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1. Introduction. Many problems in the systems theory arc solved
by the search for a minimum of an appropriate function. Nowadays,
% great number of minimization algorithms are known — the problem
is generally treated in the optimization theory. We expect that applica-
tion of the optimization theory methods to the optimization algorithms
will allow to systematize the field. Suitable performance criteria will
make possible to compare algorithms, to indicate where each of them
can be applied most effectively, and may be helpful in producing new
rapidly convergent algorithms.

In this paper we present a new definition of the optimal algorithm
which satisfies Bellman’s optimality principle and its application to the
pProblem of the optimal search for s minimum. The definition is based
on a minimax criterion — the optimal algorithm is the “best” one for
the “worst” function minimized. The traditional definition of optimal-
ity for algorithms leads to results which do not agree with our intui-
tion of optimality. It does not determine an optimal algorithm in a unique
Wway and allows to call optimal algorithms which do not utilize the
entire information available from previous steps of computations. Our
main purpose is to demonstrate that application of Bellman’s principle
eliminates these difficulties. For example, -it is well known that the
Kiefer algorithm is optimal for the search for a minimum of a unimodal
function. According to the traditional definition, it remains optimal under
an additional convexity assumption on the function, whereas it is obvious
that then there exist “better” algorithms. The new definition of optimal-
ity requires that an optimal algorithm does not neglect any information
that may improve final results of computations, therefore it yields a dif-
ferent optimal algorithm for convex functions.

To make sure that the optimal algorithm exists, some constraints
are assumed in relation to the distance between the points at which the
function values are calculated. Next, two problems of the optimal search
for a minimum of a function of one variable are considered and the corre-
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sponding optimal algorithms are presented. In the first case we assume
that the function considered is unimodal and in the second — that it is
convex. The optimal algorithms yield, in a given number of steps, the
best possible estimation of the abscissa of the minimum. Finally, some
numerical results are discussed which prove that the introduction of the
new optimality definition is advantageous. The algorithm, optimal accord-
ing to our definition, yields better results than the Kiefer algorithm which
is optimal according to the traditional definition.

The problems of algorithms optimality have been studied in [1]-[5].
Kiefer ([4] and [5]) considered the optimal search for the minimum of
a unimodal function of one variable. A review may be found in [1] and [3].
Most of the investigations are concerned with functions that satisfy
Lipschitz conditions together with their derivatives and that are uni-
modal ([2] and [3]).

2. Optimal algorithm. First we define an algorithm. Let F be a set
of functions with the domain X = [a, b] and the range Y. Denote by §*
the set of all k-element sequences s* in X x ¥ such that

Vs¥e 8 Afe F Vie(1:k)
fl@)) =y; and |, —o;| > ¢ for ¢ #j, ¢,j =1,...,k,
where s¥ = (w;, ;) is the i-th element of the sequence s*, and 0 < ¢ < b—a.
We say that the sequence s* is situated on the function f and f runs over s*.
Denote by F(s*) a subset of F containing all functions that run over s
Obviously, F(s°) = F.

Let n» be a positive integer, called the maximal number of steps of
an algorithm. An algorithm A is a sequence of n —1 computable functions
Pt (XX Y)Y =X (1 =2,...,7)
and an element x, € X. The actual number of steps n, is determined by

means of a sequence of logical functions:
l;: (X x Y)'— {true, false} (i =1,...,n),
l,(s") = true for every s, n, = min(i,1;(s*) = true).
For every fe F the algorithm A yields a sequence s™! as follows:

(1) st = (wnf(wﬂ)’
Yy = pi(s?l’ cee S?ll)’ 3:."1 = (‘vi’f(“"i)) (¢ = 2,00 ).

Assume ¢* € 8% to be the set of all points over which the function

runs, known before starting the computations. Denote by ., the set
of all algorithms A such that

O_k:u'gnl € Sn1+k
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for all possible values of n, < n, where s™ is given by (1). Define a cri-
terial function d by
d: o, x F->R.

In virtue of (1) the function d determines a function
dy 2 S"—>R
for every possible value of n,. For simplicity, we shall omit the index n,
and write d(s®).
Now we introduce the basic concept of the optimal algorithm A e o,,

A = (@4, Py, ..., P,). We begin with determining the function p,. We re-
quire that at p, the criterial function d takes the value

inf sup d(s"7,s,)
Dy, fF(s"1)

for every s"! such that s"'ud® e 87!, Here
8 = (xrwf(mn))’ Ty = pn(sn_l)'

Next we determine successively p,_;, Dp_zy ---, D2 and ;. We require
that at p,_,,, the function d takes the value

inf Sup  d(s" ™"y 8pu—it1y Sn—itar c++s Sn)
Pp_iy1 JeF(s"~ ?)

for every "¢ such_that s"~* Ud* e 8" (i = 1,...,n—1). Here

Spn—it1 = (wn—i+17f(a"n—i+1))7 Tp_iy1 = Pr—iz1(8"7") 9
S - ( )’ iaj = ﬁj (sn—z’ Sp—i+1y sn—i+27 ceey 89'—1)

(G =mn—1i+2,...,n).
We determine #, similarly. At @, the function d should take the value

' infsupd(sl,§2,...,§n),
xy feF
where s, = (#,, f(#,)), $;, ..., 8, aré determined as above.

It is easy to see that the optimal algorithm satisfies Bellman’s opti-
mality principle: every subsequence of k last functions p; is an optimal
algorithm from sf,, determined on the set F(s"~%). According to the tradi-
tional definition of optimality, there is only one requirement for an algo-

rithm A to be optimal [3]:
(2) supd(4,f) = inf supd(4, f).

JeF Aesl, feF
An algorithm which is optimal according to our definition is also
optimal according to the latter definition, but the inverse assertion is
not true. Introduction of a more complicated definition of optimality
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is profitable from the computational point of view. Algorithms that satisty
only condition (2) do not often utilize the entire information about the
function f, available from previous steps of computations. Therefore,
condition (2) is too weak. For instance, let us consider the problem of
search for a minimum of a unimodal convex function on an interval.
According to (2) the Kiefer algorithm is optimal, though a large part of
information is neglected during the computations.

3. Generalized Kiefer algorithm. Consider the problem of the optimal
search for a minimum of a unimodal function on an interval X = [a, b].
Optimality is understood in the sense of the best estimation of the abscis-
sa of the minimum. If before starting the computations the function value
is known at no point of the interval, the Kiefer algorithm [4] is optimal.
We study the problem under more general assumption: at the beginning
the function values are known at an arbitrary number of points. The
solution of this problem will be useful in later investigations concerning
the optimal search for a minimum of a convex function. We use the Fibo-
nacei sequence

L—l =O’ .L0=L1=1, L’l:+1=L’i+Li—1 (?;:-1,-..)-

A function f determined in the interval [a, b] is unimodal if there
exists a point x, € [a, b] such that f is strictly decreasing in [a, 2,] and
strictly increasing in [, b].

From now on we use the following notation. For an arbitrary index »
and s, € X X Y, z, will denote the first element of the pair s,, and y, (or
f(=z,)) will denote the second one. ’

Let ¢ be a sequence of k points situated on a certain unimodal
function determined in [a, d]. In our considerations, ¥ is the set of all
unimodal functions determined in [, b] which run over o*. Let s* be an
arbitrary sequence whose points are different from the points of o*. Assume
that s'Ud* e 8°+%. Of course, 0® = s° = (3. Three cases are possible:

(8) ¢*Us’ =@. In this case we substitute x,,,:=a and »,:=>b.

(b) The sequence ¢*Us’ includes two minimal points (points with
minimal ordinates) s, and s;, , < #3. Then substitute =, z,, : = z, and
x, 1= Xg.

(c) The sequence ¢*Us’ includes a unique minimal point s,,. Denote
by «,, the abscissa of s,, by #, — the abscissa of the nearest point of the
sequence on the left-hand side of z,,, and by #, — the abscissa of the near-
est point on the right-hand side of x,,. If on the left-hand side of =z,
(on the right-hand side of x,,) there are no points of the sequence o*Us’,
substitute x,:=a (x,:=b).

We define the criterial function d(s™) by

(3) ds™) = 2, —a,.
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The value d(s™) is the best possible estimation of the actual position
of the minimum of the function f, namely

d(s") = inf(h—g), Z' €l[g,h] for every f' € F(s"),

9,k

where Z’ denotes the abscissa of the minimum of the function f’.

We describe the optimal algorithm that minimizes the criterial fune-
tion (3).

Let us fix our attention on the ¢-th step of the algorithm (¢ =1, ..., n).
Denoting by s°~! the sequence of points obtained in previous steps, we
can assert that the sequence ¢*Us‘~! has been known. After determining
the quantities x,, ,,, and x,, we obtain the abscissa x; of the i-th point
in the following way. Write ¢ = v,, ¢ =1 if 2,—2,, > »,,—2,, and ¢ = x,,
e = —1 otherwise. Let ¢ be a sufficiently small positive number and let

RE if (¢, f(e)) ¢ dFus™T,
T l2e it (e, f(0) e U™,
Y = 6(c_mm)-Ln—i—l/Ln—i+1 +( —1)n—i8/Ln—i+1'

If ¢*us™! =@, substitute z,:= x, + .

If 6*Us™! %@ and e(¢c—ax,) < y, finish the computations.

If Fus™! £ @ and e(c—wm,) > g, substitute »;:= z,,+emax(y, ).

Next compute the value f(w;), determine new values z,, ,,, z, and
go to the (i +1)-st step. ‘

We prove optimality of this algorithm, omitting the trivial cases
e(c—a,)< yx and p<e.

If the number of minimal points is zero or two, our algorithm becomes
the well-known Kiefer algorithm. It is evident from any standard proof
of Kiefer’s algorithm optimality that it is also optimal according to our
definition of optimality (see [4] and [5]). Now let us assume that at the
i-th step there is a unique minimal point with the absecissa x,. In this
case, optimality appears easily by the following fact. Let us take into
consideration the larger of the intervals [z,, #,,] and [z, z,] and apply
the Kiefer algorithm to it. In the worst case the estimation of the abscissa
of the minimum is the same as obtained by means of our algorithm, which
completes the proof.

4. Optimal search for a minimum of a convex function. We describe
the optimal algorithm of the search for a minimum of a convex function
on an interval [a, b]. We assume that the functions in question are uni-
modal; the case of convex and non-unimodal functions is trivial and will
be neglected. Let function values be known at k points of the interval
before the beginning of computations. Assume that ¢* is a sequence com-
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posed of these points. Let F' be the set of all unimodal convex functions

which run over o*.

A function f: [a, b]—R i8 convex if
(A0, 4 (1 — D) wa) < Af (@) + (L — A)f ()
for all A€[0,1] and «,, 2, € [a, b].

Let s° be an arbitrary sequence whose points are different from those
of o and let ¢*Us® € 8%+, As before we distinguish three cases:

Yz I— —_t————— e —_—_— e —— — — — y—sz—=—p4
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Fig. 1

(a) o*Us' = @. Substitute x,,2,:=a, x,2,:=0>0, and z,:=a.

(b) The sequence o*Us® includes two minimal points s, and sz, 2, < 2;.
Substitute a, : = @,, #,:= @5, 8, 8 : = 8, and s, := ;.

(¢) The sequence ¢*Us’ includes a unique minimal point s,,. If there
are no points of o*Us’ in the interval («,,, b], substitute x,, z,:= b. If
in the interval («,,b] there is a unique point of the sequence, say s,,
substitute z, : = z,, and s, : = &,. If in the interval (z,,, b] there are more
points of the sequence, denote by s, the point with the smallest abscissa,
and by s, the point with the smallest abscissa in (z,, b]. Substitute

w; = $,—(£Dp-— z)(ya"'ym)/(yﬁ—yz)°
The quantities #, and z,, are determined in & similar way. Ifin [a, 2,,)

there are no points of the sequence, substitute @y, @, :=a. If in [a, z,)
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there is a unique point s, of the sequence, substitute x,, , : = ,. If there
are more points of the sequence in [a, 2,,), denote by s, the point of the
sequence with the largest abscissa, and by s, the point with the largest
abscissa in [a, x,). Substitute
.CD;, =Ty (wﬂ—$p)(yp —ym)/(yﬂ_yp)'

The criterial function is determined by
(4) a(s") =z, —u=,,

where x, and «, are the proper values at the last step. The value d(s™)
is the best possible estimation of the abscissa of the minimum.

After ¢ —1 steps of the algorithm, values of the function are known
at k+i—1 points. The points compose a sequence ¢*uUs'~! e §¥+i-1,

We describe the optimal algorithm.

The abscissa x; of the i-th point is determined in the following way.
Let ¢ =1, ¢=uw,, ¢’ =a, if ©,—x,>x,—2,, and ¢ = —1, ¢ =z,
" = x, otherwise. Let also (¢ > 0 being sufficiently small)

v =e(c'" =)Ly y[Lp sy +(— 1)n_i8/Ln—i+1 .

If #us~! =@, substitute z;:= =, + 9.
Now let us consider the case c*us~! = @. If

e(c —z,)<e or e(c—m,)<2e A (c,fle))edusT,

the computations should be finished. If neither of these conditions is
fatisfied, substitute

X;1= %, + e max(yp, &).

Next compute the value f(;), determine new values x,, z,, 2,,, ,, 2°
and go to the (¢4 1)-st step.

We prove optimality of this algorithm.

Let us consider the situation after the i-th step. The sequence of
points ¢*Us® over which the function runs and, of course, the quantities
w;, %, have been known. In the proof we omit trivial cases e(¢' —x,,) < ¢
and e(c—w=,,) < 2¢. We introduce the following notation:

&, = «,, and £, = x, at the i-th step,

F, — the set of all unimodal functions running over ¢*Us’ with
their minima in the interval (&, &,),

F, — the set of all convex unimodal functions running over ¢*uUs’.

Let us consider algorithms in which the r-th abscissa x, depends
merely on the values ), #,,, #, actual for the r-th step. Such a property
of an algorithm will be denoted by W. It is evident from the definition
of the criterial function that the optimal algorithm should have the prop-
erty W. We introduce the following notation:
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A* — an arbitrary algorithm from </, , with the property W, deter-
mined on F,;

A' — an algorithm from «, ; determined on F',, obtained from A
by replacing «,, #, by x,,, in every case except #, = &, and z, = &;;

d, — the criterial function «,_; X F,— R defined by (4);

d, — a criterial function obtained from d, by replacing x,, «, by w,, @,
in every case except z, = &, and x, = &,.

First we prove the following:

erF1 a{fj|fjeF2’ i=1,...} dl(Alyf) ='1imd2(A27fj)-
. j—>o0

We point out a suitable sequence f’ € F, for an arbitrary function
f e F,. The algorithm A' applied to the function f yields a sequence of
points (,,¥,) for r =1, ..., n—i. The algorithm A’ applied to f’ yields
a sequence (z,y!) for »r =1, ...,n—1. Denote by L, a broken line that
connects the points, already known, over which the function f runs.
Denote by L; a broken line that is identical with L, outside the interval
(#p, @,), and inside (z,, z,,) it is the lower limit of the area in which the
minimum of the function f may occur. The functions f’ satisfy the following
conditions:

(1) If @ ¢ (), 2,), the point (2, y7) should be situated on L;.

(2) If «f e (x,, @), it is required that

sgn(yi—vyl) =sgn(y,—vn), Wi—yll =354y,
where

Lg(a’f')—yZn ]-f yr >ym7
Ay =yl — Lyl  if y, >y,

0 if Y» = Ym-

In these formulas, w,,,, ¥, ¥, are the actual values at the r-th
step. v,, is the ordinate of the minimal point s,, for the function f, and so is ¥,
for the function f’. The sequence f’ is what we have sought for. In this way
it is proved that for an arbitrary algorithm A® there exists an algorithm A’

“which does not utilize convexity of the function whose minimum is sought
for, and such that

a, (4 f) = l_imdz(A27 fj)7
j—oo

where f’ are a sequence of appropriate convex unimodal functions. Hence
it appears that such an algorithm A? is optimal for which the correspond-
ing algorithm A' is the generalized Kiefer algorithm. It is easy to verify
that the described algorithm has this property, which completes the proof.

5. Numerical examples. A few examples will illustrate the perform-
ance of the algorithm A' described in Section 4. For comparison, we
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Present results obtained by means of the Kiefer algorithm for the same
problems. The latter algorithm is denoted by A*. It is assumed that
a=—1, b =1, and k¥ =0, i.e. no values of the function determined
on [—1,1] are known before starting the computations. Computations
have been made for various number of steps n, 4 < n < 25. Always n, = n.
The parameter ¢ is assumed negligibly small. For every function consid-
ered the algorithms are compared in two respects: what minimal values
of the functions are obtained at every fixed n» and how fast these minimal
values converge to the actual minimum. This way of compa,ring algorithms
seems most suitable for practical purposes.

If n < 5, the algorithms A' and A yield the same results. If n = 6,
the dlﬂerence i§ ~e. The algorithms have been tested with “angular”
un ctions

In case a, = a,, by ~ 0.5(a+b) =0 and »n > 17, the algorithm A,
yields a result that differs from the exact one by no more than e. The
algorithms performance in this case is illustrated in Fig. 2 where results
for the function f,(x) = |# —0.1| are presented.

-
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Fig. 2
O ~ algorithm 41, x — algorithm 4%

If @, is far removed from a, or b, is near 41, the supremacy of A
over A* vanishes. This is shown in Fig. 3 for the function

—z+0.1 if r<0.1,

5@ =1100@w—01) it &> o0.1.
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O — algorithm 4!, x — algorithm A%
The results for
fs(®) = (10z—1)" and f,(») = exp[(10x—1)]

are presented in Figs. 4 and 5, respectively. The prevalence of A' can
clearly be seen for every n except » = 9 and n = 10.
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Fig. 4

C = algorithm Al, X — algorithm 4k
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Fig. 5
O — algorithm 41, x — algorithm 4%

6. Conclusions. The construction of algorithm optimality definition

in such a way that the optimal algorithm satisfies Bellman’s optimality
principle makes possible to compose optimal algorithms which utilize
better the information obtained during computations. It can be seen
from the numerical results presented in Section 5. Generally speaking,
the algorithm A' yields better convergence to minimum. Only in case
of functions really asymmetrical in the neighbourhood of their minimum,
or if the minimum is situated near an end of the interval, the prevalence
of A' over A% vanishes. According to the traditional definition of opti-
mality, both of the algorithms are optimal, according to ours — A' only.
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A. ADAMSKI, A. KORYTOWSKI i W. MITKO WSKI (Krakéw)

POJECIE OPTYMALNOSCI ALGORYTMOW
1 JEGO ZASTOSOWANIE DO POSZUKIWANIA MINIMUM

STRESZCZENIE

W pierwszej czedei pracy podano nowsg definicje optymalnosei algorytméw
ktéra pozwala nazwaé optymalnymi tylko takie algorytmy, ktére w pelni wykorzystujag
informacje dostepna w kazdym kroku obliczen. Spelniona jest zasada optymalnosei
Bellmana. Przyjeto minimaksowe kryterium optymalnosci: optymalny algorytm
jest ,najlepszy” dla ,najgorszego’” przypadku. Nastepnie skonstruowano algorytmy
optymalne dla dwoéch zadan poszukiwania minimum funkeji jednej zmiennej w prze-
-dziale ograniczonym. Pierwszy algorytm jest uogélnieniem znanego algorytmu Kiefera
na przypadek, w ktérym przed rozpoczeciem obliczen znane s3 wartodei funkeji badanej
w pewnych punktach przedzialu. Zakladana jest unimodalnodé. W drugim zadaniu
poszukuje si¢ minimum funkeji wypuklej. Przedstawiono wyniki numeryczne, uzys-
kane dla kilku typowych funkeji, i poréwnano je z wynikami otrzymanymi za pomoca
algorytmu Kiefera.



