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b s 1. Introduction and power bounds. Let X, ..., X, and Y,, ..., ¥,
© Independent random samples from absolutely continuous distributions #
afd q, respectively. Several standard tests of the hypothesis H: F(w)
= @(x) against the two-sided alternatives A: G(x) = F(z—0), 6 # 0,
:;e defined in terms of F. If, however, the true distributions of X and ¥
the ¥(2) and ¥ (x — 0), respectively, with ¥ not necessarily equal to F, then
relese: Standard tests are mo longer optimal. Pitman ARE (asymptotic
Wif;We efficiency) will be used to compare the Cramér - von Miges test
i Standard optimal tests. In this section, we shall present the nota-
tes:;l and derive bounds for the limiting power of the Cramér - von Mises
and an expression for the limiting power of the Neyman test.

Let N —=m+n, A =m/N, 1—1 = n/N. We denote the empirical

d. . -

reﬁ.,s ((.hstrlbution functions) of the X’s and Y’s by F,(z) and G, (@),

tistI;eetwely. The tests to be considered are based on the following sta-
C8:

(i) The Cramér - von Mises statistic

mn

- £ (F (@) — G, (@))2dH y (),

W
here:.HN(a;) = AF,(x)+ (1 —2)G, ().
(i) The rank statistic

N
T* = ) Blg(V¥)1Z;,
Wh j=1
z, :re V9 ig the j-th order statistic in the joint sample of X’s and X’s,
= qu‘flﬂ zero or one according to whether V¥) is X or Y, and g(=)
test;];(a})/f (z), f* being the derivative of f, the density of F. Two-tailed
a%ed on T™ are locally most powerful among unbiased rank tests.
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(iii) The Neyman or c,-statistic

n m
(1.1) T =1 9(Y)—(1—12) D) g(Xy),
j=1 i=1
where the function g is defined in (ii). Two-tailed tests based on T are 1o cally
asymptotically most powerful among unbiased tests.

The test statistics defined above are for the two-sample case. F_‘Ol'
testing H: F =G against A: G(z) = F(r—0), 0 =0, the respectV®
tests based on M, T, or T* reject H if M, |T|, or |T* —ET*| is too largeé

We assume that the d.f.’s F satisfy conditions 1-7 of [12], p. 1596.

The definition of ARE appears in [10]. Let ¢ = ¢yp(F; ¥) denot®
the ARE computed under ¥ (x) of the Cramér - von Mises test with respech
to the Neyman test derived for F(x), let ¢* = epp. (F; ¥) denote the AR
computed under ¥ (») of the Neyman test with respect to the rank test
derived for F (), and let ¢* = eypi(F; ¥) denote the ARE comPuted
under ¥(x) of the Cramér - von Mises test with respect to the rank test
derived for F(x). In each case, ¥(z) is taken from a class of absolutely
continuous d.f.’s with ?'(x) = p(x) a.e.

Let Y = {¥Y(u), 0 <% <1} denote the Brownian bridge (see [3])-
@ will denote the d.f. of an N (0, 1) random variable, and ¢ will stand for
its density. The upper p-level cut-off from @ will be denoted by ¢,:

(1.2) 1-PD(c,) =p.
Define the d.f. @ as

(1.3) Q(a) = P{ fl Y2 (w)du < o)

and let ¢, denote the upper p-level cut-off:
(1.4) 1-Q(q,) =p.
Convergence in distribution will be denoted by
Uy3U.

. iq the
Lastly, if # and y are square integrable functions whose domain 18 th
unit interval, then

(1.5) d(a,9) = [ (o(w)—y(w) au]".

Note that d is a metric on the space of continuous functions on [0, 1}
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The following results will enable us to bound the limiting power of

the Cramer - von Mises test. Rosenblatt [11], with the help of Fisz [5],

Proveq that, under H: F(x) = G(w),
(1 1

6) M5 [ T (u)du
ag '

min{m,n} > co  and %—ﬂ. with 0 <A< 1.

izeq The following theorem, due to Anderson [1] and [2], p. 1152, is special-
cage to the case of translation alternatives and contains (1.6) as a special

°0nti;l:;m03EM 1 (Anderson). Let ¥(z) be a strictly increasing absolutely
or alp 0Us d.f. with density v(x). Assume that o' (x) exists and is bounded
"iyht~hm ewcep.t finitely many and that for these values of = the left-hand and
and g M4 derivatives ewist and are bounded. Fiw a, fand A with0 < a < f <1

o °°< A<1. Let {6} be a sequence of positive alternatives with 6, | 0 as
Migeq - Let N 1 be the minimal sample size necessary for the a-level Cramér - von
8ty in which the ratio of X’s to total sample size is approximately A,

ag 7:‘“"” Power B for the fized alternative 0. Assume that N6, —b> 0
> . Then, as &k — oo,
(L7) m o [
w >4 amd M5 f {Y () +h(u)} du,
Whepe °
(L.8)

h(u) = [A(1—2)]"by (P~ (u).

F um
N T8 sequence of negative alternatives {0}, Wwe assume that
we Inlca* b < 0. Formulag (1.7) and (1.8) also hold for this case. Using (1.5)
Y Testate the preceding results: under the hypothesis H,

" M3 ay,o0)
ile ‘
» Under g, Séquence {0,} of alternatives,

M3 &x, —hn).

Comhin:
Von M.ism bining (1.5) and (1.4), we obtain the limiting power of the Cramér -

In the fesr::st (for a, sequence of alternatives and ¥ satisfying Theorem 1)

By(b) = P{d*(Y, —h) > ¢.}-
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ProposITION 1. We have
(1.9) By(b) <P |d(Y,0)> g [A1—ap? f y*(@)da]"},

(110)  By(0)>PLA(T, 0 <[10—20 [ p(a)da]" g},

Proof. Inequality (1.9) follows from the friangle inequality a\,pplied
to d and

d(h, 0) = [A(1—A)p® f°° v*(a)da]”.

Tnequality (1.10) follows from |d(Y, 0)—d(h,0)| < d(¥, —h) and
the preceding representation of d(h, 0).

The following representation is useful in deriving first a lower pound
for the power of the Cramér - von Mises test and then an expression for
the limiting power of the Neyman test. Let

(1.11) Ly(y) = P(—Cos—y) +1—P(Cy—y).

Using (1.2) in conjunction with (1.11), it is easily seen that L,(y)
is minimized if y = 0, L,(0) = 4, and there exists a unique positive 7’
satistying L,(y*) = B, 0 < 6 < f < 1. For the Cramér - von Mises test
we obtain

ProroSITION 2. We have
(1.12) By(b) = Ly (y'),

where

04'/2 = (12Qa)uz’ a’ =2 (1_¢(0¢'/3))
and

p =122 fl h(w)du = [124(L—21)]"* fwa(m)dm.
> —
Proof. Since
Y, —h)> lle(u)du+fl B () dul
o o
and the infegral
Z = jY(u)du
b

. 40D
has the N (0, 1/12)-distribution, (1.12) follows from a direct apphcaﬂo

of (1.11).
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We now turn our attention to the two-sample Neyman test based

o0 the statigtic T of (1.1). Let a, 8, A and {6,} be the same quantities as
3PPear in Theorem 1. Let N ». be the minimal sample size necessary for
€ a-leve] Neyman test based on T, in which the ratio of X’s to' total
Mple size ig approximately 4, to attain power g for the fixed alternative 6.
\88ume that N}, ~>b*>0 as k— oo. The statistic T has a normal
tting distribution when properly standardized. For % large, under the
efluen% of alternatives {6,}, the mean of T is approz;ima,tely eflual to
£0:A(1 —A)Eypg’'(X), and the variance of of T is appronmg,tely
"]‘(l“l)Va,r,.g(X). The results appear in [8] and [12]. Now, under H,

8g,

= 2N,
Ok
°° that the g.level cut-oft converges to c,, a8 k— oo. Using the large-

Sample Mmean and standard deviation, we get the limiting power of the
“Yman test in the form

(L.13) I b*[A(1—A)]"Eeg’ (X) )
* ( [Varyg(X)1"

Since the limiting power is B, by letting d,; denote the positive root of
«(%) = 8, we obtain from (1.13)

*2 dgﬁ Va’rwg(x) .
T A1—2) [Beg'(X)T

Yu [12] has shown that
(1.15)

(1.14)

Coj2t C1—piapz S Gop < Copp+C1—p-

% 2<0.10 and > 0.50, then the right-hand side of (1.15) yields
very good approximation to d,s.

Sect 2. Behaviour of the ARE’s ¢ and ¢*. Using the results of the previous
Ction '

» We ghall derive bounds for the ARE of the Cramér - von Mises
of thcompa.red with the Neyman test ¢ = ey, (F; ¥) and for the ARE
We o1 LOTmer test compared with the rank test e* = eyqe(F; ¥). Then,

Shall OW how well or badly these standard optimal tests fare com-
the Cramér - von Mises test in terms of these ARE’s. We shall
3% a, B and A are fixed with 0 < a < < 1and 0 < A < 1. Let #
Ote the clags of continuous d.f.’s ¥ which satisfy the assumptions of
d-fe,zrem 1, while # (@, b) denotes the subclass of »# consisting of those

R4 Which have support on some finite interval (’a, b). N
val © begin by obtaining an upper bound for e. Let b’ denote the pos1t}ve

U of b which makes the right-hand side of (1.9) equal to B. Using

Pareq wipy,
“Sume th
den
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the non-negativity of the random variable d(Y,0) and relation (1.3)
we obtain

(2.1) p=1- Q(( 2 [a -2 f ws(w)dw]m))

But, by (1.4), § = 1—@(g,). Comparing this with (2.1), we obtai®

(@~ g

Z(l—l)_fws(m)dm

(2.2) b? =

Since By(b) = = By(b’), we have b’ < b. Moreover, since

lim N, 6 p*2
__ k—>00 —
(2:3) = limyN.6 T B’
k—o0
we conclude that (using (2.2) and (1.14))
(2.4) e < K,I,(¥),
where
dop 2
m = ()
and
Varyg(X) 2
(2.5) I(P) = 229 ~) f 3 () d.
= my@r Y

To obtain a lower bound for e, let b be the positive solution fol'n
which makes the right-hand side of (1.10) equal to p. Again, by the no
negativity of d(Y, 0) and (1.3), we obtain

(2.6) g = Q(([m — )b f y3(2)da]'" — 1/2)).

By (1.4), B = Q(q,—p). Using this and (2.6), we get
/ 2
. (ql 2 1 2 )

B A=) [ vi(@)ds '

A

From (2.3), (114) and the fact that By(5)> § — By (b) implies ¥ 7
we conclude

(2.7) K,I,(¥)<e,
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Where

dp  \’
= (qyz-l-q}/fﬁ) .
b The result of Proposition 2 may be used to obtain a different lower
0

U0d for ¢. Let b* denote the positive solution for b which makes the

ght-hanq side of (1.12) equal to 8. Denote this same solution for y by d,,.
hi§ yields

(2.8)

ri

2
p+e — dus

12201 =2)] [ ¢*(@)da]’
Since B, (b+)> g = By(b), we have b*>b. Hence, (L.14), (2.3)
(2.8) yiela

(2.9) Vary g(X) ~ \ dw2< ’
"o, ¢ @7 12[_!”’(9”) [<e

dop 2
Ko = (da;ﬁ) .

co 1t is €asy to prove that K,< 1 by showing a’ < @, where a’ may be
"buted fop 4 given a from Proposition 2.

Mi For the ARE of the Neyman test compared with the rank test,

v uski [gy Proved the following result for one-sided alternatives and

% [12] €xtended it to two-sided alternatives:

o _ [Beg (DT Varg g(X)
Varyg(X) 1 F (@ (@) v (@) da?

ang

Where

Where
, d
J(u) = g(F'(w)) and J'(u) = EJJ(u).
0 Stnce e _ eet, the bounds on e* are
<2.10) o <ILI()I(P),
0 K I(f)I,(¥) < ¢*,
00 2
[ v¥(x)dx

K,

= ‘121(f) < e*,
[ (¥ (@) y*(@)da
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where I(f) = Vary g(X) is Fisher’s information for # which is independellt
of 7,

fww“(w)dw
I(¥) = == ’

0o

[_ ojo J' (¥ (@) y* () dar]?

and the constants K,, K, and K, have previously been defined.

We now turn our attention to using these bounds for the ARE™
to describe how well or how badly the Cramér - von Mises test may be
compared with the standard optimal tests. At first, we consider the 09{“"
F = &, the N(0,1) d.L. Here, g(¢) — @ so that g'(z) = 1. For this speci®
case, I, (V) denotes the functional I,(¥), i.e.

(2.12) 1,(¥) = Vary X f°° V3 (z)da.

Since the expression I,(¥) is scale and translation invariant, we c‘fn‘
sider a standardized distribution Y. Thus, we would like to optimi?®

[ v3(®)dx subject to the constraints
—co

1= fow(w)dw = fmzvp(w)dw and 0 = fmva(w)am.

-00

By the method of Lagrange multipliers, it suffices to optimize

(2.13) | (#*(@) — ay (@) —bap(2) — oz*p(2)) do,

where a, b and ¢ are undertermined multipliers.
LEMMA 1. We have

3
inf I.(¥) = —.
Inf ¥) ypr
a,(;one

Proof. In order to minimize the functional (2.13), it i3 clear th +(2)

should choose y(x) as large as possible for all # such that 0 <Y
< a'+b'w+ c'z? Similarly to a proof in [6], we show that by a judjclou,
choice of Lagrange multipliers there is 2 unique d.f. ¥ which is 8637
ardized and satisfies yp%(®) < a'+bd'w+c'z%

Let

w(w)=kl/a2—w2, —ao<Lr<a-
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- The three side conditions yield ¢ = 2 and k¥ = 1/2x. Let the Lagrange
Utipliers - satisty

14 1 4 ’ 1
a =;, b =0, c =m.
Then
1 ‘
Yo (@) =§;V4—wz, —2<2<2,

i . ’
:nthefumque standardized density which satisfies y?(2) < a’+b'®+c'a? for

u‘” Or which y(2) > 0. Hence, the density y, must minimize (2.13) and
8 Yields a minimum for I 1(¥). This minimum value is

v = .

Levua 2. we have

Bule(W) = + (o < N
Pe#

dem;’ Xoof. Let D > 1. Let ¥, be the d.f. corresponding to the following
Y
?(z), l@| = 2,
0.0540, l2| <1 or #p < 0| <2,
0.44304 5oy +1
——— 1+0.054 op+5 o] < Op ’
¥o(@) < ) Pp—1 ’
2.65824 2.65824 o, +b
mleO'OM—(w—l)“” 1< o) <2,
e
—2.65824 2.65824 5zp +1
lmlwl+0.054+ (.'I}D_:T)_;mp’ D6 < |®| < &p.

ThusT he d.. Ype ¥, and if 1 <2,<1+40.182 |DY2, then I,(¥,)> D.

Yeo#
@) "HEOR RN 2. We have

supeyr(P; ¥) = + oo,
Yeol®

inf ey (P; V) > K, ’
P 472

inf ey (P; ¥) > 0.864 K,.
Pex

(e)
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Proof. Rewriting (2.7) for F = &, we obtain
(2.14) E,L(P) < eyr(D; V).

(a) follows from (2.14) and Lemma 2, and (b) follows from (2'14)
and Lemma 1.
(¢) Rewriting (2.9) for F' = &, we obtain

Ky (P; V) < eyp(P; P),

where ey, (D; V) is the ARE of the Mann-Whitney-Wilcoxon test col?ﬂPﬁ"‘.’ed
with the two-sample i-test. Hodges and Lehmann [6] find the d.f. whiC
minimizes eg,(®; ¥). Since this d.f. is in #, the desired result folloW®

LEMMA 3. We have

supl,(¥) = 4 oo.
YeH

Proof. From the proof of Lemma 2 it is clear that there exists a d.f- ¥
in #(—2,2) with I,(¥p) > D for any given D > 1. Thus

sup I,(¥) = +oo.
Yeot(—2,2)

From the definition and properties of g for the assumed d.f. F, ther?
exists an interval (4, B) such that

inf g'(x) =¢>0.
A<z<B

Since ¢’ is bounded on any finite interval, we have

[Eeg'(X)P< sup [¢'(X)]* =L*< oo for each ¥ex(4,B):
AdA<z<B

For each ze(4,B), g(x) =g(4d)+(®—A4A)g' (%), the inequa'hty
A <zZ<wo implies

e2Vary, X < Varyg(X) for each ¥ e s# (A, B).
From the preceding, (2.5) and (2.12) we obtain

(2.15) —22711(5?’) < L,(¥).

. invall
The desired result now follows from the scale and translation invé

ance of I,(¥) and from the fact that
sup I,(¥) = +oo.

Peo(—2,2)



Oramér-von Mises test 439

THEOREM 3. (a) sup ¢ = + oo
Yeot’

(b) infe — 0 4f g is bounded.

Yesr

(¢) infes ¢ if g is unbounded and g’ is bounded away from zero.
Yeor

Proot. (a) follows from (2.7) and Lemma 3.

Tt ; (b) Let E(a, b) denote the d.f. of the uniform distribution on (a, b).
'S known that R(a, b) € #(a, b). We find that
va’rR(a,b)g(X) .
[g(b) —g(a)T*
ed Since Varg, ,y9(X) —> 0 as b - oo, we have inf I,(¥) = 0 for g bound-
* The desired result follows from (2.4). yek

ang (9) Since g(®) = g(0)+2g' (%), we obtain 0 <Z <2 or 2<Z <0,
YI0Ce ¢’ (%) > & > 0 for all @, we get

I,(R(a, b)) =

e?VaryX < Varyg(X) for each Ve s#.

e MOI‘eOVer, Since ¢'(#) < L < oo for all #, [Ewg'(X)]? < I* for each
Leney” ThUS (2.15) holds for each ¥ . From this result, (2.7) and

02 1, the desired result follows.

We Note thag for part (c), we could have used Theorem 2 (c) and (2.9).
1]1;)W turn our attention to e*.
EMMA 4. W, have

sup Iy(¥) = +oo.

Ve
Proot, By our assumptions on F there exist %, and Ugy Uy < 0 < 9y,
f(ul) =f(u2)~ Let

f(=), @ € (— oo, u;]U %z, ),
Yo(2) =
With Klwl‘m +f(uy), @€ (uy, 0)u(0,u,),

With

2 F(ug)—F (wy) — (g — uy)f(u,)
K = E u2P 2 .
Thep 1 2

With, 0< _;[ J' (Po(@)) vi (@) do < Cp < 00
0 _ 0
' \\f 9' () f () do +

+ g'(
"122% W:)) LE? -3 (0 — ull) + S f (wy) (ull® + %) + 2 () (w3 — )],
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I;(¥,) = + o0, but ¥, ¢ 5#. Let D> 0. We construct a density vy, guck
that ¥, € o and I,(¥,) > D. Choose a positive integer ¥ such that

10~* < min {lwyly ua},
k depending on the assumed distribution F. Let

0 < & < min {ju,| —107%, u, —107%}.
Let
oy = [Po@ @E(— o0, wIV T 1075 —elule, y —107H]u by o
y.(@) =
vo(—s), @e(—se,e8),

and let y, be a linear function in each of the four regions
(%1y 4 +3-107%),  (u+4-107%, u,4-107%),
(u—107%, wy—3-107%),  (uy—-107%, uy)

with the linear functions chosen s8o that v, is a continuous density functio™
Now

SUP ¥, (®) < 2-10% 4 f(u,)
p- |
with
A = {z| @ €[4y, 4, +107*]U [ug— 107", u,]}.

Hence

0< [ J(P.(a)4(w)dv

u;+10—K

Y2
<G+ [ J(P@)i@d + [ J(P@)i@)d
v Uug—10~
g'(@) —k k 2
< Co+ sup —-[2'10 (2'10 +f(u1))] = 0+ 0, < o0.

n)<T<Uy f(w)

Thus

[ vi@)ds
I(P,)> == = =D
A R A TR T AN AT

if and only if
& < exp [ - (Co+ 01)2.D] .
Hence, if

0 < & < min{|u,| —10~%, u,—107%, exp[ — (C,+ C,)* D1},
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then ¥Yespand 1 a(¥,) > D. Since D is arbitrary, we have

supIy(¥) = +oo.
YexX

The first part of the following lemma is easily proved by applying
“hsen’s inequality to the strictly convex function h(u) = u2.
5. (a) Let ¥ be an absolutely continuous d.f. for which

(-]

[ v*(@)do < oo.
Then
J v¥(@)dw
= >1.
[ [ vl
; (b) The equality holds im (a) if and only if ¥ is the uniform d.f. where (a, b)
50 finite interval.

yi 1dPr0°f' (b) Sufficiency. Let ¥ = R,;. Then direct calculations
e

] : 1 __ i () do
Liw%@ﬁﬂ-—w_w,—_iw()
is stNeceSSitY- Since h(u) = w? is strictly convex, the inequality in (a)

Tict unlegg v(X) is constant a.e. Thus

o0

f ’Pa(w)dm = [ joqu(m)dm]z = ‘lp(.’v) =K ae. > ¥ = -R(a,b)

=

0 .
T Some ]nterval (a,, b).

THEOREM 4, (a) sup e* = + oo,
(b) i.nf * Pe
ve *e =0 if g is unbounded.
) fpllie* = 0 if g is bounded and sup J'(u) = L < oo.
: 0<u<l
(lz)l;oof' (a) The desired result follows from (2.11) and Lemma 4.

= Lty € #(a, b) with

o0

J v*a)do =

-0

(b—a)
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while

o , (@— 1
fJ (¥ () v2(2) der =fJ (:_Z) o

=34 () —g(—00)] = +oo,

since ¢ is unbounded and strictly increasing. Thus I4(RB, ;) = 0, and the
desired result follows from (2.10).
(c) Since J' is bounded, we have

[T (P@)p*@)de<L [ yp*(a)do
Thus
fww”(w)dﬂv
— < I (P).

| [ y*(=)da]
Applying Lemma 5 to the preceding, we obtain

2 <inf I,().
L YeX

From this last inequality and (2.11) the desired result is obtained.
3. Discussion. Since the Neyman test 7 and the locally most pOWer,f'.J;
among unbiased rank (LMPR) test T* are derived and optimal for aaSPec]ﬂ ]
distribution F, it is not too surprising that there are distributions @ which sa'e
tisfy the assumptions of Theorem 1 and make the efficiencies e or ¢* a8 la;}‘g
as needed. However, these efficiencies were not optimized. by _referfﬂ‘%
to some scaled or translated (or both) version of F. This procedure m;.gh'
have been proved to be useful in optimizing one or both of the officienci®®’
however, it would not be treating the test statistics fairly. Specific?”/!
one would use a “studentized” version of Neyman’s test in pracﬂ‘_’e’
obtained by dividing T of (1.3) by a consistent estimator of its S’ﬁa*nda’rr
deviation. Statistics in this class would be scale invariant, at least .fon
g(®) = aa®**', k =0,1,2,... Such studentizing makes the nota.t}"g
more cumbersome and makes the proofs more difficult without cha*ngmﬁ
the results. With this in mind, the paper follows the example of Gh?rnoo
and Savage [4], Mikulski [8], Yu [12], and Kalish and Mikulski [7] 2 » o8
presenting the studentized version of 7 and in not optimizing efficien®
by recourse to scaling and changing location. Even so, it is pOSSible

. 10
produce distributions ¥ which force the ARE’s ¢ or e* to infinity- Mo
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OVer, the distributions ¥ used in forcing e* to be large are not that unlike F'.
hig Points to the fact that there is a valid question about optimality
of rank test in the presence of slight changes of the assumed distribution 7.
On the other hand, the Cramér - von Mises test may behave infinitely
Wo,rse than either Neyman’s test (if g is bounded) or the LMPR test (if ¢
18 u31‘0011]1(1ed). If g and J’ are both bounded, then the Cramér - von Mises
% cannot behave infinitely worse than the rank test. This is also the
Case for Cramér - von Mises test compared with Neyman’s test when g
s Wibounded but has a bounded derivative. Such additional assumptions
%L ¢ are gimilar to those appearing in [12]. These results on minimizing the
Ciencieg indicate that the Cramér - von Mises test for location is not
a Panacea test in the sense that it should be used everywhere for every-
ng. However, the results on optimizing e and e* indicate that the
“Mér - von Mises test should be considered a strong competitor when
dlstl‘ﬂoutioms of the type that maximize ¢ and e* are suspected. How well
OW badly, in terms of Pitman ARE, does the Cramér - von Mises
behave compared with reasonable competitors for an assumed F
§ been established.
¢ have two open problems. One concerns the sample sizes necessary
. der for limiting behaviour to assert itself. Another deals with em-
1eal congtruction of the distribution function of the limiting random
able in (1.7). These questions and others will be the topics of future

Papers op the Cramér - von Mises test.

test
hy
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0 OGRANICZENIACH ASYMPTOTYCZNEJ MOCY
I 0 ASYMPTOTYCZNEJ EFEKTYWNOSCI TESTU CRAMERA - VON MISESA

STRESZCZENIE

‘W pracy zbadano wlasnofci testu Craméra-von Misesa w problemie dwu Pféb:k:
Wyprowadzono ograniczenia na asymptotyczng moc testu oraz poréwnano ,,,symp
tyczng efektywnosé tego testu wzgledem testu rangowego i testu Neymana. Inter
sujgey jest przykiad, ktéry pokazuje, ze test Craméra-von Misesa jest efektywm°]
od kazdego z dwu pozostatych testéw. Przypadek rozkladu normalnego jest rozp?
wany oddzielnie.



