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1. DEFINITIONS AND NOTATION

In this paper stationary extended piecewise Markov processes on
@ general state space are considered. Analogical processes on a discrete
State space were introduced in [9] as a natural extension of piecewise
Tkov processes defined in [10].
~ For these processes, relations between the stationary probability
dlsh'ibuﬁon of the process and the stationary probability distributions
of some imbedded Markov chains are given. These relations are obtained
Y Using an extension of the process to a Markov process and contraction-
Seml-group theory.
Applications of the obtained results to an investigation of queueing
Systems with breakdown of the service line are also given in this paper.
_ Let us introduce the notation. obligatory in the whole paper: Z =
;a§~;°, ), R, = (0, ), By = [0, c0), #, and &, stand for the
G_algebras of Borel subsets of £, and %,, respectively, and %, denotes the
&ndge ra of all subsets of the set {0, 1}. Let & be a complete subset of #
let # be the s-algebra of Borel subsets of Z.
Let us assume that on the measurable space (%, #) there are given:
3 set of measurable Markov transition functions

. P y(t,w,A),t>0,6cZ,AcF}, a=0,1,ye%

g:rz;yfzr every a,t,®,y, P, ,(t,x,-) i3 a probability measure and, for
yA, P, (+,-, A)is a (B, x #?)-measurable function);

GVer;“;O stochastic kernels {Q,(x, d),2eZ,4e F}, a =0,1 (ie., for

is an 9_’ Ty Qq(w, -) is a probability measure and, for every a, 4, Q,(-, A)
“measurable function); .

thata Set of probability measures {#a,y(C), C € By}, a = 0,1, y € Z, such
’ for OVery v, nu’l,u({o}) — 0.

probanG;ﬁinition 1. A stochastic process {X(t),t >0} defined on the
'ty space (2, o, Pr), valued in the state space (%, &), whose

LY
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trajectories are right-hand continuous functions and for which the left-
hand limits exist is said to be an extended piecewise Markov process if the
following conditions (a)-(d) are fulfilled :

(a) There exists a sequence of random variables 0 = 7, < 7y, <7,
< 73 < ... defined on (2, o, Pr), valued in (%,, %,), such that the process

{X(t)772m+a<t<72m+a+1}’ “=0’11 m=0711'°°7

is a homogeneous Markov process with the transition function P, , (¢, #, 4),
dependent on @ and on the condition {X(7y,.q4) = ¥}-

(b) At the moments v,,,,, ¢ =0,1, m =0,1,..., for which
Tom+a 7 Tamias1 RO Process changes the state jumping with a transition
probability @,_,(x, 4).

(¢) At the moments 7,,, m =0,1,..., for which v,, = 7,,,, the
process changes the state jumping with a transition probability equal to

[ @, @)@y, 4).
x

(d) For every a = 0,1 and m =0,1,..., u,,(C) is the probability
measure of the distance between v,,,,,, and v,,.,, dependent on @
and on the condition {X(7,,,,) = y}.

The moments ,,,,,, ¢« =0,1, m = 0,1,..., are called regenerative
moments of the process and the intervals ,, <t < z,,,, are called Marko-
vian iniervals. Changes of the state of the process in the interval r,, < ?
< Ty are called Markovian transitions and changes of the state at the
regenerative moments are called regenerative transitions.

Let X;,, m =1,2,..., denote the state of the process {X(¢), > 0}
at the moment 7,, just before the last regenerative transition. Consider
four sequences of random variables:

{X.z‘m_a,m =1,2,.0.}, {X(tamya)y m =0,1,...}, a=0,1.

It is easy to see that they form Markov chains, since t,,,,,,6 =0, 1,
m = 0,1, ..., are regenerative moments of the process {X(t), t > 0}.

Assume that there exists a probability measure N, being invarjant
for the chain {X;,, m =1, 2,...}. Then it is easy to find invariant meas-
ures Ni, N¢, Ni for the chains

{Xomorym =1,2,...}, {X(1,,), m =0,1,...},
{X(Tam41)y m =0,1,...},
respectively.

In the sequel of this paper we find relations between the stationary
probability distribution of the process {X(¢), ¢ > 0} and the probability
measures N;, N}, a = 0, 1. Sufficient conditions for the ergodicity of
Markov chains on a general state space are given in [13].



Markov processes 177
2. EXTENDED MARKOV PROCESS

Let {X(t),t> 0} be an extended piecewise Markov process with
regenerative moments {r,,,m =0,1,...}. Assume that

supz,, = +oo Pr-almost everywhere
m=0

and define the following processes related to the process {X(t),?>0}:
Y(t) = X (Tama)s
Z() = Tom+atr1— 1y Tamta S T< Tompas1n6=0,1,m=0,1,...
a(t) =a,

The process {X (t), t > 0} is called a semi- Markov process, {Z(t), t > 0}

a TeszIzlual -time process, and {a(t), t > 0} a breakdown process.
et

T =2xR, x{0,1}, Z=(s,9,2,i), - & = (,,2,1),
U1 = (@1, Y1y 21,4), By = (B, By, 21,)), By = (®2y Y2y 22, @),

By &y Ty By, By X, &= (2,9,2)cXXR,,
§=92x.@+x331, A =AxBxCx{a}e#,
_ X(t) = (X(1), X (1), Z(1), a(),
P(t,z,d) =Pr(X(t)ed | X(0) =7, t>0.
Let us define the transition probabilities
W) I(t, %, ) = Py, (t, 2, A)Ip9) Lo34() 0y 30,

Where 8 is Kronecker’s delta, €1 — {e+1: ¢eC}, I, is the indicator
of the set 4,

2) Sl(i’ 4 X Oy x {ih = 6;—:‘,1 fPi,u(zy x, ds,) fQi(su da’l)/"j,zl(cﬂy
x A

(3) Sk(E,A X01><02>< eee X CkX{j}) = 5Q(k,i),,' f—Pi,u(z’m7 dsl)x
z

X k-2
fQi(sl’ f:ul i,z dzl ” f e(r,i),z, zr’ Ly d'8r+1)

r=1

er(f 1)(sr+l’dwr+l f:u'e(r+l t)],mr+l(dzr+l) fpx-j Tp_1 (B—1y Bp—1y 08;) X
Cr+1

Ale‘j 8k k)ﬂj,zk(ok)’ ,j=0,1,k=2,3,..,

de g, Cied, for 1 =1, 2,

y k-1, C,e#,, and o(r, ) equals ¢ for
€ven » gnq equals 1 y Uk +9 e\,

-1 for odd 7.
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THEOREM 1. The process {X(t),t>0} is a homogeneous Markov
process with transition probabilities P(t, %, A) satisfying

(4) P(t,z,4) =1, Z)-l-I(o (2 f [8:(Z, dzy X d2y X {j}) +

.Q'x92+
+8:(%, dz, X {0} x d2; X {j})]_P(t—z"&"n Z)’

where TI(t,
form of the

(5)

A) are tramsition probabilities defined by (1). The. eaplioit
robabilities P(t, x, A) may be expressed by the formula

) (t z, A)+

z,
e pro
P, z,
oo 1
2‘2 [ 8(E, de,xdz, % ... Xdz % {§}) %

k1
XAy

9

XIon(+2+ ... +zk—l)ﬁ(t_z_zl — oo =215 (@1 D1y 2y J)s Z)’
t>0,%e%, Ade F,
where Sy, k> 1, are transition probabilities defined by (2) and (3).
Proof. We prove formula (5). Let, for s, ¢ > 0,

ri(s) = max{m: 7, <8}, 7(s,8+1) =r,(s+1t)—7r,(s).
m=1

Hence we have
ZPr (s+1) eAnr(s s+t) =k| X(s) =3).

If r(s,s+t) = 0, then in the interval (s, s +¢] there are no regen-
erative moments. Therefore, we have

Pr(X(s+t)e Anr(s,s+t) =0 | X(s) = z) = II(t, T, 4).

If r(s,8+1%) = k> 1, then in the interval (s, s+t] there are exactly
k regenerative moments
--S<Tl<fz+1< <‘rl+k 1S s+t<Tl+k

Hence we have

Pr(X(s+t)e Anr(s,s+t) =k | X(s) = %)

1
= Z [ 8u(@ doyxdey x ... xdg X {§P Lo g(e+2+ ... +21) X

Xﬁ(t—z—-zl— oo =21y (B1,y By 2, J), Z)r
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where

fSk(:?,Aandzlx e XAz X O x {j})

a")“l ~
=Pr(X(Tl+k_1)EAXBX0kX{j}|X(3)=—z-).
Formula (4) can be obtained analogously.

The transition probabilities P and IT defined on the space (E, F)

induce two semi-groups of contraction operators {#, t > 0} and {7, t > 0}
defined by the formulas

P (F) = [ Maz)P(t,z, 4), = M) = [H@, =, 4),
z z

t>0, de 7,

Where M is an arbitrary probability measure on the space (%, F)
Men(x,7) = u).

the sequel we apply theorems from contraction-semi-group theory
d in [3], p. 59-65. To do this we introduce w-weak convergence

in the set of probability measures .#. Denote by %,(%) the set of all real-
valued continuous functions vanishing at infinity,

Iim f(z) =0, fe%(%),

T+ 00

include

defined on 2. Let Go = Co(TEX R +). For the conjugate space %: by the

Riesz theorem (see [12], p. 312) we have 4; o #. Thus we may define
the @-weak convergence as follows: _

_ Definition 2. The sequence of measures M, e.#, n =1,2,.
18 w-weakly convergent to the measure i .4,

o-lim M, (4) = M(4d), Ade&F,

n—00

ey

if for any arbitrary function f e @0 and for every ¢ = 0,1 we have
lim [ M,d5)f@ = [ M@&f@).
N—>00 xzxg_F .Q‘zx.@l’_i_

For ge

mi-groups of contraction operators {5,, t>0} and {7, t> 0}
denote by

«(P) and «(IT) the infinitesimal operators, by £,(P) and
(), 2> 0, the resolvents, and by #(P) and #(IT) the potentials, in the
Sense of w-weak convergence (see [3], p. 59-65). Let us introduce the
following notation for the kernels of resolvents:

Pi(z, 4) = fe‘“f’(t, 7, Dyat, Iz, d) = fe——i.tl_j(t, z, A)dt,
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Multiplying (5) by e *
lowing corollary:
COROLLARY 1. The kernels of resolvents P, (%, A) and IT,(z, A) satisfy

the equality
(6)

and integrating over £, we obtain the fol-

Z
where
Sz, 4) = Z f exp[ —A(z+2,+ 2+ ... +2,_1)]X
k=1 gk 1

X 8, (%, ANB X dz; X ... Xdz_, X C X {a}), Ted, de#.

3. STATIONARY EXTENDED MARKOV PROCESS

We investigate now the stationary Markov process
{X(@0),1>0} = {(X(), X(1),Z(t), a(t)), 1> 0}

defined in section 2 (for the definition of the stationary stochastic process
see [4], p. 165). The stationary probability distribution N (4) = Pr(X (¢) e 4)
is an invariant measure for the semi-group of operators {97,, t >0},
i.e. ZN(4) = N(4), 4 e &, for every ¢t > 0. We assume that there exists

a unique invariant measure for the semi-group {9—’,, t> 0}.
~ Let us introduce the following conditions (i)-(iv):

(i) For @ = 0, 1 there exist limits

w-limN(A x B | z,a) = Ni(4 x B),
AN
where

NAXxB|z,a) =Pr(X(t)e A, Y(t) eB|Z(t)<z,all) = a).
(ii) For every f e %,(%"), g € 4,(#,), and a = 0,1 we have

lim sup
INO z,yed

fPau t, @, dwy)f (5, y) — f(=, ?/)I =0,

limsup| [ gy q(de) (g(z—1)—g(2)) | = 0.
£y

N0 ze¥
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(iii) For every fe %,, « = 0,1, and z e & the functions
wa(@) = [Qu(@, dy) [ ptay(d2)f(y,9,2),
x 9?_|_

w(@) = [Q(m, @) o,y ({0}) [Qo(y,ds) [y ,(de)f(s, s, 2)
x z R,

belong to @,(2 ).

(iv) There exist functions e,(t), ¢ >0, lime,(t) =0, & = 0, 1, such
that 10 :

SUD g, (0, t1) < &,(2).

Under these conditions we prove the following theorem:
THEOREM 2. If N is a unique invariant probability measure for the

semi-group of operators {5“ t> 0} and if conditions (i)-(iv) are fulfilled,

then

(a) the measure N satisfies the equations
(7)

S (II)N(A)+vN}(AxBxC) =0, a=0,1,
where

= 1
a(4dxBx() =AfN;(dm)IB(w)ua,,-(0), P Z fN;*(ds)ma,n

Mg,y = ft,ua,,,(dt), ye%¥, A,Be¥#, O(Ce4,,
_ 24
Drovideq v < oo;

m (b) the marginal measurés N (A) = NAXZ xR, X {a}) and the
asures NI fulfil the relations

(8)

Nald) = [N} (dw) fPa,x(t,m’A)”a.z((ti ))dt, a=0,1, Ae#F,
x Ry

Provided the righs-hand side of (8) is finite;

; ‘(0) the marginal measures v,(C) = N(%?x C x {a}) are absolutely
Mbinuous and we have
(9)

"0 = [hy(e)dz, a=0,1, where hy(e) = V& (@) pz (25 00)).-

c x

Before we start the proof of theorem 2, we prove four lemmas.
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LEMMA 1. If condition (ii) is fulfilled, then for every measure M e M
we have
(10) wlimz M (A) = M(4), AdeF or M ec2(I).

t\O
Proof. It suffices to show that for arbitrary = €eZ and @ = 0,1

w-limII(t, %, -) = I, (Z).
%0

Then the lemma follows frorn Lebesgue’s theorem on bounded con-
vergence.

It follows from (1) that the extended measure II(t, %, +) is a product
measure. In that case, w-weak convergence IT(t,Z, -) is equivalent to
the w-weak convergence of measures P, (t,#,-)I,(y) and I.,(?)
(see [2], p 21). Hence it suffices to show that for every function f € €,(2?)
we have

lim [P, (¢, @, du) [ I,(9)f(u,8) = imP,,(t, @, du)f(u, y) = f(z,y).
- P £\0
This fact follows immediately from (ii).
LEMMA 2. If condition (ii) is fulfilled and if for every measure M c A
there ewists

S

w-lim , dAe&F or, equivalently, M e 2(P),

0

#,M(4)—-M(4
(4

then there exists
7 M(A)—M(A
1) o-lim A M)
10 (4

Proof. By theresolvent theorem ([3], p. 65, theorem 1,7), if M € 2(P)
then there exists the measure

M, =AM —o (P)M € £ (P)
such that M = %,(P)M,, 4> 0. Hence by (6) we have
M\(4) = [ M,dz)P,(z, 4)
z

, Ae&F or, equivalently, M € o(IT).

Since the resolvent %, (IT) is a one-to-one mapping of £ (IT) on 2(IT),
it suffices to show that the measures M, and

M, (4) = [ My(d7)8,(Z, ), +>0, de#,
T

belong to Z(II).
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This fact follows from (10).
. LemMA 3. If condition (ii) is fulfilled, then for every fe ¥, and
b a =0,1 we have

(12) limsup[ fpi,z(dz) f II(t, @, dz,)f (&) —
INO xe¥ gp+ g‘zxﬂ_*_

— 80 [Miu(d)f(@,2,2)] =0.
.+
Proof. Let f(3) = g(z, y)h(2), g € Go(Z?), h e ¥\ (Z,). By (ii) for
€very ¢ > 0 and sufficiently small ¢ we have
Sup 'a Jmolde) [ I, &, d5)g(@, y)hie) —
+

ze | xR
X
+

~8ua9(®@, @) [ yg(du)h(w)|
2y

= Siasup| [ (d)h(z—1) [P (t,0,du)g(u,0)—g(@,2) [ p;(d)h(z)
xeX Q_'_ F a+

S esup |h(t)| ¢ sup |g(z, ¥)|.
teyt+

(z,v)e2?
Since f?., is generated by functions of the form f(@) = g(=, y)h(2)
(See [12], p. 117), the proof is completed.
LEMMa 4. If condition (ii) is fulfilled, then there ewists ¢ > O such that

1 /
(13) v((0,2) = Y F(&*x(0,t]x{a}) <et, >0.

a=0

Proof. By (11) we have N € 2(I). Hence, by the resolvent theorem
(see [3], p. _65), there exists a measure M = AN —o(IT)N such that
=%,(II)M, 2> 0. Thus we have

v(0) = [ [ p(de)Ip,(2)dt,
Where

p(C) = ) M(*xCx{i}), Ced,.

In Particular, we have
»((0,t]) < ¢*(#,)t, where g+ = max(0, ).

Proof of theorem 2. For the invariant probability measure N
Ve have

o (P)N(4) = o-lim =0, de#.
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Hence, using formula (4), we obtain

(14) o-lim TN () —N(A) +
£0 t
1 - ;
+w-hm—t- f I(O t] f [Sl(x7 dml X dz] X {]})+
o0 o IR,

+ 8, (%, du; x {0} x de, X {j})]1P(t—2, @, A) = 0.

It follows from lemma 2 that N € 2(IT ), therefore the first expression

on the left-hand side of (14) exists and equals &/ (IT)N(4), 4 € F
Now we show that in (14) we may replace the expression P(t—z, @,, 4)

by the expression IT (t—z, @;, A). Indeed, for every function f € %,, by (4),
(iv), and (13), we have

1 — _ . _
7fzv Z) L0 () f [8,(F, da, X dey X {j}) + 82(F, 4wy x {0} X
@'- .'l'xé?_l_

@ x (Y1 [ [Plt—2, o, d5) —I(t—2, &, d5,)1f(@)
IR,

1 r_
< _sw 1f@)7 [F@@I@ [ [8:(5dmx (0, t—21x {5} +
ZoeXIx R z 22xRm,
+ 8, (%, dwy x {0} x (0, t—2]1 % {j})]

< sup  [f(@,)|2¢e(t) -0 for t\O,
;26.%‘2)(@4_
where
e(t) = maxeg(t), t=0.

t=0,1

Using (12) and (13) for every ¢ > 0 and sufficiently small ¢ we have

1
@) 7 [ F@@Ioq@ [Piylea, ds) [ Quls, doysup f mi gy (d1) X
7 T z

£51 eZ

X f ﬁ(t_z7 (mlywuzl;l"'i)’dﬁz)f(‘;’z)"
£“2x9?+

—01_iq f tr—i,z, (@21) f (%1, %1, 21)

2y

< ¢e.
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From (iii) and (ii) we obtain

1 ¢
1
6) = ffﬁ(di)é ., Sup
1-1,a
tgo 2

x,YeX

[ Pistes @, d) [ Quts, da)
¥ %

X f”l—i,zl(dzl)f(ml7 By, 2;) — f@i(wy dz,) f ﬂl—i,zl(dzl)f(wu @y, 21) | < 20e.
2 & Ry

Let us assume for the moment that

(17) 7,(0) = fha(z)dz and limk,(2) =v,, @ =0,1.
&

NI AW )

Then using (15), (16), (17), (i), and (iii) we obtain

1o/
111\1‘101?2 f flV(dE) fPi,v(z’ @, 43,) fQi(sn ;) f.u'l—i,:cl(dzl) X
=00 22 & & @,

X f I_I(t“za(mlaml,zn l—i),d-’fz)f(éz)
TIxRy

=0 [ Tl oldoxdy) [Qua(®, @) [ pos, @)f(@) 31, 7).
&2 x 2,

Analogously, we may compute the last limit of (14).
Hence using the notation N*(4) = N*(AXxZ), a =0,1, we obtain
¢ following form of equation (14):

U8 AN () o, [N (d5) [ Queals, ) I5(3) ro(O) +
X A

0 [ N8) [ Quls, du) 00D [ Q1o d0)Ip(@)pz(0) = 0.
z A

- lIf the measure M e . fulfils the equation o (P)M = 0, then by the
0

tha,tvent theorem there exists the probability .measure M, e #(P) such
M =%,P)M, and M,= M-« P)M.

. Then we have i — #,(P)M and it suffices for the measure to be
Dvariant for the semi-group {5‘,, t> 0} (see [1]). By the assumption,

a‘:‘e exists g unique invariant measure N, thus the equation o (P)M = 0
a

fulfi unique solution. We show that every solution of equation (18)
iIs assumption (17); therefore, this assumption is always fulfilled.

3 -
Zastosow. Matem, 16.2
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By the potential theorem (see [3], p. 65, theorem 1,7’), we have
v;((z, ) = vy [ Ni_i(ds) [@_i(s,d®) [ pys((x+1, co))dt+
% x Ry

+o; [ NF(ds) [Qils, du)p_su({0}) [@_slw,d®) [ pig((z+1, o0))t.
x x K3 @,

Hgnce we obtain the relation

(19) v, = limho(2) = v, [ Ni(ds) [Qu(s, d0)poo(R).
x x

FAN]

By the definitions of the measures N; and N, we have the relations

(20)  N3(A) [Ni(ds) [@uls, dm) o o(2,) +
x Z

+ [ [ N3 (ds)Qu(s, do)ue,.({0}) = N7 (4),
A X

Ni(4) = N; (4).
Using (19), (20), and the definition of the measures N} we have

(21) 1= o [N (@ds)me,+ [N (ds)m, ).
x x

Substituting (19) into (18) and using (20) and (21) we obtain (7).
Formulas (8) and (9) follow immediately from the potential theorem.

The following theorem gives the relations between the marginal
measure N,(4 x B) = N(A x Bx %, x {a}) and the measures N; and N,
a=20,1.

THEOREM 3. If N is a unique probability measure for the semi-group
of ‘operators {#;,t = 0} and if conditions (i)-(iv) are fulfilled, then the meas-
ures N,y N, and N satisfy the relations

(22) A (NN, (AXZ) =0 (N_,(4)—NS(4)), a=0,1,
where I (t, (x,y,i), AxBx{a}) =II(t, %, AXBX%, x{a}), &, i =0,1,
120, v,yeZ, A,Be &.

Proof. Let fe %, and f(%) = h(x, y). Then we have

1 _ _ -
@) 7 [Faw [ Dz dx @)@ -5 [ F@x e
z

TixR, 2Ry

fﬁ(dmxdy ><3i’+x{a})[fPa’,,(t,x,ds)h(s,y)—h(w,y)]—
Z2 s

1
t

1 -
7wfz‘N(da;xdyx(O,t]><{a,})ii[Pa',,(t,a;,ds)h(s,:l/).
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By assumption (i) and by (13), for every &> 0 there exists 8 > 0
such that for t < 6 we have

1 r_

7 fN(da; X dy x (0, t] x {a}) . fPM(t, x,ds)h(s,y)—h(z, y)| < ce.
2 &
Therefore, from (i) and (9) we obtain

1
(24) hm7, N (dz x dy x (0, t] x {a}) fPa,,,(t,w,dS)h(s,y)
x

a2

=0 [ N} (@0)pon(,) [ Hildo x dy)h(a, 9).
T 2

The limit of the left-hand side of (23) for ¢\ 0 exists by lemma 2
:Jld quals o (IT)N(A x BXx#, x {a}), hence by (24) there exists also
he 11m~1t of the first expression on the right-hand side of (23) and it equals
#(I)N,. Using (7) we obtain

@) AT (AXB) = v [ N} (d0) g (#,) Fo(4 x B)—
x

—v [ N} (dn) Ip(®) pa,z(2.)-
A
By the definitions of the measures §*(4 x B) and N (4) we have
No(AXZ) [ N} (@0) po,o () + [ N (@) po,2({0}) = Ny (4),
x A

NI (A x &) = Ny (4).

Hence and from (25) we obtain (22).

Omlllgthe case of a discrete state space, by theorem 3 we obtain theorem 1
is g Ee]. If M0,4({0}) = 1 for every y € &, then the process {X(t),-t> 0}
rela,tﬁmcewlse Markov process and from theorems 2 and 3 we obtain t.I.le
also th 8 glveg In .[7]. In particular, for a discrete state space we obtain

e relations included in [10] and [6].

4. APPLICATIONS

Now
the px

quene

We give some applications of the obtained results. We consider

/1 queue with breakdown of the service line and the MZX/G/1
With Pre-emptive priority.
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We denote by small letters the Laplace-Stieltjes transforms of distri-
bution functions and by the symbol ~ we denote the residual probability
distribution, for example

[ (1=F(w)du

_ —8x - __ (0,7]
fls) = J e~**dF(x), F(x) = =0
.|..

4.1. The system M*/@/1 with breakdown of the service line. Consider
a single server system in which the input stream is a batched Poissonian
stream with intensity A and with probability distribution {p;,j = 1,2, ...}
of the number of items in a batch. Consecutive service times are indepen-
dent random variables with identical, continuous distribution functions
G(y) and with a finite expected value. Denote by H (y) the distribution
function of the batch service time; then we have

H(y) = D 9,6y, >0,
i=1

where G*/(y), j = 1,2, ..., denotes the j-fold convolution of the distri-
bution function G(y). Additionally, we assume that both the breakdown
times of the service line and its working times are independent random
variables with distribution functions Fy(y) and F,(y), and with finite
expected values m, and m,, respectively. The item with interrupted ser-
vice continues its service after repairing the line.

In [5], p. 270-280, the steady-state conditions and probability distri-
butions of the busy period of systems with breakdowns were investigated-
In that paper the Laplace-Stieltjes transform of the distribution functio?
of the virtual waiting time was given under the assumption that th.e
breakdown may occur only in the idle period of the system or at any arbl’
trary moment but with an exponential probability distribution of working
time. The system M /G /1 with breakdown of the service line was consider
ed also in [8], p. 85-101, and the Laplace-Stieltjes transform of the wait
ing time was there given.

In this section we give relations between the distribution function of
the virtual waiting time and the distribution functions of the waiting
time in breakdown and repair moments.

Let X(t) denote the virtual waiting time at the moment ¢, and assum®
right-hand continuity of this process.

It is easy to remark that the process {X (), t > 0}, valued in (%,, Bo)
is an extended piecewise Markov process. The consecutive moments ¢
breakdowns and repairs of the service line are regenerative moments ¢
this process. In the working period of the line, {X (), 734 << 1zm+1}
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iy a Markov process with transition probabilities given by the formulas
(see [11], p. 79)

(26) Py(t,,[0,y]) = K(t+y—=,t)— f Py (t —u, x, {0})dK (u+y, u),
[0,i—2)

t,z,y=>0,
where
(27) K(y,t) = 2 e'“%ﬁﬂ*"(y),
(28) aK (14, 1) = Zﬁ o E g e +y),
(29) Py(t, @, {0}) = S‘ e-“(—“z;—_l f A(t—w)AH*™ (u)
n—0 [0,t—z)

with H* (y) = Iip o0 (¥).

In the breakdown period of the service line, {X (t), ¢t > 0} is a Markov
Process with transition probabilities given by the formula

(30) Py(t,»,[0,y]) = KE(y—a,1), t,2,y>0.
Regenerative transitions are identity transitions, hence we have
Q(®,4) =I,(x), >0, Adec%, a=0,1.

Let us introduce the shorter notation
No(y) = N, ([0,9]), N.(y) =Nz([0,9), &=0,1.

. THEOREM 4. If in the system MX|G[1, with breakdown of the service
line, the measure N is the stationary probability distribution for the extended

a_"ko'” Process {X (1), > 0} and assumption (i) is fulfilled, then the distri-
butions N o) and N7 (y), & = 0, 1, satisfy the relations

(31)

(32) No(y) =.’;_Z f [Ny (y—a)— N7 (y —)14H*" (@),
' n=0 [0,y]

B M) = - -0 Y ") +

= 1 1 . A
oMo | [—N;(y—w)——N;(y—w)]d(ﬂ)*"(w),
ay L2
n=0 [0,y
1 A 1

¥=0 = = - = 1—H(u))du

»oy T Mot my, @ P g{( () du,
1
— = [(1—N;7 (@)dw, i=0,1.
& g
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Proof. We apply theorem 3 in the proof, thus we verify assumptions
(ii)-(iv) of this theorem. Assumptions: (iii) and (iv) are fulfilled by formula
(31) and in view of the fact that the distribution functions of distances
between consecutive regenerative moments are not dependent on the state
of the process {X (), > 0} at the regenerative moment. Since the transi-
tion probabilities defined by formulas (26)-(30) also do not depend on
the state of the process {X (), t > 0} at the regencrative moment, to verify
assumption (ii) it is sufficient to show that for any arbitrary function
J € €,(%,) the expression

[f)P.(t, 2, dy), a=0,1,
Ry

for ¢t 0 tends to f(») uniformly on %,.

Let us denote by 4(¢, #, y) every expression which for #N0 tends to
zero uniformly with respect to z, .

For a = 0 we have

[1@)Po(t, @, @y) = f(@) Lo (@) e+ A(t, 8) > (@) a8 T30
%o

uniformly on %,.
For ¢ = 1 we show now that, for y > 0 and # > 0,
f -Pl(t_“7 &, {0})dK(u+y’ u) = A(ta %, Y).
[0,t—x)
Using formulas (27)-(29) we obtain
84) [ Pi(t—u,2, {0})dK (uty,u) =e* [ dI4ut+y)+
[0,t=z) [0,6—2)
+e [ [ A—u—0)aH(0)) d, I (u+y)+
[o,t—2) [0,t—u—x)
+e M fﬂuduH(u-l—y)—l—o(t).
[0,t—x)
The first two components on the right-hand side of (34) are equal
to zero, the third one is A(¢, x, y). Hence for a = 1 we have

[f@)Pa(t, 3, dy) = e Hf(@—1),)+ A2, @) > f(@)  as £NO
o

uniformly on #,, where (a), denotes maaf(a, 0).
In order to use (22) we compute o/ (I[)N,(y), ¥ = 0, a = 0, 1. Hence
we have

ﬁ(ta(m’i)’ [O7y]><{a'}) = P;(t, », [0, ¥]) d; 4, a,1=0,1, »,y,1>0.
Then we obtain

(35)  AI)Noly) = —aN,(y)+4 [H(y—o)aN,(»), y>0.
#o
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From (34), by the continuity of the distribution function H (),
it follows that

[ Pit—u,, (0)aK (u+y,u) =o(t), y>0,s>0.

lont_i)
Hence we have

(36) d(ﬁ)z\my)=%N1<y>—w1(y)+a [Bg—o @, y>o0.
N ‘

By (35), (36), and (22) we have

B7)  —AN,(y)+4 [H(y—o)aN,(@) = o[N7 () —N5 ()], y>0,
, Ry
(38)

d
Ty Yi0) =28, (9) + 2 fH(y—w)le(w) — o[Ny (y)— N7 ()], y>o.
Ry

Using Laplace-Stieltjes transforms in (37) and (38), for Res > 0
We obtain

39 _ oDni (9)—ni (a)]

) e TR Y

2 _ olng (&) =7 (8)] +oN3(0)
Ho () = s—A[L—h(s)]

Applying formula, (13) we compute the constant N,(0) and we have

(41) N,(0) = ;No“ (0) [L —fo(4)].

Taking in (40) the limit for s\0 we compute the constant N,(0).
We have

(42) N,(0) = 1—(1L—v)o.

. Inversion of the Laplace-Stieltjes transforms in formulas (39)-(42)
Sives (32) and (33).
-Applying theorem 2 (b) we obtain the following corollary:

CoroLLARY 2. The distribution functions N,(y) and N (y), « =0, 1,
T Y>0 fulfil the relations

43)  Ny(y) = o f e‘“(l—Fo(t))Z (A6 f H*(y —2)aN; (0)dt,
)

n!
(44) Ni(y) =o f(l.—Fl(t)) fPl(t,w, [0, y])aNT (»)dt.
R, 2,
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Relation (44) is practically not very useful because of the compli-
cated form of the transition probabilities P, (¢, », [0, ¥]).

4.2. The MX |G [1 system with pre-emptive priority. Formulas (32), (33),
(43), and (44) become effective if we find the form of the distribution funec-
tion N, (y) for the Markov chain imbedded at the breakdown moments
of the service line. In every particular case this is possible, since the chain
is completely described, but numerical difficulties may arise. Now we give
an example of a system in which the Laplace-Stieltjes transform =, (s)
of the distribution function may be calculated effectively.

Let 1, and A be intensities of the batched Poissonian input stream
of the calls of priority and non-priority items to the system, respective-
ly, and let {¢;,j = 1,2,...} and {p;,j =1,2,...} be probability distri-
butions of the number of items in a batch of priority and non-priority
items, respectively. We assume that consecutive services of items are
independent random variables with identical, continuous distribution
functions G,(y) and G(y) and with finite expected values. In the consid-
ered system we analyze the virtual waiting time {X(¢),{> 0} of non-
priority items.

The described system may be considered as the system MX/G/1
with breakdown of the line caused by priority items in the system. By
such a treatment the distribution function of the working time of the
line is equal to 1 —e~ %Y, y > 0, and the distribution function of the break-
down time of the line Fy(y) is the well-known distribution function of
the busy period in the system M /G/1 (see [11], p. 70) in which the input
stream is Poissonian with intensity A, and which has the distribution
function of the service line of the form

D g&iy), y=0.
i=1

Thus relations (32), (33), (43), and (44) may be applied also to this
system. Now we find the Laplace-Stieltjes transform ng (s).

Denote by {p;%, j =0,1,...} the probability distribution of the
number of non-priority items in ¢ batches, ¢ = 0,1, ..., where p;* = §; 0,
and let

i

MY .
w; = fe-“dFo(t)Z—(Tp;?, j=0,

H# i=0

Ap;+ Ay u;

w; =23 V0T >1
T A A (L —u,)’ ’

Hyy) = ) wG9(y), Hiy) =D w@(y), y>0.
j=0 j=1
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THEOREM 5. In the system MX/G/L with pre-emptive priority the
L“Place-Stieltjes transform ng () of the distribution function Ny (y) of the

Stationary waiting time at the priority-item-arrival moments is given by the
Jormula

(45) e (s) %’(8)[8—1(113(2)(18)—8(1_9_9“) , Res>0,
Where
ey (L—p1)8 Ak 1 1—H;(u))du
") 3—21(1*”{1(3))’ % .“z" H ye'{( ' )

"; = 0’1, 11 = 1+ZO(1—’£&0).

Proof. Introduce a new time variable ¢’ contracting to points the
busy periods of the line with service of priority items. At the moment ¢’
he input stream of non-priority items is a mixture of both a batched
Poissonian input stream with intensity 4 and with the probability distri-
bution {p;,j =1,2,.. .} of the number of items in a batch and of a batch-
e(.l Poissonian input stream with intensity 1, and with the probability
distribugion {u;,j = 0,1, ...} of the number of items in a batch. Omitting
®mpty batches we obtain a batched Poissonian input stream with intensity 4,
20d with the probability distribution {w;,j =1,2,...}.

. In order to investigate the probability distribution of the stationary
Virtual Waiting time {X’(¢), ¢’ > 0}, the considered system may be treated
% the system 1/@/1 with a Poissonian input stream with intensity i,
0d with the distribution function of the service time H,(y). Denoting
by v "(y) the distribution function of the virtual waiting time, we have
(8ee [11], p. 44, or [5], p. 243)

(1—o04)8
8$—Ay (1_7"1(3)) ’

’

n'(s) =

Res> 0.

, Now we find the relation between transforms g (s) and #»’(s). Let
{Tm’ m=09,1, ...} denote the sequence of consecutive arrivals of the
batehes in ‘the hatched Poissonian input stream with intensity 4, and
;’;’“’h the probability distribution {#;,j =0,1,...} of the number of

IS in g bateh, Tt is easy to notice that the equality

Pr(X'(z,—0)<y) =N;(y), =0,

holds, T

Process {X'(t'),t' > 0} is a piecewise Markov process with
Tegener

ative moments {z’,, m = 0,1, ...} (see [7]). In the intervals 7, < #
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< Ty m =0,1,..., the process {X'(¢'),t' >0} is a Markov process
with transition probabilities given by formulas (26)-(29). Applying the-
orem 6 from [7], analogous to theorem 3 from this paper, we obtain the
relation

(46)

(1]
(2]
(3]
[4]
(5]
(6]
[7]
(8]
(9]
[10]
[11]

[12]
[13]

a _, , ,
2 Y0¥ (y)+z%fﬂ(y—w>dl~r (@)
= n(¥ - [Hy-2av; @), y>o.
Ry

Using the Laplace-Stieltjes transform in (46) we obtain (45).
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MARIA JANKIEWICZ (Wroclaw)

UOGOLNIONE PROCESY PRZEDZIALAMI MARKOWA W CZASIE CIAGLYM

STRESZCZENIE

W pracy [9] zostaly wprowadzone uogélnione procesy przedziatami Markowa
Z dyskretna przestrzenia stan6éw.

W tej pracy bada sie uogélnione procesy przedzialami Markowa z ogélng prze-
Strzenis stanéw oraz pewne ich zastosowania. Stosujac metode rozszerzania procesu
0 procesu Markowa oraz twierdzenia teorii pélgrup operatoréw kontrakeji, podaje
81 zwigzki miedzy stacjonarnym rozkladem prawdopodobierstwa stanéw. procesu
1 stacjonarnymi rozkladami pewnych wlozonych lanicuchéw Markowa.



