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MOTION OF A SPHERE IN A STRATIFIED FLUID

0. Summary. The Laplace transform method is used to solve the
initial value problem of the unsteady flow due to the motion of a sphere
(of radius a) in a stratified fluid. First, we consider the case where the
sphere moves in a horizontal direction perpendicular to the vertical axis
(taken as the z-axis), the direction of the linear, stable stratification of
the fluid. We find that the disturbances die out everywhere ultimately
except in the column |z| < a, on the body and on the z-axis. The solution
in the case where the sphere moves along the vertical axis shows that
in the limiting steady state the singular surfaces found in the case of
homogeneous rotating fluid are absent here. The perturbation in the fluid
velocity tends to zero everywhere except on the horizontal tangential
planes where the radial velocity has a finite limit.

1. Introduction. In a recent paper Bretherton [1] considered the
two-dimensional unsteady flow due to the transverse motion of a circular
cylinder in an unbounded rotating fluid (the axis of the cylinder being
perpendicular to the axis of the rotation of the fluid) in which he analyzed
the initial value problem interpreting the disturbances in terms of planc
inertial waves. The unsteady, plane stratified flow analyzed by one of
the authors [2] has brought out the similarity between these two types
of flows along with certain essential differences. In this paper we consider
the unsteady flow due to the motion of a sphere along and perpendicular
to the vertical axis (z-axis), the direction of linear, stable stratification
of the fluid.

When the sphere moves in the transverse direction (that is, in a hori-
zontal direction), the disturbances die out everywhere in the fluid ulti-
mately, except in the column |2| < a, on the body and on the z-axis.
In the column |2| < a the radial and transverse velocities tend to finite
limits which depend on the vertical coordinate z, showing thereby that
the fluid never moves two-dimensionally. The horizontal velocity in the
column has a vertical gradient, a feature in contrast with the Taylor-
-Proudman constraint for a homogeneous rotating fluid (where the ultimate
flow is steady and two-dimensional everywhere).
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When the sphere moves with uniform velocity along the vertical
direction, we find that the flow caused by the sphere in the column |z| < a
has a finite variable velocity. This velocity-gradient, set up in the liquid
column |z]| < a, 1s a direct consequence of the stratification and brings
out the essential difference between stratified flow and the flow of a ro-
tating fluid where the fluid inside the circumscribing cylinder moves
as a rigid body with a sphere. Also, the singular surfaces found in the
case of a rotating fluid are absent here.

2. Transverse motion of a sphere.

(a) Governing equations and solution. We suppose the fluid in the
undisturbed state to be hydrostatic such that the initial density g, is
a linear function of the vertical coordinate z alone and if P, is the cor-
responding pressure, then P, can be determined from dP,/dz = p,g, Where
0o = 0y (1—pB2), 0, and B being constants.

Taking the cylindrical polar coordinates (», 0, z) such that z is measured
positive in the direction opposing gravity, the linearized equations of
motion for an incompressible, inviscid, non-diffusive, stratified fluid are
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The sphere starts impulsively from rest at ¢ = 0 and moves in the
(r, 0)-plane along the x-direction with a uniform velocity U. Let «, v and
w be the components of the fluid velocity relative to the coordinate axes
fixed in the body. Since the disturbance is created impulsively, the initial
perturbed motion is taken to be irrational with 0 as its potential. Also
the initial density perturbation is taken to be zero. Now, taking Laplace
transforms of equations (1) and defining N = P — 9, where P = P/g,,
the governing equation for N can be written as
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The boundary conditions are u — — Ucos0, v — Usinf, w — 0 as
z — oo for fixed r and ¢, and, on the sphere r2+22 = a2, wr+wz = 0.
In terms of N these conditions become

(3) N—>0 asz-—> o
for fixed r, and on the body
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In view of the boundary condition (4), the 6-dependence of N can

be chosen as N = Q(r, 2)cos§. Then equations (2)-(4) reduce to
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Using the transformations
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where ¢ = —z'al/@/s, and the sphere is given by & = il/(82+ﬁg) /Bg, (5)
and (6) become
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Where u =w—2al/ﬂg(32—|-/3g) and Q@ -0 as & — oo.
8
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The solution of (7) with conditions (8) is found as
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The velocity components at any general point in the fluid are there-
fore given by
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(b) General features of the flow.

(i) Velocity at any general point for large time. The singularities in
the integrands in (9) are -+1l,, +1l,, iil/ﬂg and zero. The calculation
of the contributions from s = +il; to » and w shows that they are of
order O(1/Vt), and to v of order O(1/Vt?), whereas the contributions
from the branch points +zVﬂg to all velocity components are of order

01/V13).

Carrying out the calculations for s = 0 also, we find at any general
point for large time
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(—U—U(a?—2%[r¥cosb, |2|<a,

0, 2] > a,
v

(U—U(a?—=2?)/2%sinf, |2 < a,

w—0 for all z.

Thus we note that the instantaneous velocities due to the motion
of the sphere die out at all points in the region outside the column |z| < a,
while the radial and transverse components are finite inside this column.
We see also that in the region |2| < a these horizontal velocities are not
independent of the vertical coordinate and hence the flow is not two-
-dimensional. There exists a vertical gradient for the horizontal velocity,
contrary to the case of transverse motion of a sphere in rotating liquid
where the ultimate motion is steady and two-dimensional everywhere [3].

(ii) Velocity on the plane |2| = a. A similar calculation shows that
usech = — U—{-O(l/l/i), veosec = U+0(1/l/t_3), wsecl = 0(1/1/{),
which agrees, for ¢ — oo, with the expression for the velocities inside
the column when |z2| = a.

(iii) Velocity on the circumscribing cylinder » = a. Now the singulari-
ties for #,v and w are s = :til/ﬁg,_Jcil/ﬂg(zz—az)/(z2+a2) and zero,
respectively. The contributions from -4V pg for large t to u, v and w are

— 4 — 4 )—
of the order O(1/Vt?), O(1 /]/t) and 0(1/]/t3), respectively. Similarly, we
can show that the other singularities lead to expressions of the order
O(/t) as t - oo.
(iv) Velocity on the sphere. On the sphere we have
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where D = D(s) as before.
Conversely, we get the velocity on the sphere for large time as
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where n = l/%r/a.
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Hence the velocity on the sphere continues to oscillate indefinitely
with finite amplitude. Only the transverse component of the velocity has
a finite limit 2U.

(v) Velocity on the axis r = 0. On the axis we have, for large time,
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w~0,"

where k = Bg(22— a?)/z.

Thus the flow is unsteady atid the vertical velocity component tends
to zero whereas the radial and transverse velocities continue to oscillate.

Thus we see that, in general, the disturbances die out everywhere
in the field as ¢ - oo except in the column 2| < a, on the body and on
the axis r = 0. In the column |2| < a the radial and transverse velocities
ultimately tend to finite limits which depend on the vertical coordinate z.
This shows that the fluid never moves two-dimensionally and that the
horizontal velocity has a vertical gradient, violating the Taylor-Proudman
constraint of homogeneous, rotating fluids.

3. Vertical motion of the sphere.

(a) Governing equations and solution. The equations governing the
flow are
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The sphere is assumed to start from rest impulsively and to move
along the vertical direction with a uniform velocity U. With the same
meaning for N as before, the governing equation for N is formed to be

0:tN 10N s2 02N

or? +7‘ or +sz+ﬂg 02*

The boundary conditions are
u—>0, w—>—U as z—> oo for fixed » and ¢,

ru+z2zw =0 on r:42z2% = a?,
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which, expressed in terms of N, take the form
oN N 82 oN
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Transforming to the (&, #)-coordinates, where

r:cl/l—l—.le/l—n? and zl/(32+Bg)/sz=c§n,

the governing equation and boundary conditions reduce to
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We find the solution of (10), and then % and w. Finally, the inverse
transforms give the pressure and velocity at any general point of the
fluid.

(b) General features of the flow.

(i) At any general point in the flow field. The singularities of the
integrands in the Laplace inversion integrals are at s = +iVBg, +il,,
+1l, and zero. The contributions from the branch points +4l;, and -+1l,
to v and w are O(1 /l/{), whereas those from iil/ﬁg are O(1/V13). The
singularity s = 0 gives for large { — oo

Uz2r+0(1/t), 2| <a,

° ~
0, 2| > a,

w~ —U+0(L/t) for all z.

Hence, in general, the ultimate flow is steady and the perturbations
tend to zero at any general point except in the column of liquid between
the parallel planes |2| = a, where the radial velocity acquires a finite limit
depending on the position coordinates showing that the velcoity has
a gradient in that column.

(ii) On the circumseribing cylinder » = a. Here the contributions
from s = 44V g are of the order O(t~>%) for u and of O(¢t**) for w.

(iii) On the tangential planes || = a. Now the radial velocity approaches
a finite limit Ua/2r and the vertical velocity tends to — U+ O(1/t).
A similar procedure shows that the velocity oscillates on the sphere;

on the axis the unidirectional flow along the vertical direction continues
to oscillate.

9 — Zastosowania Matematyki XIII.1
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Thus we conclude that if a sphere moves in an unbounded, stratified
fluid with a uniform velocity along the vertical direction, starting from
rest impulsively, then the perturbation tends to zero everywhere in the
flow except in the column |2| < a, where the liquid moves with a finite
variable velocity and the perturbed velocity continues to oscillate inde-
finitely on the body and on the axis. The ultimate velocity gradient set
up in the liquid column |2| < a, being a direct consequence of stratification,
‘brings out an essential difference between stratified flow and the flow
of a homogeneous rotating fluid, where the fluid inside the circumseribing
cylinder moves as a rigid body along with the body. Another important
difference between the two types of flows is the absence of singular sur-
faces (where the velocity becomes infinite) in the case of stratified flow.
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RUCH KULI W ROZWARSTWIONE] CIECZY

STRESZCZENIE

W pracy rozpatruje sie przeplyw niestacjonarny, wywolany przez ruch kul
w cieczy rozwarstwionej, jako zagadnienie poczatkowe. Najpierw rozwazany jest
przypadek, gdy kula porusza si¢ w kierunku poziomym, prostopadlym do pionowej
osi ustalonego liniowego rozwarstwienia cieczy. PPokazano, Ze zaburzenia wywolane
ruchem kuli zanikaja z uplywem eczasu wszedzie poza slupem 2z = a, powierzchnia
ciala i osig z. Z postaci rozwigzania wynika, Ze gdy kula porusza sie wzdluz osi pio-
nowej, przy przejsciu do granicznego stanu stacjonarnego nie pojawiajg sie powierzchnie
osobliwe, wystepujace w przypadku jednorodnej, obracajacej si¢ cieczy.



