R. SMARZEWSKI (Lublin)

CHEBYSHEV OPTIMAL STARTING APPROXIMATION BY FAMILIES WITH THE WEAK BETWEENNESS PROPERTY

1. Introduction. Let X be a compact subset of the closed interval [a, b] and let C(X) denote the space of all continuous real-valued functions defined on X, normed by

$$||f|| = \max\{|f(x)|: x \in X\}.$$

Rice ([10], [11]), Meinardus and Schwedt ([7], [8]) and Dunham ([2], [3]) have developed three distinct theories of approximations to functions from C(X) by non-linear families of functions: varisolvent, asymptotically convex and having the betweenness property, respectively.

In this paper we present a theory of non-linear approximation which includes the last two theories and, under the additional assumption that either $a \notin X$ or $b \notin X$, also the first theory.

Let the family G of real functions g(A, x) defined for $x \in X$ and $A \in P$, where P is an arbitrary subset of E^n , be given. We assume that g(A, x) is a continuous function of n+1 variables in the Cartesian product of P and X. Now we define varisolvent functions introduced by Rice in [10].

Definition 1. A family G of functions g(A, x), $A \in P$, is said to have property Z of degree m at $B \in P$ if for every $A \in P$ the function g(B, x) - g(A, x) has at most m-1 zeroes on X or vanishes identically.

Definition 2. A family G of functions g(A, x), $A \in P$, is called locally solvent of degree m at $B \in P$ if for every set of m distinct points x_i (i = 1, ..., m) in X and for every prescribed $\varepsilon > 0$ there exists a $\delta = \delta(B, \varepsilon, x_1, ..., x_m) > 0$ such that the inequality $|y_i - g(B, x_i)| < \delta$ for i = 1, ..., m implies the existence of a $C \in P$ satisfying $g(C, x_i) = y_i$ for i = 1, ..., m and $||g(B, \cdot) - g(C, \cdot)|| < \varepsilon$.

Definition 3. A family G is called *varisolvent* if for each $A \in P$ there exists an integer m = m(A) such that G is locally solvent of degree m at A and has property Z of degree m and if there exists no integer k > m with the above properties. The number m(A) is called degree of varisolvency of the family G at A.

Definition 4 (Meinardus and Schwedt [8]). A family G of functions g(A, x), $A \in P$, is asymptotically convex if for each A, B in P and each $t \in [0, 1]$ there exist a parameter value $A(t) \in P$ and a continuous real-valued function h(x, t), defined on $X \times [0, 1]$ and satisfying h(x, 0) > 0 for all $x \in X$, such that

$$||(1-th(x,t))g(A,x)+th(x,t)g(B,x)-g(A(t),x)||=o(t)$$
 as $t\to 0$.

Definition 5 (Dunham [2] and [3]). A subset G of C(X) has the betweenness property if for any two elements g_0 and g_1 there exists a λ -set $\{H_{\lambda}\}$ of elements of G such that $H_0 = g_0$, $H_1 = g_1$ and, for all $x \in X$ and $0 \le \lambda \le 1$, $H_{\lambda}(x)$ is either a strictly monotonic function of λ or a constant.

2. Families with the weak betweenness property.

Definition 6. A subset G of C(X) has the weak betweenness property if for any two distinct elements g and h in G and for every closed subset D of X with $h(x) \neq g(x)$ for all $x \in D$ there exists a sequence $\{g_i\}$ of elements of G such that

(i)
$$\lim_{t\to 0} \|g-g_t\| = 0$$
,

(ii) the numbers $g_i(x)$, where $x \in D$ and i = 1, 2, ..., lie strictly between g(x) and h(x) (i.e. either $g(x) < g_i(x) < h(x)$ or $h(x) < g_i(x) < g(x)$)

By Definitions 5 and 6 and Lemma 1 in [2] it is obvious that the subset G of C(X) has the weak betweenness property if it has the betweenness property.

THEOREM 1. Let us suppose that either $a \notin X$ or $b \notin X$. Then every varisolvent family G on the interval [a, b] has the weak betweenness property.

Proof. Denote by U a non-empty set defined by

$$U = [a, \inf\{x: x \in X\}) \cup (\sup\{x: x \in X\}, b].$$

Let g(A, x) and g(B, x) be two arbitrary distinct elements of G and let m be the degree of varisolvency of G at g(A, x), $x \in [a, b]$. Hence there exist k ($k \le m-1$) zeroes x_j (j = 1, ..., k) of g(A, x) - g(B, x) in [a, b]. Let D be any closed subset of X such that $g(A, x) \ne g(B, x)$ for all $x \in D$. Moreover, let z and x_j (j = k+1, ..., m-1) be arbitrarily prescribed distinct points in D and U, respectively. By Definition 2, for every $\varepsilon_i = 1/i$ (i = 1, 2, ...) we may choose a $\delta_i \le \varepsilon_i$ and a suitable y_i lying strictly between g(A, z) and g(B, z) and convergent to g(A, z), such that there exist parameters A_i in P satisfying

$$egin{aligned} g(A_i, x_j) &= g(A, x_j), & j = 1, \dots, m-1, \ & \ g(A_i, z) &= y_i & ext{and} & \|g(A, \cdot) - g(A_i, \cdot)\| < rac{1}{i}. \end{aligned}$$

Hence

$$\lim_{i\to\infty}\|g(A,\cdot)-g(A_i,\cdot)\|=0$$

and condition (i) in Definition 6 is satisfied.

It is known (see [11], p. 4) that all zeroes x_j of the function $g(A, x) - g(A_i, x)$ must be simple, i.e. this function changes its sign at x_j . Hence and from the fact that $g(A_i, z)$ lies strictly between g(A, z) and g(B, z) and the functions g(A, x) - g(B, x) and $g(A, x) - g(A_i, x)$ have the same number of zeroes in $[a, b] \setminus U$ we infer that $g(A_i, x)$ lies strictly between g(A, x) and g(B, x) for all $x \in D$. Hence in Definition 6 we may accept g_i to be equal to $g(A_i, \cdot)$, which completes the proof.

THEOREM 2. Every asymptotically convex family G has the weak betweenness property.

Proof. Let g(A, x) and g(B, x) be two arbitrary distinct elements in G. It follows from Definition 4 that for every $\varepsilon > 0$ there exists a $t_0 > 0$ such that

$$-\varepsilon t < g(A(t), x) - g(A, x) - th(x, t)[g(B, x) - g(A, x)] < \varepsilon t$$

or all $t \in (0, t_0]$ and $x \in X$. Hence we obtain immediately

$$\lim_{i\to\infty} \|g(A(t_i),\cdot)-g(A,\cdot)\| = 0$$

or any sequence $t_i \to 0$. Moreover, we may suppose, decreasing t_0 if necessary, that h(x, t) > 0 for all $t \in [0, t_0]$ and $x \in X$. Let D be an arbitrary fixed closed subset of X such that $g(A, x) \neq g(B, x)$ for all $x \in D$. Without loss of generality we may suppose that ε is chosen so that

$$0<\varepsilon<\min_{t\in[0,t_0],x\in D}h(x,\,t)\,|\,g(A\,,\,x)-g(B\,,\,x)|\,.$$

Then for all $x \in D$ and $t \in (0, t_0]$ we have either

$$g(B, x) - g(A, x) > 0$$
 and $g(A(t), x) - g(A, x) > 0$

 \mathbf{or}

$$g(B, x) - g(A, x) < 0$$
 and $g(A(t), x) - g(A, x) < 0$.

Hence, decreasing t_0 if necessary, we infer that g(A(t), x) lies strictly between g(A, x) and g(B, x) for all $x \in D$ and $t \in (0, t_0]$. Now, in the interval $(0, t_0]$ we choose a sequence t_i convergent to 0. Obviously, in Definition 6 we may accept g_i to be equal to $g(A(t_i), \cdot)$, which completes the proof

3. Characterization of an optimal starting approximation by families with the weak betweenness property. Let us assume that Φ is a continuous mapping of the subset $K \subset C(X)$ into C(X) and that M is an arbitrary fixed non-empty subset of K.

The following three definitions (from [9]) will be useful in the sequel. Definition 7. The element $p \in M$ is an optimal starting approximation in M for $g \in \Phi(K)$ if

$$||g-\Phi(p)|| \leq ||g-\Phi(h)||$$
 for all $h \in M$.

Definition 8. The operator Φ is called *pointwise strictly monotone* at $f \in K$ if for each $h, g \in K$ we have

$$|\Phi(f)(x_0) - \Phi(h)(x_0)| < |\Phi(f)(x_0) - \Phi(g)(x_0)|$$
 for each $x_0 \in X$,

where either $g(x_0) < h(x_0) \le f(x_0)$ or $f(x_0) \le h(x_0) < g(x_0)$.

Definition 9. The operator Φ is said to be *pointwise fixed* at $f \in K$ if $h \in K$ with $h(x_0) = f(x_0)$ for $x_0 \in X$ implies $\Phi(h)(x_0) = \Phi(f)(x_0)$.

Note that every ordered function [4] and more general transformations considered in [6] are examples of operators being pointwise strictly monotone and pointwise fixed at f, where f and K may be arbitrarily chosen. For other examples and properties of operators being pointwise strictly monotone and pointwise fixed at f see [9]. Obviously, Φ may be equal to the identity operator. Hence the theory of optimal starting approximation contains the theory of ordinary Chebyshev approximation. Moreover, note that the change of the norm $\|\cdot\|$ defined in Section 1 into the norm (see [9])

$$||f||_{w} = \max\{w(x)|f(x)|: x \in X\},\$$

where w(x) > 0 for all $x \in X$, does not generalize our considerations. Indeed, the optimal starting approximation with the operator Φ and the norm $\|\cdot\|_w$ may be replaced by the approximation with the operator $w\Phi$ and the norm $\|\cdot\|$.

We assume throughout our discussion that the function f and the operator Φ are fixed. Denote by D(g) a closed subset of X defined by

$$D(g) = \{x \in X \colon |\Phi(f)(x) - \Phi(g)(x)| = \|\Phi(f) - \Phi(g)\|\}.$$

THEOREM 3. Let $\Phi \colon K \to C(X)$ be a continuous operator. Let G be an arbitrary subset of C(X) having the weak betweenness property and let $M = K \cap G$ be a non-empty relatively open subset of G. Finally, assume that Φ is pointwise strictly monotone at $f \in K \setminus M$. Then a necessary condition for $g \in M$ to be an optimal starting approximation to $\Phi(f)$ is that there exists no element $h \in G$ such that

$$\lceil f(x) - g(x) \rceil \lceil h(x) - g(x) \rceil > 0$$
 for all $x \in D(g)$.

Proof. Suppose, on the contrary, that there exists a function $h \in G$ satisfying the inequality in the theorem. Hence for $x \in D(g)$ we have either

$$h(x) > g(x)$$
 and $f(x) > g(x)$

$$h(x) < g(x)$$
 and $f(x) < g(x)$.

Since G has the weak betweenness property and M is relatively open in G, the inequalities above imply that there exist a sequence g_i of elements of G and an integer m such that $g_i(x)$ lies strictly between f(x) and g(x) for all $x \in D(g)$ and $i \ge m$, and $g_i \in M$ for all $i \ge m$. From the pointwise strict monotonicity of Φ at f it follows that

$$|\Phi(f)(x) - \Phi(g_i)(x)| < |\Phi(f)(x) - \Phi(g)(x)| = ||\Phi(f) - \Phi(g)||$$

for all $i \ge m$ and $x \in D(g)$. If D(g) = X, the proof is completed.

Otherwise, it follows from the continuity of the function $|\Phi(f) - \Phi(g_i)|$ that there exists an open set $U \supset D(g)$ such that (1) is true for all $x \in U$. Let $V = X \setminus U$. Obviously, V is a closed set. Let us put

$$\delta = \sup \{ |\Phi(f)(x) - \Phi(g)(x)| \colon x \in V \}.$$

Since $V \cap D(g)$ is an empty set, we have $\|\Phi(f) - \Phi(g)\| > \delta$. From the continuity of Φ and the uniform convergence of g_i to g it follows that there exists an integer $n, n \ge m$, such that

$$\|\Phi(g) - \Phi(g_i)\| < \|\Phi(f) - \Phi(g)\| - \delta$$
 for all $i \ge n$.

Hence, for all $x \in V$ and $i \ge n$ we obtain

$$\begin{split} |\varPhi(f)(x) - \varPhi(g_i)(x)| &\leqslant |\varPhi(f)(x) - \varPhi(g)(x)| + |\varPhi(g)(x) - \varPhi(g_i)(x)| \\ &< \delta + ||\varPhi(f) - \varPhi(g)|| - \delta = ||\varPhi(f) - \varPhi(g)||. \end{split}$$

Combining this result with (1) we have

$$\|\Phi(f) - \Phi(g_i)\| < \|\Phi(f) - \Phi(g)\|$$
 for $i \geqslant n$.

Hence we see that the functions g_i in M for $i \ge n$ are better optimal starting approximations to $\Phi(f)$ than g and this gives a contradiction.

THEOREM 4. Let M be an arbitrary subset of K and let the operator $\Phi\colon K\to C(X)$ be pointwise strictly monotone and pointwise fixed at $f\in K\smallsetminus M$. Then a sufficient condition for $g\in M$ to be an optimal starting approximation to $\Phi(f)$ is that there exists no element $h\in M\smallsetminus\{g\}$ such that

$$\lceil f(x) - g(x) \rceil \lceil h(x) - g(x) \rceil \geqslant 0$$
 for all $x \in D(g)$.

Proof. Since $f \notin M$ and Φ is pointwise fixed at f, we have $f(x) \neq g(x)$ for all $x \in D(g)$. Suppose, on the contrary, that there exists an $h \in M$ such that

$$\|\Phi(f) - \Phi(h)\| < \|\Phi(f) - \Phi(g)\|.$$

Hence for all $x \in D(g)$ we have

$$|\Phi(f)(x) - \Phi(h)(x)| < |\Phi(f)(x) - \Phi(g)(x)|.$$

Now, for $x \in D(g)$ either

$$f(x) > g(x)$$
 and $h(x) \geqslant g(x)$

or

$$f(x) < g(x)$$
 and $h(x) \leqslant g(x)$.

On the other hand, by the pointwise monotonicity of Φ at f we have

$$|\Phi(f)(x) - \Phi(g)(x)| < |\Phi(f)(x) - \Phi(h)(x)|,$$

which contradicts (2). Combining the inequalities above for the functions f, g and h we obtain the required inequality.

The following theorem shows that in special cases the necessary condition for the function g to be an optimal starting approximation may be also the sufficient condition.

THEOREM 5. Under the assumptions of Theorem 3 and the additional assumptions that Φ is a pointwise fixed operator at f and

(3)
$$h(x) = g(x) \text{ implies } \Phi(h)(x) = \Phi(g)(x) \text{ for all } g, h \in M,$$

a necessary and sufficient condition for $g \in M$ to be an optimal starting approximation to $\Phi(f)$ is that there exists no element $h \in G$ such that

$$[f(x)-g(x)][h(x)-g(x)] > 0$$
 for all $x \in D(g)$.

Proof. The assertion follows from Theorems 3 and 4 and from the fact that the equality h(x) = g(x) for any $x \in D(g)$ in the proof of Theorem 4 is impossible by condition (3).

Condition (3) is satisfied for a large number of operators Φ . In particular, it obviously holds if Φ is the identity operator, an ordered function (see [4]) or a transformation from [6].

Definition 10. The *n*-dimensional subspace G of C(X) is called the Haar subspace on X if every non-zero function in G has at most n-1 zeroes.

We say that x is a simple zero for $f \in C[a, b]$ if f(x) = 0 and f changes its sign at x.

Now, we prove that for some families G the sufficient condition for g to be an optimal starting approximation may also be the necessary condition. For this purpose we prove at first the following

LEMMA 1. Let g and h be arbitrary fixed distinct elements of M and let $f \in K \setminus M$. Let G be either an n-dimensional Haar subspace or a varisolvent family on [a, b]. In the second case, we additionally assume that either $a \notin X$ or $b \notin X$. Let D be a closed subset of X such that $f(x) \neq g(x)$ for all $x \in D$. Then the inequality

$$\lceil f(x) - g(x) \rceil \lceil h(x) - g(x) \rceil \geqslant 0$$
 for all $x \in D$

implies that there exists a $p \in G$ such that

$$[f(x)-g(x)][p(x)-g(x)] > 0$$
 for all $x \in D$.

Proof. At first, suppose that G is a Haar subspace on [a,b]. Put $B = \{x \in D : h(x) = g(x)\}$ and suppose that this closed set is non-empty. Since M is a Haar subspace, the set B contains exactly k elements, where $1 \le k \le n$. Let a function $r \in G$ be defined by the interpolation conditions $r(x_i) = d_i$ for $i = 1, \ldots, n$, where, for $i \le k$, $x_i \in B$ and $d_i = f(x_i) - g(x_i)$, and, for i > k, $x_i \in [a,b] \setminus B$ and d_i are arbitrary real numbers. Obviously, we have

$$\lceil f(x) - g(x) \rceil \lceil h(x) - g(x) + \lambda r(x) \rceil > 0$$

for all $x \in B$ and arbitrary fixed $\lambda > 0$. Thus there exists an open set $U \supset B$ such that the last inequality holds for all $x \in U$. If $D \subset U$, the proof is completed. Otherwise, put $V = ([a, b] \setminus U) \cap D$ and let

$$\delta = \inf\{|h(x) - g(x)|: x \in V\} > 0.$$

Hence

$$[f(x)-g(x)][h(x)-g(x)+\lambda r(x)]>0$$

for all $x \in V$ and λ such that $0 < \lambda ||r|| < \delta$. Finally, the function $p(x) = h(x) + \lambda r(x)$, where $0 < \lambda ||r|| < \delta$ has the required properties.

Now, we assume that G is a varisolvent family on [a, b] and that either $a \notin X$ or $b \notin X$. Moreover, let

(4)
$$[f(x)-g(A,x)][g(B,x)-g(A,x)] \ge 0$$
 for all $x \in D$

and let m be the degree of varisolvency of the family G at $B \in P$. Let z_1, \ldots, z_k for k < m be simple zeroes of the function g(B, x) - g(A, x) in (a, b). Suppose that $z_i \in D$ for $i = 1, \ldots, l$, where $l \leq k$. From the continuity of all considered functions and inequality (4) it follows that for sufficiently small $\varepsilon > 0$ there exist sets $O_{\varepsilon}(z_i)$ equal to $(z_i, z_i - \varepsilon)$ or $(z_i, z_i + \varepsilon)$ such that $O_{\varepsilon}(z_i) \cap D = \emptyset$ for $i = 1, \ldots, l$. Let $x_i, i = 1, \ldots, m$, be distinct points of [a, b] such that

$$x_i \in O_s(z_i)$$
 for $i = 1, \ldots, l$, $x_i = z_i$ for $i = l+1, \ldots, k$,

$$x_i \in [a, \inf\{x: x \in X\}) \cup (\sup\{x: x \in X\}, b]$$
 for $i = k+1, ..., m-1$,

and let x_m be a point such that $g(B, x_m) \neq g(A, x_m)$. Moreover, let y_m lie strictly between $g(B, x_m)$ and $g(A, x_m)$ and let $y_i = g(B, x_i)$ for $i = 1, \ldots, m-1$. By Definition 2, for y_m sufficiently close to $g(B, x_m)$ there exists a $C \in P$ such that $g(C, x_i) = y_i$ for $i = 1, \ldots, m$. Obviously, by this construction, assumption (4) and Lemma 7.1 from [11], p. 4, we have

$$[f(x)-g(A,x)][g(C,x)-g(A,x)] > 0$$
 for all $x \in D$.

Hence the proof of the lemma is completed.

^{8 —} Zastosow. Matem. 16.3

From Lemma 1 and Theorems 3 and 4 we obtain immediately the following

THEOREM 6. Let $\Phi \colon K \to C(X)$ be a continuous operator. Let G be an arbitrary Haar subspace or a varisolvent family on [a, b]. In the second case, we additionally assume that either $a \notin X$ or $b \notin X$. Let $M = K \cap G$ be a non-empty relatively open subset of G. Finally, assume that Φ is pointwise strictly monotone and pointwise fixed at $f \in K \setminus M$. Then a necessary and sufficient condition for $g \in M$ to be an optimal starting approximation to $\Phi(f)$ is that there exists no element $h \in G \setminus \{g\}$ such that

$$[f(x)-g(x)][h(x)-g(x)]\geqslant 0$$
 for all $x\in D(g)$.

Now, let P and Q be spaces of algebraic polynomials defined on [a, b] of degrees not greater than n and m, respectively. Denote by R the family of functions r = p/q, where $p \in P$, $q \in Q$ and q(x) > 0 for every $x \in [a, b]$. Let r = p/q be a fixed irreducible element of R and let P + rQ be the subspace of C[a, b] such that

$$P+rQ = \{p+rq: p \in P \text{ and } q \in Q\}.$$

Then from [1], p. 162, and [12] we have

THEOREM 7. Under the assumptions of Theorem 6 about the operator Φ a necessary and sufficient condition for $r \in M = K \cap R$ to be an optimal starting approximation to $\Phi(f) \in C(X)$ is that there exists no element $h \in P + rQ$, $h \not\equiv r$, such that

$$[f(x)-r(x)][h(x)-r(x)]\geqslant 0$$
 for all $x\in D(g)$.

Note that the weak inequality ≥ in Theorems 6 and 7 may be replaced by the sharp inequality >.

4. Alternation theorems. In this section we suppose that X contains at least n+1 points. Now we shall prove a lemma which enables us to obtain alternation theorems from Theorems 6 and 7.

LEMMA 2. Let $f \in C(X)$, $g \in G$, and let $D \subset X$ be a given closed set such that $f(x) \neq g(x)$ for all $x \in D$. Assume that G is either an n-dimensional Haar subspace or a varisolvent family on [a, b]. In the second case we additionally assume that either $a \notin X$ or $b \notin X$ and that n denotes the degree of varisolvency of the family G at g. Then there exists no function $h \in G \setminus \{g\}$ such that

$$[f(x)-g(x)][h(x)-g(x)]\geqslant 0$$
 for each $x\in D$

if and only if the set D contains at least n+1 alternation points x_i of the function f-g, i.e. such that $a \leq x_0 < x_1 < \ldots < x_n \leq b$ and

$$f(x_i)-g(x_i)=(-1)^i[f(x_0)-g(x_0)], \quad i=0,\ldots,n.$$

Proof. At first, let G be an n-dimensional Haar subspace on [a, b]. Since a non-trivial function $h(x) - g(x) \in G$ can have at most n-1 variations in sign, the sufficiency of the lemma is obvious.

For the necessity let us suppose on the contrary that f-g has exactly k ($k \le n$) alternation points x_i for $i=0,\ldots,k-1$ and that the function f_1 is a continuous extension of f on [a,b]. This function f_1 exists by the well-known Tietze theorem. If k=1, then the proof is completed, since in every Haar subspace there exists a positive function p and we may set h=p+g. Otherwise, let z_i denote arbitrary fixed zeroes of f_1 in (x_{i-1},x_i) for $i=1,\ldots,k-1$. Moreover, let $O(z_i)$ be closed sets containing z_i such that

$$\sup \{|f_1(x)|: x \in O(z_i)\} < \inf \{|f_1(x)|: x \in D\}.$$

Obviously, we have $D \cap O(z_i) = \emptyset$. In G we choose a function r defined by the following interpolation conditions: $r(x_0) = f_1(x_0)$ and r changes its sign at n-1 distinct points u_i , where $u_i \in O(z_i)$ for $i=1,\ldots,k-1$, $u_i \in O(z_1)$ for $i=k,\ldots,n-2$ and $u_{n-1}=b$ when n-k is an odd number (otherwise, we assume that $u_{n-1} \in O(z_1)$). We have $f_1(x)r(x) \ge 0$ for all $x \in D$. Hence we may set h = r+g. Now, assume that G is a varisolvent family such as in the thesis of this lemma. The necessity in this case follows from the fact that G has property G. For the sufficiency, let G and G and G is defined as above. Let G has property G is distinct points of G and G is defined as above. Let G has property G is distinct points of G and G is a variable of G and G is defined as above. Let G has property G is distinct points of G and G is distinct points of G and G is a variable of G and G is distinct points of G and G is distinct points of G and G is a variable of G and G is distinct points of G is a variable of G in G in G is distinct points of G in G in G in G is distinct points of G in G i

$$u_i \in O(z_i)$$
 for $i = 1, \ldots, k-1$,

 $u_i \in [a, \inf\{x: x \in X\}) \cup (\sup\{x: x \in X\}, b]$ for $i = k+1, \ldots, n-1$ and

$$u_n = x_0$$
.

Moreover, let $v_i = g(u_i)$ for i = 1, ..., n-1 and let v_n be chosen so that

$$f_1(x_0)[v_n-g(x_0)]>0.$$

By Definition 2, for v_n sufficiently close to $g(x_0)$ there exists a function h in G such that $h(u_i) = v_i$ for i = 1, ..., n. Obviously, by this construction and Lemma 7.1 in [11], p. 4, we have

$$[f(x)-g(x)][h(x)-g(x)]>0 \quad \text{ for all } x\in D.$$

This completes the proof.

By Lemma 2 and Theorem 6 we obtain the following generalization of Theorem 2 from [8].

THEOREM 8. Under the assumptions of Theorem 6 a necessary and sufficient condition for $g \in M$ to be an optimal starting approximation to $\Phi(f)$ is that the set D(g) contains at least n+1 alternation points of the function f-g.

Here n denotes either the dimension of a Haar subspace G or the degree for varisolvency of the family G at g.

By Lemma 2, Theorem 7 and [1], p. 162, we have the following theorem [5]:

THEOREM 9. Under the assumptions of Theorem 7 a necessary and sufficient condition for an irreducible function $r = p/q \in M$ to be an optimal starting approximation to $\Phi(f)$ is that the set D(r) contains at least $2 + \max\{n+u, m+v\}$ alternation points of the function f-r. Here u and v denote the degrees of q and p, respectively.

References

- [1] E. W. Cheney, Introduction to approximation theory, McGraw Hill, New York 1966.
- [2] C. B. Dunham, Chebyshev approximation by families with the betweenness property, Trans. Amer. Math. Soc. 136 (1969), p. 151-157.
- [3] Chebyshev approximation with restricted ranges by families with the betweenness property, J. Approx. Theory 11 (1974), p. 254-259.
- [4] Transformed linear Chebyshev approximation, Aequationes Math. 12 (1975), p. 6-11.
- [5] J. B. Gibson, Optimal rational starting approximations, J. Approx. Theory 12 (1974), p. 182-198.
- [6] E. H. Kaufman, Jr., and G. G. Belford, Transformations of families of approximating functions, ibidem 4 (1971), p. 363-371.
- [7] G. Meinardus, Approximation of functions: Theory and numerical methods, Warszawa 1968 [in Polish].
- [8] and D. Schwedt, Nicht-lineare Approximationen, Arch. Rational Mech. Anal. 17 (1964), p. 297-326.
- [9] G. Meinardus and G. D. Taylor, Optimal starting approximations for iterative schemes, J. Approx. Theory 9 (1973), p. 1-19.
- [10] J. R. Rice, Tchebycheff approximations by functions unisolvent of variable degree, Trans. Amer. Math. Soc. 99 (1961), p. 298-302.
- [11] The approximation of functions, Vol. 2, Addison-Wesley, Reading, Mass., 1969.
- [12] R. Smarzewski, Characterization of optimal polynomial and rational starting approximations, Zastosow. Matem. 15 (1977), p. 513-517.

DEPARTMENT OF NUMERICAL METHODS M. CURIE-SKŁODOWSKA UNIVERSITY 20-031 LUBLIN

Received on 15. 6. 1976

R. SMARZEWSKI (Lublin)

NIELINIOWA OPTYMALNA APROKSYMACJA STARTOWA

STRESZCZENIE

W niniejszej pracy omówiliśmy pewną nieliniową rodzinę aproksymujących funkcji oraz sformułowaliśmy kilka twierdzeń charakteryzujących optymalną startową aproksymację przez jej elementy. Ponadto udowodniliśmy, że rodzina ta zawiera rodzinę funkcji asymptotycznie wypukłych ([7], [8]), rodzinę zdefiniowaną przez Dunhama ([2], [3]) oraz, przy dodatkowych założeniach, rodzinę funkcji lokalnie interpolujących ([10], [11]). Z tego względu niniejsza praca jest także próbą połączenia trzech różnych teorii nieliniowej aproksymacji, rozwiniętych przez J. R. Rice'a, G. Meinardusa oraz C. B. Dunhama.