =

[
1

p
N′

2

1pN′ B′
1 . . .B′

w

]′

associated to the CJA relevant for the model.



Inference for random effects in prime basis factorials ... 19

2.1. Model

The fixed effects model will be

(9) Y = 1nµ +
w∑

j=1

(
B′

j ⊗ 1r
)
βj + e,

where n = pNr, the vectors β1, . . . , βw are fixed with p− 1 components and
e is normal with zero mean vector and covariance matrix σ2In.

Let

(10)





B0
j = Bj ⊗

1√
r
1

′r, j = 1, . . . , w

B⊥ = In ⊗Tr,

where Tr = Ir −
1
rJr.

As the model Y has the mean vector and the variance-covariance matrix

(11) µ = (1n ⊗ 1r)µ +
w∑

j=1

(Bj ⊗ 1r)β and V = σ2In,

respectively, it can be shown, see Fonseca et al. (2006), that the density
probability function is

(12) n (Y) =
e
− 1

2σ2

∑w
j=1‖β̃j−βj‖

2− S⊥

2σ2

(2π)
n
2 σn

with the complete sufficient statistics

(13)





S⊥ =
∥∥B⊥Y

∥∥2
∼ σ2χ2

g⊥
, g⊥ = n (r − 1)

β̃j = 1√
r
(Bj ⊗ 1

′r)Y ∼ N
(
βj , σ

2Ip−1

)
, j = 1, . . . , w.
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2.2. UMVUE

According to the Blackwell-Lehman-Scheffé theorem, we have the UMVUE

(14)





σ̃2 = S⊥

g⊥
; g⊥ = n(r − 1)

Ψ̃j = Cj β̃j ; j = 1, . . . , w

for σ2 and for Ψj = Cjβj , j = 1, . . . , w. If Cj = I we have Ψj = βj and

Ψ̃j = β̃j , j = 1, . . . , w.

2.3. Tests of hypothesis and confidence intervals for σ2

We can use the statistic S⊥ ∼ σ2χ2
g⊥

to construct confidence intervals for

σ2. And, through the duality we can also obtain tests of hypothesis for the
null hypothesis

(15) H0 : σ2 = σ2
0 .

This hypothesis is rejected at a significance level q, if and only if σ2
0 is outside

the 1 − q level confidence interval.

2.4. Tests of hypothesis and confidence intervals for Ψj = Gjβj

The UMVUE for Ψj = Gjβj, j = 1, . . . , w, is Ψ̃j = Gjβ̃j, and we have

Ψ̃j ∼ N
(
Ψj, σ

2GjG
′
j

)

(i)

S⊥ ∼ σ2χ2
g⊥ ,

where Gj, j = 1, . . . , w, is a matrix whose line vectors are linearly indepen-
dent.

Moreover we have, see Mexia (1995),

U0
j = (Ψj − Ψ̃j)

′(GjG
′
j)

+(Ψj − Ψ̃j) ∼ σ2χ2
cj

(i)

S⊥ ∼ σ2χ2
g⊥ ,

with cj = car(Gj) = car(GjG
′
j), j = 1, . . . , w.
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So we have the pivot variable

(16) F
0
j =

g⊥

cj

U0
j

S⊥ ∼ Fcj ,g⊥, j = 1, . . . , w.

Thus, the 1 − q confidence ellipsoid for Ψj is

(17) (Ψj − Ψ̃j)
′(GjG

′
j)

−1(Ψj − Ψ̃j) ≤ cjf1−q,cj ,g⊥
S⊥

g⊥
, j = 1, . . . , w.

where f1−q,cj ,g⊥ is the quantil with probability 1− q from the F distribution

with cj and g⊥ degrees of freedom.

If we have to perform a test of hypothesis for the null hypothesis

(18) H0,j : Ψj = bj, j = 1, . . . , w,

we may use the duality property of F tests. So this hypothesis is rejected at
a significance level q, if and only if bj is outside the 1 − q level confidence
ellipsoid.

3. Random effects model

3.1. Model

The random effects model is

(19) Y = 1nYo +

w∑

j=1

B′
jβj ,

with n = pN . The vectors βj , j = 1, . . . , w have normal distribution with
null mean vector and covariance matrix σ2

1Ip−1, . . . , σ
2
wIp−1 and are inde-

pendents. Yo the general mean with mean vector µ and variance σ2
o .

As 1nB′
j = 0, j = 1, . . . , w,

(20)





1
pN/2

1′pN
Y = pN/2µ

BY = β, B = [B1, . . . ,Bw]′ ,

where β =
[
β′

1, . . . ,β
′
w

]′
.
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From the first equation on (20), µ is known and Y depends only of β

that have normal distribution with null mean vector and covariance matrix
diagonal by blocks, D

(
σ2

1Ip−1, . . . , σ
2
wIp−1

)
.

Then, the density probability function for β is

(21) n(z) =

exp

{
−

(
(Yo−µ)2

2σ2
o

+ 1
2

∑w
j=1

Sj

σ2

j

)}

(2π)(n−1)/2
∏w

j=1 σ
p−1
j

,

where

(22) Sj = ||Bjz||
2 = ||βj ||

2 ∼ σ2
j χ

2
p−1, j = 1, . . . , w,

since

(23) z′D
(
σ2Ip−1, . . . , σ

2
wIp−1

)−1
z =

w∑

j=1

1

σ2
j

‖Bjz‖
2 =

w∑

j=1

‖βj‖
2

σ2
j

.

According to the factorization theorem the S1, . . . , Sw will be sufficient
statistics. Moreover since the normal density belongs to the exponential
family and the parameter space contains an open set, the statistics Sj,
j = 1, . . . , w, and Yo will be complete.

According now to the Blackwell-Lehman-Scheffé theorem, the estima-
tors

(24) σ̃2
j =

Sj

p − 1
, j = 1, . . . , w,

are UMVUE for the σ2
j , j = 1, . . . , w.

3.2. Confidence intervals and tests of hypotheses for σ2
j

We can use the statistics Sj , j = 1, . . . , w, as pivot variables to obtain 1− q

confidence intervals for σ2
j . So we have

(25)

[
Sj

χp−1,1−q/2
;

Sj

χp−1,q/2

]
,

where χ2
p−1,q is the quantile for probability q of the chi-square distribution

with p − 1 degrees of freedmen.
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If we have to perform a test of hypothesis for the null hypothesis

(26) H0 : σ2 = σ2
0 ,

we may use the duality property of χ2 tests. Thus this hypothesis is rejected,
at a significance level q, if and only if σ2

0 is outside the 1− q level confidence
interval.

3.4. Confidence intervals for θj,l =
σ2

j

σ2

l
, j 6= l

Now we consider quotients of variance components.

With

(27) θj,l =
σ2

j

σ2
l

, j 6= l,

the test statistic for H0 : θj,l = b is

(28) Fj,l =
Sj

Sl
∼ θj,lFp−1,p−1, j 6= l.

If p > 3,

(29) E (Fj,l) = θj,l
p − 1

p − 3
, j 6= l.

And, according to the Blackwell-Lehman-Scheffé theorem, the estimators

(30) θ̃j,l =
p − 3

p − 1
Fj,l

are UMVUE for the θj,l, j 6= l.

Let F (· |k, h) be the central F distribution with k and h degrees of
freedmen and fk,h (q) the quantile with probability q from F (· |k, h). Since

(31) Pr

(
fp−1,p−1(q

′) ≤
Fj,l

θj,l
≤ fp−1,p−1(q

′′)

)
= q′′ − q′,

we obtain the bounds for the two-side confidence interval for θj,l, j 6= l,
given by
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(32) Pr

(
Fj,l

fp−1,p−1(q′′)
≤ θj,l ≤

Fj,l

fp−1,p−1(q′)

)
= q′′ − q′.

Similarly, we have the one-side confidence intervals

(33)





Pr
(
θj,l ≤

Fj,l

fp−1,p−1(q)

)
= 1 − q

Pr
(
θj,l ≥

Fj,l

fp−1,p−1(q)

)
= q.

These confidence intervals can be used to perform, through duality,
two-sided and one-sided tests of hypothesis for

(34) H0 : θj,l = θ0
j,l.

So these tests reject H0 for a significant level q when θ0
j,l is not covered by

the corresponding 1 − q confidence interval.

4. Final comments

As the considered tests (chi-square tests and F tests) have the property of
duality, it able us to unify the presentation for confidence intervals and the
rejection regions for the tests of hypotheses.

We intend to extend this treatment to mixed models thus completing
the study of prime basis factorial which up to now have been restricted to
the fixed effects models.
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