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APPLICATION OF MODIFIED MOMENTS
IN THE NUMERICAL SOLUTION
OF THE ABEL INTEGRAL EQUATION

Piessens and Verbaeten [8] have described a method for the numerical
Solution of the Abel integral equation, using Laplace transform techniques.
The present paper shows how this powerful method can be modified to
Save a substantial portion of computational work. The modification is
based on the application of modified moments (certain integrals involving
Chebyshev polynomials of the second kind) which are computed by using
3 simple recurrence relation.

1. Introduction. We consider the Abel integral equation
M [ (@ =y fy)dy = g@) (O<z<1),
0

Where 0 < ¢ < 1 and p > 0. This equation occurs in many physical and
®hgineering problems. The solution of (1) is explicitly given by the in-
Version formula ([10], p. 41)

z

f (@ —y?)*'yP g (y) dy.

0

(2 __ psinaw _d_
: fl@) = T dx
HOWever, it is very difficult to use this formula in some practical appli-
Cations where g has a complicated form or no explicit mathematical
eXDr.ession for g is known. This is why many papers deal with the nu-
Merical solution of (1) (see [8], [9], and the references given therein).
in thIn this paper we describe a simple and efficient 'method applicable
€ case where g can be approximated accurately by g, defined by

(3) gn(x) = a° Z' a,Thz?) (0<2<1),

k=0



312 S. Lewanowicz

where Y’ denotes the sum with the first term halved, T} is the k-th shifted
Chebyshev polynomial of the first kind, T}(f) = coskf, cosb = 2¢—1,
and ¢ (¢ > —p) is a parameter chosen so that the function 7 °¢g(z) is
as smooth as possible on the interval <0, 1.

The coefficients @, can be obtained either by the classical recurrence
relation or by interpolation methods ([3], [5], [7]) for the calculation
of the Chebyshev coefficients of the function G(t):= t=?¢(¢''?) for
0 <t<1 (if g is given by an explicit mathematical formula), or by Clen-
shaw’s curve fitting method [1] (if ¢ is characterized by its values on
a finite set of points).

Piessens and Verbaeten [8] have developed a method for the in-
version of equation (1) in the case where p = 1 and the right-hand member
is exactly of the form (3).

2. The Piessens-Verbaeten method. Given the approximation (3),
Piessens and Verbaeten [8] have obtained, using Laplace transform
techniques, the following approximation of the solution of (1):

n

_ pr(ﬂ+1) platB)—1 Y D
+) 1) = e T E k; 0y 04(7),

where f=ofp > —a and g(t) = JFo(—k, k, f+1;1/2,a+ ;1) for
t € <0, 1>. (Strictly speaking, equation (4) is the generalized version of
a formula given in [8] for p = 1.) It was shown that the sequence {g,(?)}
satisfies the third-order recurrence relation

(B)  (k+a+B—1)(k—2)g,(H) —[4(k+B)(k—2)t — 3% —
—(a+p—9)k+3(a+p—3)1ag;_, (1) — [4(k— B —3)(k—1)¢ —3k* +
+(a+B+9)k—6]g; (1) +(k—a—B—2)(k—1)q._4() = 0.
Examination of the asymptotic behaviour of all solutions of this equation

led to the conclusion that ¢,(f) can be computed by forward recursion.
‘The initial values for (5) are the following:

_ 20641)
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3. The modified method. Replacing the function g on the right-hand
side of (2) by g, given by (3), we obtain the following approximation
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of the solution of (1):

n

(6) fr@ = T N o a),

s
k=0
where

T

d
ma) = — [ @ =y iy Ty (k= 0,1,..0).

0

Putting ¢t = #? and % = y”/t, we transform the last formula to the form

up(z) = [t"“”gj1 1-— u)"“uﬁT,’:(ut)du]

— golath)~ lf(l — ) uP[(a+ B) T (ut) +utTy (wt)]du,

Wwhere § = o/p.
Let us write
1
- I'(a+p+1) _
(1) m(t) = (rfﬁﬂ fl w)* U (ut)dw  (k=0,1,...),
0

where Uj is the k-th shifted Chebyshev polynomial of the second kind,
Ur(t) = sin[(k+1)6]/sinf, cosh = 2t—1.

The integrals occurring on the right-hand side of (7) for ¥ = 0,1, ... are
Teferred to as modified moments of the function A(zx) = (1 —x)*'2? with
Tespect to the polynomials {p,}, where p,(x) = Uj(ix), t being a par-
ameter. Making use of the identities (see, e.g., [7], Chapter 2)

I = (U:—U:_2)/2, TZ’ = 2kUZ—1’
2UL(2) = [Up_1(2)+2U5(2) + Uy11(2)1/4,

We get

s(zy — L@T(B+1)
2T (a+p+1)
TE+atpym@?)] (K =0,1,...;5 m_,(t) = my(t), m_,(t) = 0).

Substituting this in (6), we derive the formula

POk — 0 — B)my_, () 4 2hmy, _y (a7) +

© e = g 2D e

o1 —a)I’(a+ﬁ+1) b (@)

k=0

10 — Zastos, Mat. 18.2
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where
(9) by = (k+a+pa+2(k+1)a, +H(k—a—p+2)a;,,
(k =0,1,...,m; a,,, =a,,, =0).

Using a technique based on that described in [4], we obtain the
following recurrence relation, satisfied by the modified moments m,(?):

(10)  (k+a+B)m,(t) —[4(k+ f)t —3k —a— B+1]m;_, (1) —
—[4(k—B—-1)t—3k+a+B+2]m_,(1)+(E—a—pf—1)m,_4(t) = 0.
The initial values for (10) are

B+1

(11) me(t) =1, my(l) =4 mt—2,
~ B+L(B+2) . B+1
my(t) = G A1) (et prD) t°—16 —*a—l—ﬁ—}—l t+3.

Using the method of Denef and Piessens [2] we find the asymptotic
behaviour of three independent solutions of (10), say, ¢, €, and cy.
Fort=0,0<t<1, and ¢t =1 we have

() e =(=1)% oy =(—1Fk, ey ~ (1)K (k—>o0),
(ii) G ~ (=1 k™71 ¢y ~E7%coskp, ¢y ~ kT %sinkep

(k—>o0, ¢ = arceos(2t—1)),
(iii) G =1, 6 ~E oy ~ (1K (B—oo),

respectively. This means that there is no strongly increasing solution
among all solutions of (10). Thus m,(t) can be computed by forward
recursion (see [6]).

Normally, the sequence {|a,|} tends quickly to zero. As {|m,(t)i}
cannot increase strongly, the absolute error of f,(z) may be estimated
by the expression

pIL(B+1)(a+B+n)
2I'(1—a)I'(a+ B +1)

|, M, (27)].

Obviously, f* given by (8) is the exact solution of equation (1) for
g being exactly of the form (3). The same is true for f, defined by (4).
Therefore, f, = fr, i.e. the Piessens-Verbaeten method and the present
method are mathematically equivalent. By the way we have

[(k—a— B)my_y (8) + 2kmy,_, (1) -+ (K + @+ ) my (1)]
(k =0,1,...).

1
T
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However, in the present algorithm, if we assume that the coefficients
b, are precomputed, the numbers of multiplications and additions are
both approximately reduced to 3/5 of the numbers in the Piessens-Ver-
baeten algorithm, and the number of divisions remains unchanged.

Case 8 = 0. Equations (8)-(11) can be used for any value of g8 > —1.
However, in the case of 8 = 0 (i.e. in the case of ¢ = 0 in (3)) further
simplifications can be made. For g = 0 formula (7) defines

(12) my (1) = af(l—u)“—luz(m)du k=0,1,...).

By a procedure analogous to that applied in the general case, we
derive the equations

n

1 * _ , p
13) ful@) = 2I'1—a)T'(1+a) gb"m"(mp)’

(14) by = (k+a)ap+2(k+1)ay,,+(k—a+2)ay,,

(k=0,1,...,75 Gy = Gyyy = 0),

(15) (k4 a)m, (1) —2(2t —1) km,_, (1) + (k — a)my_, (¢) = 2(—1)*a
% =2,3,...,

4t
a-t+1

}Totice that substituting ¥ —1 for k¥ in (15) and adding the obtained equa-
tion to (15), we get relation (10) for g = 0.

We have ascertained experimentally the numerical stability of the
forward recursion method for computation of the moments (12) using
the recurrence relation (15) with initial values (16).

If we compare this method and the method of Section 2, we see
that the reduction factors for the numbers of multiplications and additions
are both approximately equal to 1/3.

. Remark. Since Ui(w) = (—1)*(k+1),F,(—k,k+2; 3/2; ), we
ave

—2.

(16) me(t) =1, my(t) =

1
M) = (—1)¥(k+1) B(a, ﬂ+1)f(1—u)°‘1u”zF1(—k, k+2; 3/2;tu)du
0
= (=1 (k+1) ,Fo(—k, k+2, B+1; 3/2,a+B+1; 1)

(see [3], Vol. 1, Section 3.6). Equations (10) and (15) can be also obtained
¥ using a theorem from (5], Vol. 2, Section 12.2.
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4. Numerical examples.
Example 1. Let us consider the equation

[ @ —y?)7 " f(y)dy = exp(@?) -1 (<@ <1).

The exact solution is

f(@) =p=

Using Table 3.3 from [5] we find coefficients a,, a,, ..., a;; such
that

=1/2 pp—1 exp (a.p) erf(x”’z) )

Notice that a,; = 5.6,,—19. Formulas (4) and (8) for n =13 and 8 =1
(o0 = p) give results presented in the Table, where

d = max |f,(k/10)—f(k/10)] and d" = max |f,(k/10) —f(k/10)|.

1<k<10 1<k<10
TABLE
P d l a*
.1 1.1,,—17 ! 3.4,,—18
.3 1.3,,—17 ’ 3.9,,—18
.5 9.50—18 | 3.0,,—18
1.0 17017 | 5.3;,—18
2.0 3.4,0—17 | 1.1,,—17

Let ¢ and t* denote the times of calculation of f,(x) and f} (), re-
spectively. The average of the ratio t*/t was 0.65. The calculations were
carried out on the ODRA 1305 computer of the Institute of Computer
Science, University of Wroclaw, using double precision arithmetic.

Example 2. An integral equation of great importance in plasnié:
ysiecs can be transformed to the form (see [8])

x

[(@—y) "2 fy)dy =g(@) (0<w<1),

where
10 - 1
g(x) = — Vra exp [1.21 (1 — —)] .
1 x

The exact solution is

f(@) = a3 exp[1.21(1 —1/x)].
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Let J, be the polynomial of degree at most n» which interpolates the
function G(x) = 27 °¢g(x) (¢ > —1) at the points =z, = [1 —cos(kn/n)]/2
(k =0,1,...,n). It is well known (see, e.g., [3] or [7], Chapter 7) that

n

Ju@) = D a,Thiw) (0<2<1),
k=0
Where

2— 8
a, =—Tk—2 G(a,) T (@) (k=0,1,...,n).
3=0

The symbol 3" denotes the sum with both the first and the last terms
halved.

For o= 0 and » = 25 the absolute errors at x = 0(.1)1 of the Piessens-
Verbaeten and modified methods (formulas (13)-(16)) are the same and
do not exceed 2.1,,—5.
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