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ON A CERTAIN MODEL OF AN EPIDEMIC

1. Introduction and intuitive background. In this paper we shall
consider a certain model of an epidemic. Roughly speaking, the situation
which we shall be investigating is the following. Consider a population
consisting of a large (assumed infinite in the model) number of families.
Assume that if at a certain moment ¢ an infection occurs within a given
family, it originates an epidemic within this family, i.e., it originates
a stochastic process &,, &, ..., where &, is interpreted as the number of
individuals in this family who are infectious at moment ¢ - 1. At every
moment ¢ there is then a certain number of infectives in the population
equal to the sum of the respective values of the stochastic processes in
the families already infected. Each of these infectives infects a certain
number of new families. We assume this number to have the Poisson
distribution with mean 4, and we assume that the numbers of new families
infected by different individuals are independent. We also assume in-
dependence of epidemics within different families. The whole description
of the process depends then on the value of 1 and on specific assumptions
about probability distributions for the stochastic processes representing
the epidemics within families.

We shall investigate conditions under which the epidemic considered
expires with probability one, and we shall study two stochastic processes,
defined, loosely speaking, as the number of freshly infected families at
times ¢t = 0,1, 2, ... and the number of infectives at times { = 1,2, ...

We shall try to make such specific assumptions about probabilistic
mechanisms of our process which can be expressed in terms of quantities
estimable from empirical data. This will allow us to verify the assumptions
of the model, and, if these tests do not lead to negative results, possibly
to quantitative predictions.

The investigations of this paper have been inspired by Dr. Juan
Angulo from the School of Medicine, Emory University, Atlanta, Georgia,
who suggested to me working up a model for the epidemic of variola minor
which occurred in 1963 in Sao Paolo. The reasonably complete data on
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this epidemic make it possible to verify the assumptions of the model
presented. The results of these tests, if positive, will be published elsewhere.
The present paper is of purely theoretical character.

2. Formal definition of the model and outline of the contents of the
paper. In this section we outline the formal construction of the sample
space and probability distribution on it, and define the relevant events
and random variables.

Let & = {0,, 0,, ...} be a finite or countable set, and let = be a prob-
ability distribution on 6. We write n; = = (0;). Assume that to each
6; with z; > 0 there corresponds a sequence

(2~1) {pj,n}7 ”2071727”'7

where each p; , is a probability distribution concentrated on the set of
all (n-+1)-tuples (ry,7,,...,7,) of non-negative integers. Moreover, as-
sume that the distributions (2.1) are consistent in the sense that

(2.2) ij,n(To, ey Tpo1y Th) = Djn-1(Toy <3 Tn_1)
™n

for all j with ;> 0, all » =1,2,... and all 7,,...,r,_, for which the
right-hand side of (2.2) is positive.

By the well-known theorem of Kolmogorov (see, for instance, [4])
there exist processes (integer valued), to be denoted generally by &,, &, ...,
with joint probability distributions given by (2.1); we interpret these
processes as representing histories of epidemics within families, the para-
meter 0; reserved for representing some abservable characteristics of
families such as their sizes, sanitary conditions, etc.

We denote by

(2'3) .'pn(ro, LR ] 7‘") = Zﬂjpj,n(rm ey 7‘,‘)
i

the unconditional distribution for the stochastic process {£,} of epidemics
within families. Thus, (2.3) represents the probability distribution of
initial generations of an epidemic within a randomly selected family,
where by random selection we mean the selection of parameter 6; according
to the probability distribution z.

Let us denote by £, our sample space, the set of all arrays w of the
form

0
(L‘f, )7 w{o)’ fv§°), xgo)’
13(()!’ 1), m(ll’ 1), .’Dgl’l),

m(()l,z)’ w(ll’z)’ w;l’2)7 ..
(2.4) e e e e e e e e e e
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kD) LV I Y .
2,1 2,1

gV, Y, ey

xi2:k2) m(lzskz) .

-------------

where k,, k,, ... and all entries are non-negative integers.
Given an array o of form (2.4), put m,(w) equal to the sum of all
entries in the n-th column, i.e.,

my(w) = @,
my(0) = 2@+ (@) + .. FalE)) 4L (@Y L ().

We define the class ¥ of measurable subsets of £ in an usual way,
as the smallest o-field containing all cylinders with finite bases. To define
the probability on (2, ¢) it suffices to determine its values on a special
class of cylinders, namely on cylinders obtained by specifying numbers
k..., k, and the values in first »+1 columns of array (2,4). We set
this value to be

Sr (Amy_ )t
(2:6)  palal?, ..., ) [ [ =5 expr -]
t-
t=1
kg
X l 1 pn_t(wg"s)a ceey xg'—st))r
8$=1

where A is a positive constant and m, is defined by (2.5). In intuitive terms,
this assumption means that the rows of the array (2.4) represent independent
realizations of stochastic processes with distributions (2.3), while the
numbers k, of new rows originating in the n-th column have the Poisson
distribution with mean im,_,.

Let & be the event, described picturesquely as ‘‘extinction” of the
epidemic, defined formally as the set of all arrays (2.4) which have only
a finite number of rows, each of them containing only a finite number of
non-zero terms. In section 3 we shall study conditions under which P(¢&)
=1, i.e., conditions under which the epidemic considered is bound to
expire with probability one.

Now, to each array o .of form (2.4) we may assign two numerical
sequences

(2.7) 1, ky(w), ks (@), ...
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and
(2.8) mo(@), My (@), Mmy(w), ...

Relations (2.7) and (2.8) define two stochastic processes, to be denoted
by Uy, Uy, ... and V,, V4, ..., respectively, where U, is interpreted as
the number of new families infected at time »n, and V,, is interpreted as
the total number of infectives at time » - 1. In section 4 we derive formulas
for probability generating functions for processes {U,} and {V,}.

Since the behaviour of our epidemic depends on particular proper-
ties of the processes {£,} for various values of 6, in section 5 we study sets
of assumptions implying properties of these processes relevant to the
application of theorems of sections 3 and 4, in particular those implying
the finiteness of the sum &,4- &,+ &+ ... and finiteness of the expecta-

tion of this sum.
Finally, in section 6 we give an outline of various schemes of inter-

pretation of our process in terms of actual epidemics, and discuss briefly
the problem of estimation of the relevant parameters.

To make the presentation simpler, we refer rather to the intuitive
interpretation than to the formal definition of our process.

3. Theorems on extinction. We start from conditions under which
our epidemic will expire with probability one, i.e., conditions implying
P(&) = 1. Given a family, say F, call all families infected by infectives
from family F the direct descendants of I'. Clearly, this defines a simple
Galton-Watson branching process (see, for instance, [3]) of multiplica-
tion of ‘‘particles”, the latter in this case being families. The process
considered will expire with probability one if and only if the expected
number of direct descendants of a single family is one or less. Now, this
expected number equals Ak, where h = E (&4 §,+ ...), finite or not.
Finiteness of % implies that the sum §&,+ &, + ... must be finite with
probability one, i.e., that every row in the array o contains only a finite
number of non-zero terms. We may state, therefore,

THEOREM 3.1. Ifh = E(&+ &, +...) < ccand A< 1/h, then P(&) = 1,
i.6., the epidemic is bound to expire with probability ome.

To derive a method of computing the value of P(&) when it is less
than one, we may explore further our interpretation in terms of the simple
Galton-Watson process. Let

(3'1) Qj('r) = Pj{§o+ ‘E[+--- = 1‘},

where P; is the probability distribution for the process {&,} conditional
upon the value 6;. We have }'q;(r) < 1, the difference 1— > g,(r) repre-
r r

senting the probability, conditional upon 6;, that the sum &+ & +...
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will be infinite. Define

(3.2) Q;(s) = D5 g;(r)

and

(3.3) Q(s) = ¥ 7;Q;(s)-
i

We have @(1) = 1 if and only if @;(1) = 1 for all j such that »; > 0,
the condition @;(1) = 1 being equivalent to

N ;) = Pi{&y+ & +... < oo} = 1.

Now, h = E(&+ &, +...) is infinite if Q(1) <1, and equals @’ (1),
finite or not, otherwise.

We now try to find the probability generating function, possibly
defective, for the number of families infected by all infectives of a given
family. Denote this random variable by Z, and its probability generating
function by z(s). We have then

2(s) = Zs"P(Z = k) = Zs"Znin(Z = k)
k k )

= N6 X N q;(PyZ = klb+ &+ = 1)
k i r

By definition, probability under the last sum equals (ir)*e=* k!,
hence (interchanging the order of summation)

2(8) = 2 ;n;jZ g;(r) Z ()-Z’;)k o _ 2 7; 2 g;(r) e~ =D
7 7 % : r -

= D my(ee ) = @)

with @ (s) given by (3.3).

Next, the basic theorem on the probability of extinction of the
Galton-Watson branching process remains valid in the case where the
probability generating function is defective, i.e., if it does not assume the
value 1 at s =1. We may state, therefore, a somewhat more general
result than theorem 3.1, namely

THEOREM 3.2. The epidemic considered is bound to expire with probea-
bility one if and only if Q(1) =1, Q' (1) = h < oo and A< 1/h. In every
case, the probability of extinction equals to the least positive root of the equation
x = Q (&™), where Q(s) is given by (3.3).
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4. Processes {U,} and {V,}. We start with an investigation of the
process {U,} defined in section 2, where U,, is interpreted as the number
of freshly infected families at time n. Put

(4.1) fals) = ) s*P(T
k

and write
(4.2) Ko(Soy -y 8a) = ) %K n(S0y 005 84),

7
where
(4.3) K, (S0, --- 2 85+ S Din(Toy ooy T)

)rn
is the joint probability generatmg function of the distribution (2.1).

THEOREM 4.1. The probability generating functions fy(s), f1(s), ... are

given by the recursive formulas
(4.4) Jo(8) =8
(45) fn(s) = Kn—l{expll(fn—l(s) - 1)]7 A exp[l(fo(s) —'1)]}
form =1,2,...

Proof. Relation (4.4) follows directly from the fact that we have
U, = 1 by definition (2.7). Let now n > 0 and let us write the expression
for f,(s) by conditioning it upon the history in the original process (to
be denoted by &9, &9, ...). If &Y =), &9 =1, ..., &0, =7, ,, then
at time k¥ (where kt =1,2,...,n) we have r,_, infectives in the original
family, and they originate 9, eépidemics within new families; the contri-
bution to U, from all these families has then the probability generating
function f, ""l(s) Using the fact that 4, has the Poisson distribution with
mean Ar,, we may Wwrite

3
:Z 2 p]n1707' ’nl)/'<
Jj

S“ (17'0) 0 (At
R B

exp[—A(ro+... +7,_1)]1 X

P !
Ggsrin_1 bo tnr-
Xf 0 ,(8). fln Y
= 2, 2: Djn— 1Ty eevy Ty X
»Tp—1

cexplinfoa(s)—1)] .. expfirs o)1)
= K,_{exp|A(fu_i(s)—1)], ..., exp[Mfo(s) - 1)]}, q.e.d.
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Write now
(4.6) b =B& = Da; D nepielre, - 1),
7 Tgs.ees T

finite or not. By formal differentiation at s = 1 we obtain from theorem
4.1 the following theorem giving recursive formulas for expectations a,
= E(U,) = f,(1), finite or not:

THEOREM 4.2. The expectations a,, a,, ... are given by the recursive
formulas

a, = AMa,_hy+...-~agh,_ ;)

with h, defined by (4.6).

We now prove an analogous result for the process {V,}, where V,
1s the total number of infectives at time n+1. We have

THEOREM 4.3. The probability generating functions g,(s) of the random
variables V, are given by the recursive formulas

(4.7) go(s) = Ko (s),
(48)  ga(8) = E{exp[A(gu_s(s)—1)], ..., exp[A(go(s) — 1], s}
forn =1,2,...

Proof. The proof is similar to that of theorem 4.1. Relation (4.7)
follows directly from the definition. Let » > 0 and suppose that &

= Tgy eeey &9 = r,. The value of V, is then equal to the sum of #, and
the contributions from families infected at earlier moments. If at time
E(k=1,2,...,—1) there were 7,_, infectives in the original family,

and they infected altogether ¢,_, nmew families, then the contribution
to V, from these families has probability generating function g¢*-!(s).
We may write, therefore,

gn(s) = Zﬂj 2 _pj,n(TO? seey Tn) X

2 TO ..... Tn
F IrgYo  (Ar,_y)'n—1
X ( _0') o2l ' expl[—A(ro+...+7,_1)1 X
. - - (7R
10,...,'ln_l

Xs™gio (s) ... g ()

X exP [y (gn_1(8) —1)] ... exp|Ar,_1(go(s) — 1)] 8™
= K, {exp[i(gn_1(s)—1)], ..., exp|A(go(s) —1)], s}, q.e.d.
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Differentiating formally at s = 1, we obtain for the expected values
b, = E(V,) = g,(1), finite or not, the following

THEOREM 4.4. The expectations by, b,, ... are given by the recursive
formulas

by = K,(1),
b, = hy+A(ly_1by+...+hob,_,)
forn =1,2,...,where b, is defined by (4.6).

5. Epidemics within families. The theorems of sections 3 and 4 show
that the behaviour of our epidemic depends on the properties of the process
{&,}, in particular on the almost sure finiteness of the sum & 4 &,+...
and on the finiteness of the expectation of this sum. We now try to impose
such conditions on the process {£,} which imply the above-mentioned
two properties, and which might be reasonably expected to be satisfied
in the practical situations.

Firstly, it appears reasonable to assume that whatever the value
6;, once a sufficiently long stretch of consecutive zeros occurs in the process
{&,}, all subsequent values must be equal to zero. Formally, assume that

(i) there exists an integer d > 1 such that for all j and »

(5.1) Pi(épyg =018 =&y =...= &g =0) =1.

Denote by B, the event under the condition in (5.1), i.e., let B, be
the event &, = &,., =... = &,,;, =0, where d is the integer appear-
ing in (i).

Next, it appears reasonable to assume that the conditional proba-
bility of B,,, given the values r,, ..., #,_;, should be, in some sense, bounded
from below by a positive number. More precisely, we assume that

(ii) for every j there exists a positive number ¢; such that for all »

Pj(Bn]§n~1 = Tp_1y-evy En—-d =Th_ay En—d—l = Tp_d—19++ 0y EO = 7'0)

MAX(Ty, _1y.eesTpy )
> (rp—1--5Tn @,

whatever the values 7,_; ,,...,7,.
We may now prove

THEOREM 5.1. If the process {&,} satisfies conditions (i) and (ii), then
for every j we have

P;(limsupé, = oo or limé, =0) = 1.

The proof is analogous to that of theorem 5.1 in [2], and will be
omitted. Intuitively, the idea of the proof is the following: whatever the
value R > 0, the occurrence of a stretch 7, 4,7, gi1y---y¥n_y With
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max(r,_g,---57y_1) = B Involves a positive “risk’’ of the event B,,
and, consequently, of the event &, = &,., =...= 0, hence lim¢&, = 0.
Thus, if the process does not expire, no stretch of length d with a bounded
maximum can occur infinitely often, hence the sequence of maxima ex-
tended over stretches of the length d must grow indefinitely. Note that
if d =1, we may replace lim sup by lim in theorem 5.1.

We may now impose another natural condition, corresponding to the
requirement that at no time the value of stochastic process {£,} can exceed
the size of the family. Formally, assume

(iii) to each j there corresponds a natural number N (j) such that
P;j(¢,<N(j)) =1 forall »=0,1,2,...

Clearly, (iii) rules out the possibility of limsup §, = oo, and we may
state

THEOREM 5.2. Under conditions (i)-(iii), we have
Pi(&+&+... < o) =1 for all j.

Assume now that conditions (i)-(iii) hold, and write v; = ¢/? > 0.
Let us fix 6, and consider consecutive stretches of length d,i.e., (&, ---, £4-1)s
(&35 ---5 &34-1)y --- Conditions (ii) and (iii) imply that the probability
of a given stretch (except possibly the initial one) consisting of zeros
only is at least v;, whatever the past history of the process in the preced-
ing stretches. Condition (i) implies that once a stretch will consist of
zeros only, all subsequent stretches will have the same property. Thus,
the probability that the process will assume positive values in at least
k+ 1 stretches is at most (1 —vj)". Now, the sum of values in each stretch
is, by (iii), bounded from above by dN (j). Summing up the corresponding
geometric series, we obtain

THEOREM 5.3. Under conditions (i)- (iii), the expectation B;(&+ &,+...)
is finite for every j, and is bounded from above by dN (j)/v}.

We may now formulate a sufficient condition for the finiteness of
h =E(&+ & +...):
THEOREM 5.4. Under conditions (1)-(iii), if the series

> w N (3) 1o}

converges, then h = E (& + & +...) is finite.

6. Interpretations, discussion and some particular cases. The model
considered in the preceding section admits several interpretations. Firstly,
it ought to be pointed out that the term ‘“family’ as used above does
not have to be treated literally: in practical applications we may identify
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‘“families” as considered in the model with, say, inhabitants of one house,
whether related by blood or marriage or not, or groups of children who
habitually play together (a class in school, say), etc.

Next, parameter 6 is to be identified with such observable character-
istics of families which have, or are thought to have, influence on the
course of an epidemic within a family. The most obvious and easily iden-
tifiable such parameter is the size of the family. If the considered popu-
lation is sufficiently ‘‘homogeneous’’, it may be taken as the only para-
meter, i.e. we may put 0; = j for families of size j. In this case =; will
simply be equal to the proportion of families of size 7 in the considered
population, an easily accessible quantity.

In general, one could incorporate into 6 some other characteristics
such as an appropriate index indicating sanitary conditions, etc. Then 0
would be a vector-valued parameter, one coordinate showing the size
of the family, and the remaining ones showing some other characteristics
(not necessarily numerical). One of the problems would then be to evaluate
m;, i.e., the proportion of families in the considered population with the
particular value 6; of the parameter.

The other, much more serious, problem concerns the question of
estimation of probability distribution for epidemics within families for
given value of 6, i.e., probabilities p; (7, ..., ) for the vector (7,, ..., r,)
given 6 = 0;.

There exist at least two ways of interpreting the process {£,} repre-
senting the epidemics within the families. Thus, we may select an ap-
propriate unit of time, say, one day, and interpret &, as the number of
individuals in the family who are infectious on day = -1 after the initial
infection. Under this interpretation (to be referred to as scheme I), a typical
history of the process {&,} would start with an initial stretch of zeros
(the period of incubation of the initial infective), followed by a stretch
of positive terms, then again a stretch of zeros, and so on. The character-
istic feature of the process {£,} under this scheme of interpretation is
that the sum &,4 &, +... may exceed the size of the family, as each in-
fective is counted once for every day when he is infectious.

The difficulty in applying this scheme of interpretation in practice
lies mainly in the difficulty of estimating the joint probability distribution
for the process {£,} from the empirical data.

A more promising interpretation of the process {&,} is the following:
if the disease under consideration has a relatively constant latency period,
and a relatively short period of infectiousness, we may idealize it by
assuming that the latency period is constant and the period of infectiousness
infinitely short. If we measure time in units equal to the latency period,
we may interpret £, as the number of members of the family who became
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infected n latency periods after the initial infection (they become then
infectious still one more latency period later, consistently with the general
interpretation of stochastic process {&,}).

We refer to this interpretation as to scheme II (note that under
this scheme it appears reasonable to put d = 1 in conditions (i) and (ii)
of section 5).

The main advantage of scheme II over scheme I is that one can
easily obtain (at least crude) estimate of 1. In fact, if at some time, K cases
of a given disease occurred and about one period latency later new cases
were reported in L families previously unaffected, then the ratio L/K
may serve as a crude estimate of the between-families infection rate .

The second advantage of scheme II lies in the fact that one can
design several plausible models of epidemies within a family. We briefly
desecribe these models in the sequel; in all of these models we treat the
size j of the family as an initial parameter, denoting (whenever applicable)
the remaining components of the parameter 6 as 6*.

By far the simplest model is obtained if we assume that the disease
is ‘“‘absolutely contagious”. Under this assumption, given the size of the
family to be j and given that 0 < & =k < j, we have & =j—Fk, & = &
= ...= 0. A reasonable approximation to reality might be &, = 1 whatever
the value of j, that is to say, every epidemic within a family always starts
from one infective, and one latency period later all the remaining members
of the family become infected.

To obtain a somewhat more realistic model we may assume, in ad-
dition, that some members of the family may be immune (due, say, to
vaccination), and that the probability of an individual being immune
equals a independent-lys‘of the immunity of others. In this case, in families
of size j we have

& =1, P;(& =k) = (3—];1) ak(l—a)j_l_k

for k. =0,1,...,j—1 and & =& =... =0.

In the second model we could make a dependent on some parameter
6*. In these both models we can easily write down explicit expressions
for functions and quantities relevant for the application of theorems of
sections 3 and 4. Thus, in the first case we have ;(s) = ¢’, hence

Qs) = D mys,

which makes it possible to apply theorems 3.1 and 3.2. Next, we have

fpj,o(l) :19 pj,l(]-’j—l) :17 p]-,n(l,j—l,rz,...,rn) =0
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unless 7, = ... =7, = 0. Thus,
Ko (8y) = 89, K, (8o, 8;) = Z”jsosi_la K, (895 815 ...y 8,) = K,(8, 8;)
Jj

for all n > 1,

which enables us to apply theorems 4.1 and 4.3. Finally, we have h, = 1,
hy =D—1,h, = h; = ... = 0, where D is the expected size of the family;
the last formulas enable us to apply theorems 4.2 and 4.4.

In case of the possibility of immunity, the above-mentioned expres-
sions take the form

Q(s) = Y ms(l—a+as)™,  K(se,815---58a) = Ky(s0, 1)
j

for all n > 1, hy =1, by =14+a(D—1) and h, = h; = ... = 0.

Next, we may design still more realistic model if we assume that,
given the family size to be j, given that £, =r > 0,and j— & — &, —...—
— &, = k> 0, the random variable &,.; has the binomial distribution
blk; p(r)); if & =0 or &+...+&, =j, then &,,, =0. The plausible
assumptions about p(r) are p(r) = p = const for all »> 0, and p(r)
=1—(1—p)" for some 0 <p < 1. The first condition corresponds to
the assumption that whatever the number of infectives in the family,
provided only that this number is positive, all non-infected members of
the family have the same probability p of getting infected, and the in-
fections are independent for different susceptibles.

The second assumption, presumably most realistic among the cases
considered above, is that if there are r infectives and k susceptibles, each
of the latter makes, independently of others, one ‘‘contact’’ with each
of the infectives, the results of contacts being independent and leading
to an infection with probability p. The assumptions of the last model
give p(r) ~ rp for small p and r, hence the infection rate is roughly pro-
portional to both the number of susceptibles and the number of infec-
tives, a standard assumption in the theory of epidemics.

In the last two models, known in the literature as chain binomial
models (see, for instance, [1]), the formulas for joint probability distri-
butions of epidemics within families are somewhat involved, but one
can easily obtain a system of recursive equations for calculating the
expectation h = E(&+ &, +...).

Indeed, let E(r, k) be the expectation of &, ,+&,.,+... given
that &, =rand j— & — & —... — &, = k, where j is the size of the family.
We have then

B(r, k) = Z(’,j) PN (L —p () G+ B, k—i)],

i
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with E(0, %) = E(r,0) = 0. We have then

=Y zE@,j-1).

]

This enables us to apply theorem 3.1. Finally, initial values of A,
can be computed directly, and one can apply theorems 4.2 and 4.4 for
predicting the behaviour of few generations of the epidemic. The value
of p in either of the last two models (possibly depending on some para-
meter 6* characterizing social or sanitary conditions) is estimable from
the data on histories of epidemics within families.
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R.BARTOSZYNSKI (Warszawa)

O PEWNYM MODELU EPIDEMII

STRESZCZENIE

W pracy rozpatrywany jest nastepujacy model epidemii: rozwaza si¢ populacje
ztozong z nieskonczonej liczby rodzin. Jezeli w danej rodzinie w momencie ¢ nastapi
zarazenie, zapoczatkowuje to epidemie wewnatrz tej rodziny, interpretowana jako
Pewien proces stochastyczny &, &, ..., gdzie &, jest liczby oséb tej rodziny zakaz-
nych w chwili t4+n-+1. W kazdym momencie czasu w populacji znajduje si¢ wobec
tego pewna liczba 0s6b zakaznych. Kaida z nich zaraza pewng liczbe oséb z nowych
rodzin. Te ostatnie zarazenia sa niezalezne i liczby o0s6éb zarazonych majg rozklad
Poissona.

W pracy badane s3 warunki dla wygasnigcia z prawdopodobienstwem jeden
tak okreflonej epidemii oraz analizowane sa dwa procesy stochastyczne — opisujace
liezby rodzin zarazonych oraz laczne liczby 0s6b zakaznych w kolejnych momentach
czasu.



