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CLASS RECONSTRUCTION NUMBERS
OF UNICYCLIC GRAPHS*

Abstract. The reconstruction number of a graph G is the minimum number of point-deleted
subgraphs in the deck of G which are not contained in the deck of any other graph. The
"econstruction conjecture, attributed originally to S. Ulam, is equivalent to the statement that the
TeConstruction number is well defined for every graph G with at least three points. If G belongs
toga specified class % of graphs, the conditional reconstruction number rn(G|%) is the minimum
Mumber of point-deleted subgraphs of G that are not contained in the deck of any other graph
n ” We find all graphs which have conditional reconstruction number 1 when % is the class of
Unicyclic graphs and show that, for each unicyclic graph other than the cycle, two point-deleted
Subgraphs from the deck suffice to determine its rooted trees.

L. Introduction. A graph G with point set V(G) = vy, ..., v,} is recon-
Structible if H =~ G whenever graph H with V(H) = {u,, ..., u,} has H—uy
S G-y, for all i. The deck of a graph is the multiset of its point-deleted
s“'?gl‘aphs G —v;. The reconstruction number rn(G) of a reconstructible graph
G is the minimum cardinality of a subdeck of G not contained in the deck of
any other (non-isomorphic) graph. This invariant rn(G) was introduced in
51, where it was conjectured that almost all graphs have reconstruction
Number 3; this was recently proved by Bollobds [2]. |

Now, let ¢ be a generic set of all graphs with a specified property. A
8raph G e% is %-reconstructible or class-reconstructible from k subgraphs if
there is a k-subdeck of G not contained in the deck of any other graph

€%. Such a minimum value of k is the %-reconstruction number of G or
class-reconstruction number of G, denoted by rn(G|%). Harary and Lauri [3]
determined the %-reconstruction numbers when % is the class of all maximal
Planar graphs. Bange et al. [1] noted that when % is the class of total
8raphs, the %-reconstruction number is always 1. They also showed that any
Singleton of the deck will serve. Harary and Lauri [4] studied the class of

:)I‘ees and conjectured that every tree has the class reconstruction number 1
r2

\\
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Recall that a unicyclic graph G is connected and has exactly one cycle.
When all the lines of the cycle of G are removed, we get the rooted trees of G.
Manvel [6] demonstrated that the graphs of the class % of all unicyclic
graphs are reconstructible. The unicyclic reconstruction number of G is
rn(G|%). We characterize unicyclic graphs for which rn(G|%) = 1 and show
that if G is unicyclic but not a cycle, then two point-deleted subgraphs from
its deck suffice to determine all its rooted trees.

2. Graphs with unicyclic reconstruction number one. Call a tree T a
pseudostar with vertex v if no component of T—v has more than two points.

Tueorem 1. If G is unicyclic, then tn(G|9) =1 if and only if G is
isomorphic to one of the following:

(1) the union of a cycle and a pseudostar, with an added line joining a
point of the cycle to the vertex of this pseudostar (Fig. la);

(1) a copy of K5 in which one point is identified with a vertex of a
pseudostar (Fig. 1b).

(a) (b)

Fig. 1. The graphs with unicyclic reconstruction number one

Proof. It is easily verified that if G is a graph constructed as in (i) or
(i) and v is the vertex of the pseudostar, then G—p determines G uniquely
among all unicyclic graphs.

Now, let G be any unicyclic graph other than those described in (i) and
(i), and suppose-that G contains a point v such that G—v allows unique
identification of G among all unicyclic graphs. Then v must be either in the
cycle of G or adjacent to a point of the cycle, for otherwise G—v does not
determine the number of points which are adjacent to points of the cycle.

In case the cycle of G has length four or more, v cannot be on the cycle,
for otherwise the length of the cycle is not uniquely determined by G —uv.
Therefore v must be a non-cycle point which is adjacent to a point of the
cycle. Also, v is the only such point because the number of points adjacent to
the cycle cannot otherwise be identified by G —v. Finally, no component of
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ij other than the one containing the cycle can have more than two points;
if it did, then the maximum distance to v among the points in this
Component is again left undetermined by G —v. Therefore, if the cycle length
18 at least four, the graph G must have the structure described in (i).

A similar argument holds when the cycle in G has length three, except
that p may now be a point of the cycle. In this case, no component of G—v
Can contain more than two points in order for the length of the cycle to be
determined, and so G must have the structure given in (ii).

It is easy to establish the unicyclic reconstruction number of a cycle.
From Theorem 1 we already know that rm(C;|%) = 1.

TheorREM 2. For each k > 4, rn(C,| %) = 3.

Proof. Each point-deleted subgraph of C, is isomorphic to the path
P x~1- The unicyclic graph of order k obtained from C,., by adding a point
adjacent to exactly one point of the cycle also has two point-deleted
Subgraphs that are isomorphic to P,_,, so rn(Ci| %) = 3. It is also easy to
check that three point-deleted subgraphs will determine C, uniquely, so that
m(Cy| %) = 3.

_ Fig. 2 displays the two unicyclic graphs of order 4: C, and C; - K,, thus
lllustrating the general case.

Fig. 2. The two unicyclic graphs of order 4

_ 3. .I}ounds for other unicyclic graphs. Since we are concerned only with
unicyclic graphs, we know that the graph G has the form shown in Fig. 3,
Where the T, are its (possibly trivial) rooted trees.
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Fig. 3. The unicyclic graph G
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The depth of any point v of the unicyclic graph G is the minimum
distance from v to the cycle (cycle points have depth 0). The maximum depth
of G is then the maximum among all its point depths.

THEOREM 3. If the maximum depth of G is one, then rn(G|%) < 3.

Proof. If' G has exactly one non-cycle point, then rn(G|%) =1 by
Theorem 1. Thus let G have at least two non-cycle points u and v. Then
G —u.and G—v together verify that the maximum depth of G is one, for any
point at depth two in G would be evident in at least one of these two
subgraphs either at distance two from the cycle or in a differént component
than -the cycle. '

Case 1. If G contains a point w on its cycle such that the two points of
the cycle adjacent to w either both have degree 2 or both have degree greater
than 2, then we claim that G—w (in conjunction with G—-u and G—v)
uniquely identifies G. For, the cycle length is known from G —u, and there is
only one way (up to isomorphism) to introduce a point to G—w to get a
unicyclic graph with maximum depth 1 and the proper cycle length (Fig.
4a,b).

Case 2. Now, when G contains no such point w, on tracing its cycle,
we must alternate between pairs of points with degree 2 and pairs of points
with degree at least 3 (Fig. 4c). .

@ ®

Fig. 4. Unicyclic graphs with depth 1

The result is easily verified in this case when the cycle length is 4, so
consider the cycle length at least 8. We may not know from G—u and G—v
that G has the form presented in Fig. 4c, but we do know that the cycle
cannot contain more than three consecutive points with degree greater than
2. Let x be a cycle point with deg x > 2. Then G — x (again together with G
—u and G—v) identifies G uniquely, for there is only one possible way to
add a point to G—x and get a maximum-depth-one unicyclic graph that
does not contain four consecutive cycle points that have degree greater
than 2.

4. Graphs with maximum depth greater than one. When the maximum
depth of the graph G is greater than one, the reconstruction of the rooted



Class reconstruction numbers » 121

trees 7; poses more of a problem. In order to show that the multiset of
rooted trees T, (but not necessarily their sequential order around the cycle)
€an be reconstructed from only two point-deleted subgraphs, we need
Theorem A from [4]. Let T be a tree and v an endpoint of T adjacent to
point x. If there is another point y # x in T such that the tree obtained. from
T by removing one line and adding another, T—uvx+ vy, is isomorphic to T,
‘then o is called a replaceable point of T.

Theorem A ([4])). If T is a tree which is not a path, then T has an
endpoint which is not replaceable.

For ease of exposition we will state the next result, which we require for
Theorem 4, in terms of a rooted tree rather than a unicyclic graph. Recall
that the depth of a point in a rooted tree is the distance of that point to the
root. Also, when x is a point of a rooted tree T, we will call the components
of T—x induced by the descendants of x (in T) the sub-branches of x in T.

Lemma. Let T be a rooted tree with root r. If T contains a point of depth
3, then there exist two points s and x, both having depth at least 2, such that T
can be uniquely determined from T—s and T—x.

Proof. Since the root r is labelled, it suffices to show that the sub-
branches T, T, ..., T, of r in T can be uniquely determined from the two
Point-deleted subgraphs. Among all points of depth 2 which have at least
One descendant, let s be one with the minimum number of descendants.
Among all sub-branches of s in T, iet B be a sub-branch of minimum order.

Case 1. When B is not a path, let x be an endpoint of B that is not

Ieplaceable, as guaranteed by Theorem A (it is possible that x is adjacent
to ). -

Fig. 5. Choosing points to delete from G

We now make the following observations.
(1) In both T—s and T—x, we can distinguish (up to isomorphism)
Which of the sub-branches of r have had a point deleted from it. In T—s
Isp, T—x) it will be the sub-branch of r whose multiplicity of appearance
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among_the sub-branches is one greater than the corresponding multiplicity in
T—x (resp., T—5s).

(2) From T—s we know the ‘number of descendants of each point of
depth 2, but even more, we know the structure of all the sub-branches of the
points of depth 2. y

(3) Consider T—x. As noted in (1), we can distinguish (up to isomor--
phism) which sub-branch of r has had x deleted from it. By the chosen
minimum properties of s and x, we can identify s in T—Xx (again, up to
isomorphism of the appropriate sub-branches), and also from which sub-
branch of s that x has been deleted. By Theorem A and the choice of x, this
sub-branch can be restored to B in only one way, even with the adjacency to
s now included.

Thus the tree T can be reconstructed uniquely.

Case 2. When B is a path, the same proof will hold by choosing x to

be the point of B adjacent to s. In this case Theorem A is not applicable, but
the tree T is again the only obtainable reconstruction.

Let G be a unicyclic graph and consider the subgraphs obtamed by
deleting non-cycle points. Suppose that in these subgraphs we replace the
lines of the cycle C; by the lines of the star K, ,, identifying the c;ndpomts of .
the star with the cycle points and labelling the center of the star r (see
Fig. 6).

Fig. 6. Replacing a cycle by a rooted star

It is clear that the only information lost in this transformation is the
order in which the cycle points, and hence the rooted trees T,, T, ..., T
appear around the cycle. Thus, by the previous Lemma, we obtain the
following result on unicyclic graphs. .

TueoREM 4. If G is a unicyclic graph which contains a point of depth 2,

then the rooted trees T,, T,, ..., T, can be reconstructed uniquely from two
point-deleted subgraphs of G.

There. are many subfamilies of unicyclic graphs for which the %-
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Teconstruction number can be determined exactly or at least tightly bounded.
One example is the following '

THEOREM 5. Let G be unicyclic with rooted trees T,, T,, ..., T,. If G
contains a non-cycle point veT; and T* is what is left of T, in the unicyclic
component of G—v, and T* % T; for any j, then rn (G| %) < 3.

Proof. If the depth of G is one, the result follows from Theorem 3.
Otherwise, by Theorem 4, T, T, ..., T, can be determined from two point-
deleted subgraphs of G. Now in G —v it is possible to identify which branch
has had the point v deleted from it, so the original graph G can then be
reconstructed.

Certainly, stronger results can be obtained as much of the information
given in the point-deleted subgraphs has barely been used (especially, the
order in which the rooted trees appear along the cycle). We conjecture that if
G is not one of the graphs described in Theorem 1 or 2, then (G| %) = 2.
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