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0. Introduction. The aim of this paper is to present some theoretical
results concerning the methods of construction and evaluation of sub-
jective classifications, and also, to present the practical application of
the suggested theory to a certain empirical problem. Though the theo-
retical concepts introduced in this paper may be applied not only to the
particular empirical problem which ingpired their introduction and analy-
gis, it seems best to start from a short outline of the questions posed by
practice.

The National Bank of Poland (NBP) replaces systematically used
banknotes by new ones. The banknotes replaced are those which enter
a branch of NBP performing such a replacement (there are several hun-
dreds of such branches) and which are deemed as used up in a degree
exceeding the admissible norm (in NBP terminology such banknotes are
called “destructs”). ‘

The norms of admissible waste are defined rather vaguely; in practice,
the bank employees whose principal duty is to count the packages of
banknotes reject from these packages those banknotes which, according
to their subjective judgment, should be withdrawn from the circulation,
and replace them by banknotes taken out of a special package. Elimination
of destructs is only a secondary task of these employees: they are interested
primarily in the correct counting the total number of banknotfes in
packages, as they are financially responsible for the correctness of this
counting.

As mentioned above, the criteria which distinguish destructs from
non-destructs are rather vague and at present cannot be changed in any
controllable manner. The bank instruction specifies that one should
reject the banknotes which are torn, have distinet stains, or are “too
much up”. While the first categories are defined in a more or less
satig a.cto'r'ya‘ nner, the basic difficulty lies in the lack of a sufficiently
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banknotes should be eliminated as destructs. Generally, the bank would
like to create the possibility of introducing a flexible policy of replacement
by which the “critical level of waste” beyond which the banknotes are
eliminated could be changed by decisions of NBP. Such a flexible policy
in an obvious prerequisite for any subsequent research aimed at the
choice of a policy being optimal from the point of view of suitable
criteria.

Thus, to create the possibility for search of an optimal policy of
replacement, it is necessary to formulate objective criteria for the concept
of destructs, criteria which could be changed in a controllable way;
moreover, it is necessary to create methods of objective evaluation of
various policies of replacement in terms of the quality of banknotes
in circulation. These two problems are closely related and will be
treated jointly.

For technical reasons one cannot use any criteria of the degree of
waste of banknotes other than those for subjective evaluations. Hence,
measuring the number of creases crossing a given line, amount of light
absorbed, or other more or less obvious indices, are eliminated from among
the considerations at the beginning. Therefore all concepts introduced
in this paper will be based solely on subjective evaluations by persons
performing the classifications, and the estimates of parameters introduced
will be based on observations of those subjective classifications. In short,
we will try to create methods of objective evaluations and of objective
control of subjective classifications.

1. Preliminaries. We postpone the consideration of classifications to
the following sections and begin with presenting two simple theorems
which will be used in Section 2.

Consider a system ¢ = {G,, ..., G,} of n independent experiments.
Assume that each experiment can lead either to “success” or to “failure”
and let a; be the (unknown) probability of success in the experiment G,.
Our problem consists in constructing methods of inference about the proba-
bilities a; in situations where for some reasons one is allowed to make not
more than two independent observations of each experiment G,;. These
methods of inference will be given in the form of estimates of the quan-

tities
1 v 1 v
a=— E @, and o =— E (a;— @)*
n . n )
=1 i=1

which characterize to some extent the vector (a,, ..., a,) corresponding
to the system %.

Assuming two independent observations of each experiment G,
let X; be 1 or 0 depending on whether the first trial in the experiment G,
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resulted in success or not, and let Y; be 1 or 0 depending on whether the
second trial in the experiment @G; resulted in success or not. Thus, if the
first and the second trials are independent, and if different experiments G;
are independent, the random variables in the pairs (X, Y,), (X;, X;),
(Y;, Y¥;) and (X;, Y;) are independent for ¢ +# §.

Write
and set
n
1 1
U= XX V=3 )T,
i=1 i=1
1 1 v
L= (U+Y), W =ZZZ"_ uv
i=1

We prove

THEOREM 1. The random variable L is an unbiased estimate of para-
meter @, and the random variable W is an unbiased estimaie of parameter o2.

Moreover, D*L < 1/8n, and D*W < a, ~3/4n.

Proof. By construction, U and V are independent and equally
distributed. We have EX, = P{X; = 1} = a;, = FY,, hence

1
EU =EV == E a; = G,
n

which implies that BL = a@. Next, BZ, = EX,Y, = EX,EY; — a?, and
consequently,

_1 _i 2 _1 2 =2 __ 2
EW_%ZEZM EUV = nzai EUEV—’,'—?I'ZQ.L_Q/ = 0,

which completes the proof of unbiasedness.
Now, D’X; = D*Y,; = a;(1—a;) < 1/4, and using the assumption of
independence we can write

consequently,

1
D'L< (D*U+D*V)<1/8n.
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Evaluation of the variance of W is somewhat messy. We write

D'W = D (iZz,.,.— UV)
_ 2 (32 + 07— Zow( Sz, o)
_ %1_{ D*Z+ FDz(Z x )'y)-
_ %COV(Z Zi D) X; D) T
3 Spas ho(Sa) Lon(Ye Se
_ ni N Dzt e 3 Cov iy, Zin)— s 3 0B, Zan)
Z‘D2 it — ZCOV(Z,,, L) —

1#f
k#m

(_ — —) [Z Cov(Z,;, Zy,)+Cov(Zy, Zkk)]

= S1+ Sz'—
Now, we have
D*Zy = P{Zy = 1}[1—P{Z; = 1}] = a;(1—a}) < 1/4,
hence the first term, S,, is bounded from above by 1/4n. In the second
sum all terms vanish except those corresponding to systems of indices
of the form (4, j; ¢, j) with ¢ # j and either (¢, j; ¢, k) or (7, j; k, ) with
%,§, k all distinet. For ¢ # j we have '
OOV(Z,;,, sz) == .DZZ,H = a,;a,- (l—a/ia,,-) < 1/4.
Next, for 4, j, k all distinet, we have
Cov(Zyy Zy) = BZyZy— EBZyEZ,; = EX;Y;Y,— EX,EY,EX,EY,
= EYj.EYk.Dz.Xz = a:,-aka,;(l—ai) < 1/4.
Now, the number of systems of indices of the form (¢, j; ¢, j) with
i # j is8 n(n—1); the number of systems of indices of the form (¢, j; ¢, k)
or (¢,j; k, ¢) with distinet 4, j, k i8 2n(n—1) (n—2). Thus, the term 8,
is bounded from above by
11 "2
Zﬁ[n(n—l)—l—mz(n—l) (m—2)] ~
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To obtain the desired upper bound of order 3/4n for D*W it remains
to prove that all terms in the sum §; are non-negative. Now, all terms
in 8, corresponding to systems (¢, ¢; j, k) with. j # ¢, k¥ # 4, vanish. There
remain covariances of the form Cov(Z,,Z,) equal to D?*Z,,>0 and
covariances of the form Cov(Z;, Z;) with ¢ # j. We have

COV( i Z‘ii) = EZ"'Z”'— .EZH.EZ.,'7 = E.Xf Y’i Y"—' .EX,,' YiEXi Yf
= [EX;BY,—(BX,)’EY,] = a;(a}—a}) >0

Thus, 8, > 0 which completes the proof of Theorem 1.
We state for further reference that the last covariance is bounded
from above by 4/27, i.e. that for ¢ = j we have

(1) Cov(Zy, Zy) < 4/27.

Suppose now that system ¢ is partitioned into two disjoint subsy-
stems ¢, and ¥, consisting of #», > 0 and n, > 0 experiments respectively
(so that n,+ ny = n). Define

1 1
al) = — iy a® =— iy

”’1 1 Ny 2

o} = _Z (a;—aW)?, g ____Z (a,— a?)?,

where for simplicity, ), and ), denote sums extended over indices ¢ from
subsystems ¢; and ¥,, respectively.

Using standard analysis of variance partitioning we shall devise
a test for the hypothesis that @) = a®, i.e. for the hypothesis that the
mean probabilities of success are the same in both subsystems ¥%; and ¥9,.
Let U,,V,, W, and U,, V,, W, be defined as before for subsystems
9, and 9,, that is let

Ul=i X I7l=i Y, W1=1 Z -U0,7,,

N, n, 1 N,

and similarly for U,, V, and W,. The random variable W will be defined
as before for the whole system ¥ = ¢, u ¢4,. We prove

THEOREM 2. The random variable
K == W‘_ ﬁ-W]._ &Wg
n n
has a non-negative expectation, EK > 0. The equality EK = 0 holds if and

only if aV =a®. Moreover, for min(n,,n,) > oo we have D*K < B,
~145 [54n.
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Proof. Partitioning the expression for ¢2, we get

1
=— Z (a;—a)*

n

1
_1 Z (a,— a0+ a0 —g) 4 = Z (a;,— @D+ a® — g)?
1 n 2
_ _2 (@,— aW)2 4 = 2 —aoy4 Lo _gpy " (a@) a)?
n
n
2t o L@ —af D@ -t
n

By Theorem 1, W, W, and W, are unbiased estimates of o*, ¢} and o2,
and we can write
BE — BW— 2 EW,— 2 BW, = @ —a)'+ ~2(@—ay > 0

with the equality sign holding if and only if @ = a@®, as in this case
a =a" =a®. To evaluate the variance of K note that W, and W,
are independent, hence

2 2
DK = D*W+ %Dle—l— %ﬁwz—z %i Cov(W, W,)—2 %oov(w, W,).

For large », and n,, the sum of the first three terms can be bounded
from above by

3 ny 3 +n§ 3 _3+3(n1+n2)_3
an ' n® 4n, ' n® 4n, 4n 4n? o’

Next, we need bounds from below for Cov(W, W,) and Cov(W, W,).
We have

Cov (W, W,) = Cov(—l—ZZu uv, —2 Z, —U1V1)
1

oS S genl e S
Lo S 3,2 (3 2 3.

From the proof of Theorem 1 it follows that all covariances of the
form Cov(Z;, Z,,,) are non-negative, thus we can concentrate on the last
two terms of the above sum only. We have

Cov(z i ka) = COV(Zl Zii’zl ij) = 21 Cov(Zy;y Zy),

since for ¢ in ¢,, j and % in 4,, Z; and Z;, are independent.
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Now, in the last sum all terms for which both j and % differ from ¢ are
zero; terms for which exactly one of indices j, k is equal to ¢ are, by (1),
bounded by 4/27, and all terms with j = k = ¢ are bounded by 1/4. The
number of the latter terms is n,; the number of terms with exactly one
of the indices j, k equal to ¢ is 2n,(n,—1). We have therefore

COV(ZZ Z ) ! [n1+ 4 2n4(n 1)] 8
nn? s w4 T 277 27Tn "

Finally, let us consider the covariance Cov(D1Zy, D Z;y). We may
write it in form of a sum,

COV(Z:1 Zy, Zl Zﬂc) + COV(Zl Zys Z’ Z‘”‘)’

where }" denotes the sum extended over pairs j, k for which at least one
term is outside of ¢,. The first covariance is bounded by

4
ﬂ+—mmrn

a8 before. In the second sum, the terms with both j and % outside of %,
vanish. If only one index, say j, is in %, and % is in ¢,, then the covariance
is zero unless j = ¢. In the latter case it is bounded by 4/27, as stated
in (1). The number of such terms is obviously equal to 2n,7n,. Thus we
have

1
nin, Cov (21 Zy, Z Z?'k)

< 1 n1+42 ( 1)+42 n 8[1 fn,1+1 nz] 8
— +—2n,(n,— — 2n —— ==
\nznl 4 g7 Mt g7 ~ 27 n n n o n

Hence Cov(W, W,) is bounded from above by 16/27n, and, by sym-
metry, the same applies also to Cov(W, W,). Combining these evaluations
we can write

+ Ny 16+ Ky 16 145
ﬂ”N n 2Tn n 21Tn  5dn’

which completes the p_roof.

Theorem 2 can be extended without any change to the case of testing
for homogeneity of a set of systems ¢,, ..., %. Infact,let ¥ =%, U ... U
U %, with 9, n¥, =0 for ¢« +# j and let ¢, consist of n; > 0 experiments.
Put n = n,+... +m. Define a®, ¢} and the estimates U,;, V,, W, in
a manner analogous to that used before. We have

THEOREM 3. The random variable

k
1
K =W— ;Zn,.w,.
=
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satisfies the condition EK > 0 and EK = 0 if and only if aV =a® = ...
.. =a®, Moreover, for min(n,, ..., n,) > oo we have D*K < f,~145[54n.

The constant 145/54 can be further improved if one takes into account
the fact that if terms of the form a;a;a;(1— a;) are close to their maxima
equal to 1/4, the terms involving a,(1—a;) and a;(1—a;) must be close
to zero.

2. Evaluation of schemes of classification. In this section we show
how the theorems of Section 1 may be used for constructing methods of
evaluation of schemes of classification. Informally, by classification we
shall understand the act of assigning elements of a given set (called cate-
gories) to elements of another set (of classified objects). Contrarily to the
approach presented in [2], we make no assumption about the existence
of a “true” category for any given object. Consequently, we shall evaluate
classifications by means of some parameters characterizing interindividual
and intraindividual variability. The underlying idea is that a good classi-
fication scheme satisfies the following informal requirement: if the same
set of objects is classified twice (by different individuals or by the same
individual), a majority of objects is assigned to the same category on both
occasions.

It should be remarked that the above requirement constitutes only
a necessary condition for a classification scheme to be “good”, and it
is by no means sufficient. However, as any sufficient condition must be
based on the concept of “true” category for a given object and consists
of requiring that the average number of “wrong” classifications is small
in some sense or other, such conditions lie beyond the scope of this paper.

Formally, suppose that we are given a non-empty set B whose elements
will be called classified objects, a non-empty set S whose elements will
be called individuals making classifications, and a finite or countable set
€ = {Cy, Cy, ...} whose elements will be called categories of classification.
To avoid trivialities, we assume that the set € contains at least two ele-
ments.

Given B, 8 and ¥, by a classification scheme we shall mean a family
of random variables (defined on some fixed probability space)

{£D(b), beB, seS, 1 =1,2,...}

which assume values in %, and such that:

1° if (b,s,%) = (b',s’,4'), then the random variables £ (b) and
E¥)(b') are independent;

2° for any beB and seS, the random variables £9(b), ¢ =1,2,...,
have the same distribution.

We shall interpret {£?(b) = O,} as the event “on ¢th trial individual
8 classified object b into category C;”.
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Write
P{EQ (b) = 0;} = p,;(b);

by condition 2° the latter quantity is independent of index 4.
For beB and 8., 8,¢8, write

(2) Uy 0g(8) = ) Day 5 (B) oy 5 (0).

The quantity u, ,,(b) Will be used as our measure of quality of a clas-
gification scheme (with respect to object b and individuals s, and 8,);
it is non-negative and attains its maximal value 1 if and only if the distri-
butions {P,,,;(0)} and {p,, ; (b)} are identical and degenerate (i.e. con-
centrated at one value of j).

In practical situations, the number of available independent classi-
fications of the same object by the same individual is limited, primarily
by learning effects. Thus, we shall use methods of Section 1 for estimation
of quantities u, ,,(b); as we shall see, it will be sufficient to take 2 or 4
observations of classifications by a given individual depending on whether
8 # 8 Or 8, = 8,.

Let Q@ = {b,, ..., b,} be a finite subset of B, and let s, and s, be fixed
elements of S (not necessarily distinct). Consider the following scheme

of experiments {G,, ..., G,}: experiment @; leads to success on the first
trial if &0 (b,) = &2 (b; ) otherwise it leads to failure. Similarly, @, leads
to success on the second trial, if £ (b;) = &2 (b;); otherwise it leads to
failure.

These definitions may appear somewhat artificial, but they allow
to avoid tedious distinguishing of cases s; = s, and s, # 8,. As we see,
in the first case one needs four observations, while in the second case one
needs only two observations for each individual and each element be@.

Clearly, by the assumed independence, the probability of success
in experiment G is u, 1.8, (0:); moreover, different experiments and succes-
8ive trials on the same experlment are independent. Thus, we are in the
Position to apply Theorem 1 of Section 1 to estimate the quantities

1 n
msl,s2 (Q) = "',,; 7'_2: Us,,s, (by)

and
1 v \
o'gl,sz (Q) = ; 7.21; [usl,sz (ba) - msl,sz (Q)] .

We can also apply Theorems 2 and 3 of Section 1 to design various
tests for “homogeneity”. We shall sketch the construction of two of them.
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Suppose that each individual s,,...,s, (m >1) of set S performs
four independent classifications of the same set @ = {b,, ..., b,}. In other
words, we observe values of the random variables Eg’ (by) forj =1,...,m,
k=1,...,mand ¢ =1,2,3,4. We may now define the family ¥ = {G,,,
j=1,...,m, k=1,...,n} of experiments defining “success” and “fail-
ure” on the first and the second trials in experiment G, depending (in
the same manner as above) on the results of four classifications of object b,
by individual s;. We may now proceed in two ways. First, by splitting
the system ¢ into subsystems ¢4, ,9,, ..., 9, corresponding to different
individuals and applying Theorem 3, we are able to test the hypothesis
that the average

n

1
m’sj,sj (Q) = ; 2 '”’s,-,sj (bk)
k=1
is the same for all individuals s;. Intuitively, this test would tell us whether
all individulas in question are equally “reliable” in their classifications
{with respect to the set Q).

We may also proceed differently and split ¢ into subsystems ¢,
Y3y ...y 9, corresponding to different objects from . Theorem 3 could
provide a test which (for large m) would inform us about the existence
of “odd” objects in @, i.e. objects which are significantly easier or signi-
ficantly more difficult to classify. More precisely, we could test the hy-
pothesis that all averages of the form

m Y
1
Tn‘zus,-,s,-(bk)r k=1,...,n,
i=1

were equal.

In a similar manner, we may partition the set {s,, ..., s,} into pairs
(say, by random metching) and define experiment G, accordingly, de-
pending on the results of classifications of object b, by the jth pair of
individuals. As before, two ways of splitting the system {G;,} so obtained
lead to two tests: one, which would inform us whether among the class-
ifying individuals there are such ones which “deviate” systematically
from the rest of the group in their classifications, and the other, telling
whether there exist objects which are either classified significantly “more
unanimously” than others or cause significantly greater differences of
opinion than others.

3. Construction of classification schemes. In this section we shall
show that under certain conditions we can construct classification schemes
satisfying some desirable properties. Intuitively, we shall assume that
objects of the set B possess some quantitative property (either directly
measurable, such as size, or a latent one, such as utility), and we shall
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assume that individuals from set 8, when confronted with a pair of objects
a, beB, are able to point out one of them as having “less” of this property.
If ties are not allowed in these judgments, we may expect inconsistencies
and, in general, randomness in these judgments; we shall see, however,
that a relatively weak requirement of over-all consistency will suffice
for constructing a reasonably good classification scheme.

In short, the construction of the classification scheme will be based
on a suitably selected “standard sequence” of elements of B and will
consist of assigning category C; to all elements of B which are judged
to fall “between” the jth and (j+4 1)th terms of this sequence. Our basic
idea will be to construct the longest possible standard sequence satisfying
the consistency property; with probability 1 no element of B will be
judged “earlier” than the jth element and “later” than kth element of
the sequence for & > j.

Formally, we shall assume that we are given a family of random
variables

{T%(a, b), (a,b)eBX B,sel8,i =1,2,...},

such that T{(a, b) assumes one of the values a or b and satisfying the
following properties:

1° if (s,4,(a, ) # (s, 4", (a', %)), then TP(a,d) and T (a,d’)
are independent;

2° for every (a,b)eBx B the random variables T%(a,bd), se§,
t=1,2,..., have the same distribution.

We shall interpret {T'"(a, b) = a} as the event “on the ith presenta-
tion of pair (a, b) individual s pointed out to a as having “less” of the
considered property than b”.

Write

P{T(a, b) = a} = p(a, b);

by 2° the last quantity does not depend on s and 4.

We shall assume that the probabilities p(a, b), (a, b) e B X B, satisfy
the following axioms (1):

(i) SYMMETRY. For any a, beB we have

p(a,b)+p(b,a) =1.

(ii) TRANSITIVITY. For any a, b, ceB,if p(a, b) > 1/2 and p (b, ¢) >1/2,
then

pla,c) > max[p(‘% b), p(b, e)].
(iii) PERFECT DISTINGUISHABILITY. There exists a certain q satisfying

the condition } < q <1 such that for all a,b,ceB, if p(a,b) >gq and
(b, ¢) > q, then p(a,c) = 1.

(Y) This is a slight modification of the set of axioms given in [1].
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To formulate the next axiom, write for fixed ae¢B and fixed % such
that 3 <h <1:
Ajf (@) = {zeB: p(a, 2)

> h},
Ay (a) = {yeB: p(y, a) > h}.

(iv) CLOSURE. For every aeB and every h such that } < h < 1:

I. If A} (a) is mon-empty, then there exists a u = u(h, a)ed; (a) such
that p(u, ) > 1/2 for all xe A} (a).

II. If A; (a) is non-empty, then there exists a v = v(h, a)e A} (a) such
that p(y, v) = 1/2 for all yeA; (a).

(V) ARCHIMEDEAN PROPERTY. For every a<B and every h such that
i<h<l1: |

I. If there exists an infinite sequence by, by, by, ... of elements of B
satisfying the condition p(b;, b;,,) = h for all j, then there exists m = m(a)
such that p(a,b,) > 1/2.

I1. If there exists an infinite sequence ¢y, €,y Cyy ... Of elements of B
satisfying the condition p(c;.,, ¢;) = h for all j, then there exists n = n(a)
such that p(c,a) > 1/2.

Note first that axiom (i) is not implied by the fact that the random
variable T((a, b) equals either a or b; indeed, as we consider ordered
pairs (@, b), there is no a priori reason why the distributions of T (a, b)
and T (b, a) should be related one to the other in any way.

Next, let @ be the set of ¢’s satisfying the .conditions of axiom (iii).
Clearly, if ¢geQ and ¢ < ¢’ <1, then ¢’'<Q. Write

(3) ¢" = inf{g: q<Q}.

Since strict inequalities are required in (iii), we have ¢*¢Q, which
implies that @ = (¢*, 1).

We shall precede the main theorems by some preparatory propo-
sitions.

Define: a~b if p(a,d) = 4. We have

PROPOSITION 1. Relation ~ 18 an equivalence relation in B.

Proof. By (i), relation ~ is reflexive and symmetric. Suppose that
a~b, and b~ec, ie. p(a,bd) = p(b, c) = %. By (ii) we obtain p(a, c) > 3.
Next, by (i), we have also p(¢, b) = p(b, a) =4, hence, by (ii), we get
p(c, a) > %. Using (i) again, we obtain p(a, ¢) = %, which shows that ~ is
transitive, thus completing the proof of Proposition 1.

Let us fix an arbitrary a*<B and h such that 1 <h <1. We shall
be dealing with finite or infinite sequences ..., b_,, bg, b, by, ... of ele-
ments of B satisfying the conditions

by~a* and p(b;,b;,,)>h for all j.






























