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1. Introduction. Let X be a compact subset of the closed interval
[“,.b] and let C(X) denote the space of all continuous real-valued functions
defined on X, normed by

IfIl = max{|f(#): @ e X}.

Rice ([10], [11]), Meinardus and Schwedt ([7], [8]) and Dunham
([2], [3]) have developed three distinct theories of approximations to
ctions from C(X) by non-linear families of functions: varisolvent,
a’symptotica,lly convex and having the betweenness property, respectively.
. In this paper we present a theory of non-linear approximation which
u_lcludes the last two theories and, under the additional assumption that
Cither q ¢ X or b ¢ X, also the first theory.

Let the family @ of real functions g(A4, «) defined for # € X and A € P,
iWhere P ig an arbitrary subset of E™, be given. We assume that g(4, x)
8 3 continuous function of n 41 variables in the Cartesian product of P
ad X. Now we define varisolvent functions introduced by Rice in [10].

Definition 1. A family @ of functions g(4, z), A € P, is said to have
Property 7 of degree m at B e P if for every A € P the function g(B, »)—
~9(4, z) has at most m —1 zeroes on X or vanishes identically.

Definition 2. A family @ of functions g(4,w), A P, is called
0ally solvent of degree m at B e P if for every set of m distinct points #;
t=1, ...ym) iIn X and for every prescribed ¢ > 0 there exists a 6 =
(B, e, w,,...,5,)>0 such that the inequality |y,—g(B, ;)| <& for
i v ++., m implies the existence of a C e P satisfying ¢(0, #;) = y; for
=1, m and g(B, ) —g(0, <.

existDefi.nition 3. A family @ is called varisolvent if for each A € P there
ang ]ia»n Integer m = m(A4) such that @ is locally solvent of degree m a,t. A
th 48 property Z of degree m and if there exists no integer % > m with
© above Properties. The number m(A4) is called degree of varisolvency

* the family @ at 4.
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Definition 4 (Meinardus and Schwedt [8]). A family @G of functions
g(4,x), A P, is asymptotically conver if for each 4, B in P and each
t € [0, 1] there exist a parameter value A(f) € P and a continuous real-
valued function h(z,t), defined on X x [0, 1] and satisfying h(x, 0) > 0
for all # € X, such that

(L —th(x, t)g(4, ®)+th(z, 1)g(B, ) —g(4A (1), )| =o(t) as t—0.

Definition 5 (Dunham [2] and [3]). A subset G of C(X) has the
betweenness property if for any two elements g, and g, there exists a A-set {H,}
of elements of @ such that H, = ¢,, H, = g, and, forallz e Xand 0 < A1 < 1,
H,(x) is either a strictly monotonic function of A or a constant.

2. Families with the weak betweenness property.

Definition 6. A subset G of C(X) has the weak betweenness property
if for any two distinct elements g and & in @ and for every closed subset
D of X with h(z) # g(x) for all z € D there exists a sequence {g;} of
elements of @G such that

(i) }112 lg—gdl =0,

(ii) the numbers g,(z), where # € D and ¢ =1, 2, ..., lie strictly be-
tween g(z) and h(») (i.e. either g(») < g;(#) < h(®) or h(2) < g;(x) < g(®))

By Definitions 5 and 6 and Lemma 1 in [2] it is obvious that th.
subset @ of O(X) has the weak betweenness property if it has the between-
ness property.

THEOREM 1. Let us suppose that either a ¢ X or b ¢ X. Then every vari-
solvent family G on the inierval [a, b] has the weak betweenness property.

Proof. Denote by U a non-empty set defined by

U = [a, inf{z: v e X})u(sup {#: e X}, b].

Let g(A, ) and g(B, #) be two arbitrary distinct elements of ¢ and
let m be the degree of varisolvency of G at g(4, z), # € [a, b]. Hence theré
exist k (k< m—1) zeroes @, (j =1,..., k) of g(4,x)—g(B, ) in [a,b]
Let D be any closed subset of X such that g(4, ) # g(B, «) for all z € D-
Moreover, let 2z and »; (j = k+1,...,m—1) be arbitrarily prescrlbed
distinet points in D and U, respectlvely By Definition 2, for every ¢; = 1/
(¢ =1,2,...) we may choose a d;< ¢ and a smtable y; lying strlcﬂY
between g(A, 2) and g(B, #) and convergent to g(4, z), such that theré
exist parameters A4; in P satisfying

g(Ai;wj) =9(A’$j)7 j=1...,m—1,

1
g(4;,2) =y, and lg(4,)—g(4;, )l < _'L-
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Hence
gyum»—mmrm=o
and condition (i) in Definition 6 is satisfied.

It is known (see [11], p. 4) that all zeroes @; of the function g(4, ) —
—9(4,, ) must be simple, i.e. this function changes its sign at ;. Hence
and from the fact that g(4,, 2) lies strictly between g(4, 2) and g(B, 2)
and the functions g(4, ) —g(B, ) and g(4, 2)—g(4;, #) have the same
Dumber of zeroes in [a, b]\ U we infer that g(4,, #) lies strictly between
9(4, ») and g(B, «) for all # € D. Hence in Definition 6 we may accept g,
%o be equal to g(4;, -), which completes the proof.

THEOREM 2. Every asymptotically convex family G has the weak between-
ness property.

. Proof. Let g(4,«) and g(B, #) be two arbitrary distinct elements
In Q. It follows from Definition 4 that for every & > 0 there exists a f, > 0
Such that

—el < g(A(t)7 w)—g(A, x) —th(z,t)[g(B,x)—g(4, z)] < st
Or all t € (0, ¢,] and « € X. Hence we obtain immediately
lim lg(4 (%), ) —g(4, )| =0

Or any sequence #; - 0. Morecover, we may suppose, decreasing f, if neces-
Sary, that h(z,t) > 0 for all { [0, {,] and # € X. Let D be an arbitrary
fixed closed subset of X such that g(4, z) # g(B, ) for all # € D. Without
loss of generality we may suppose that ¢ is chosen so that

0<ée< min h(x,t)|g(4,s)—g(B, ).
te[0,tgl,zeD

Then for all » € D and # € (0, {,] we have either

g(B,x)—g(4,x)>0 and g(A(t),s)—g(4,2)>0
or

g(B,x)—g(4,2) <0 and g(A(t),s)—g(4,2)<0.

b Hence, decreasing %, if necessary, we infer that g (4 (f), ) lies strictly
etween g(4,z) and g(B, ) for all x e D and ¢ € (0, {,]. Now, in the inter-
val (0, 1,] we choose a sequence #; convergent to 0. Obviously, in Defi-

gltioﬂ 6 we may accept g; to be equal to g(4 (%), -), which completes the
Toof, ’

. 3. Characterization of an optimal starting approximation by families
With the weak betweenness property. Let us assume that @ is a continuous
;napping of the subset K = C(X) into C(X) and that M is an arbi-

Tary fixed non-empty subset of K.
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The following three definitions (from [97]) will be useful in the sequel.

Definition 7. The element p € M is an optimal starting approwi-
mation in M for ge ®(K) if

lg—2(PI<llg—D(h)| for all he M.

Definition 8. The operator @ is called pointwise stricily monotone
at f e K if for each h, g € K we have

|D(f) (@) — P(h) (@) < |P(f)(a0) — P(g) (@) for each x e X,

where either g(w,) < h(m) < f(@) or f(mo) < h(wo) < g(o).

Definition 9. The operator & is said to be pointwise fived at f € K
if h e K with h(2,) = f(x,) for @, € X implies D (h)(z,) = P(f)(=,).

Note that every ordered function [4] and more general transformations
considered in [6] are examples of operators being pointwise strictly mono-
tone and pointwise fixed at f, where f and K may be arbitrarily chosen.
For other examples and properties of operators being pointwise strictly
monotone and pointwise fixed at f see [9]. Obviously, ® may be equal
to the identity operator. Hence the theory of optimal starting approxi-
mation contains the theory of ordinary Chebyshev approximation. More-
over, note that the change of the norm ||| defined in Section 1 into the
norm (see [9])

Ifll, = max {w(z)|f(z)|: ©eX},

where w(x) > 0 for all » € X, does not generalize our considerations.
Indeed, the optimal starting approximation with the operator & and the
norm |-|l,, may be replaced by the approximation with the operator w®
and the norm |[|-|.

We assume throughout our discussion that the function fand the op-
erator -@ are fixed. Denote by D(g) a closed subset of X defined by

D(g) = {we X: |D(f)(2)—D(9) (@) = IP(f)—P(g)I]}-

THEOREM 3. Let @: K — C(X) be a continuous operator. Let G be at
arbitrary subset of C(X) having the weak betweenness property and let
M = KNG be a non-empty relatively open subset of G. Finally, assumé
that @ is pointwise strictly monotone at f € K\ M. Then a necessary conditio®
for g € M to be an oplimal starting approzimation to D(f) s that there exists
no element h € G such that

[f(#)—g(@)][h(2)—g(2)]> 0  for all cD(g).

Proof. Suppose, on the contrary, that there exists a function b et
satisfying the inequality in the theorem. Hence for ®» € D(g) we have
either

h(w)> g(@) and f(z)> g(w)
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or

h(z)<g(@) and f(o)<g(@).
_ Since @ has the weak betweenness property and M is relatively open
In @, the inequalities above imply that there exist a sequence g; of elements
of @ and an integer m such that g,(z) lies strictly between f(») and g(x)

for all » ¢ D(g) and i > m, and g; € M for all i > m. From the pointwise
Strict monotonicity of @ at f it follows that

(1) 1D (f) (@) — D(g:) ()] < |D(f) (@) — P(9)(®)] = IP(f)—P(9)l

for all { > m and = € D(g). If D(g9) = X, the proof is completed.

Otherwise, it follows from the continuity of the function |D(f)— P (g,
that there exists an open set U > D(g) such that (1) is true for all » e U.
Let Vv = X\ U. Obviously, V is a closed set. Let us put

6 = sup {|D(f)(#) — P(g) (w)]: weV}.

Since V nD(g) is an empty set, we have |D(f) — D(g)|| > 6. From the
Continuity of @ and the uniform convergence of g; to g it follows that
there exists an integer m, n > m, such that

1D(9)— P(g:)ll < 1P(f)—DP(g)|—6  for all i > n.
Hence, for all # € V and ¢ > n we obtain
19(£) (@) — D(9) (@)] < |9 (f) () — D(g) (2)] + | (g) (@) — D(g;) ()]
< 8+ 19(f)— P(g)— & = |D(f)— D).
Combining this result with (1) we have

1D(f)—P(g)l < 1P(f)—P(g)l for i>n.

Hence we see that the functions g; in M for ¢ > n are better optimal
s'33'1'1':i11g approximations to @(f) than g and this gives a contradiction.

THEOREM 4. Let M be an arbitrary subset of K and let the operator
®: K¢ (X) be pointwise stricily monotone and pointwise fized at f € K\ M.
a sufficient condition for g € M to be an optimal starting approzimation

¥ O(f) is that there ewists no element h € M \{g} such that

[f(@)—g@)][h(®)—g(x)]=0 for all x e D(g).

Proof. Since f ¢ M and @ is pointwise fixed at f, we have f(®) # g (@)

i;l‘ all & € D(g). Suppose, on the contrary, that there exists an h € M such
at

12(f)— DB < IP(f)—P(9l.
Hence for all » € D(g) we have

2) 1B(f) (%) — D(h)(2)] < |D(f) (@) — D(g) ()]



490 R. Smarzewski

Now, for z e D(g) either

f(@)>g(@) and h(z)>g()
or
f(@)<g(x) and h(x)<g(®).

On the other hand, by the pointwise monotonicity of @ at f we have

12 (f) (x) — 2(9) (@)] < |19(f) (@) — P(h)()I,

which contradicts (2). Combining the inequalities above for the functions f, §
and & we obtain the required inequality.

The following theorem shows that in special cases the necessary
condition for the function g to be an optimal starting approximation may
be also the sufficient condition.

THEOREM 5. Under the assumptions of Theorem 3 and the additional
assumptions that @ is a pointwise fived operator ai f and

(3) h(z) = g(x) implies D(h)(z) = D(g)(x) for all g, he M,

a necessary and sufficient condition for g € M to be an optimal starting ap-
proximation to D(f) 18 that there ewvists no element h € G such that

[f(@)—g@)][h(®)—g(®)]>0 for all » e D(g).

Proof. The assertion follows from Theorems 3 and 4 and from the
fact that the equality k() = g() for any @ € D(g) in the proof of Theorem 4
is impossible by condition (3).

Condition (3) is satisfied for a large number of operators @. In parti-
cular, it obviously holds if @ is the identity operator, an ordered functiol
(see [4]) or a transformation from [6].

Definition 10. The n-dimensional subspace @ of C(X) is called the
Haar subspace on X if every non-zero function in G has at most 7#—
Zeroes.

We say that z is a simple zero for f € C[a, b] if f(#) = 0 ar d f changé®
its sign at «.

Now, we prove that for some families G the sufficient condition for
g to be an optimal starting approximation may also be the necessary c0L”
dition. For this purpose we prove at first the following

LeEmmMA 1. Let g and h be arbitrary fized distinct elements of M and 16t
feK\M. Let G be either an n-dimensional Haar subspace or a varisolvent
family on [a, b]. In the second case, we additionally asswme that either & ¢
or b ¢ X. Let D be a closed subset of X such that f(w) + g(x) for all @ €D"
Then the inequality

[f(#) —g(«)][h(®)—g(@)]=0 for all €D
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implies that there ewists a p € G such that

[f(®) —g(®)][p(x)—g(x)] >0 for all x € D.

Proof. At first, suppose that G is a Haar subspace on [a,b]. Put

B = {# € D: h(z) = g(x)} and suppose that this closed set is non-empty.

ince M is a Haar subspace, the set B contains exactly k elements, where

1< k< . Let a function 7 € @ be defined by the interpolation conditions

*(#;) = d, for ¢ =1, ..., n, where, for i <k, #, € B and d; = f(x;)—g(,),

and, for ¢ > k, x; € [a, b]\ B and d; are arbitrary real numbers. Obviously,

Wwe have

[f (@) —g(2)1[h(®) —g(@) + Ar(2)] > 0

forall » ¢ B and arbitrary fixed 4 > 0. Thus there exists an open set U > B

Such that the last inequality holds for all # € U. If D < U, the proof is
Completed. Otherwise, put ¥V = ([a, 5]\ U)nD and let

6 = inf{|h(z)—g(x)|: eV} > 0.
Hence

[f(@) —g(@)1[h(x) —g(2) +Ar(#)] > O

for all »e ¥ and 2 such that 0 < Allrll < 6. Finally, the function p(z)
= h(-’l’)+}.r(w), where 0 < A|jr|| < & has the required properties.

_ Now, we assume that G is a varisolvent family on [a, b] and that
Slther ¢ ¢ X or b ¢ X. Moreover, let

4 [f(#)—g(A,2)][g(B, 5)—g(4,2)]>0 for all zcD

and let m be the degree of varisolvency of the family G at B € P. Let
%1500, 2, for k< m be simple zeroes of the function ¢(B, z)—g(4, o)
11} (‘f’ b). Suppose that 2z, e D for i =1, ..., 1, where I < k. From the con-
tlnu.u-,y of all considered functions and inequality (4) it follows that for
suﬂlciently small £ > 0 there exist sets 0,(2;) equal to (z;, 2; — &) or (2;, 2; 1 ¢€)
Such that 0,(¢,)nD =@ for i = 1,...,1. Let #;, 4 =1, ..., m, be distinet
Points of [, b] such that

Z;€0,(2) fori=1,...,1, » =2 fori=14+1,...,k,
%€ [a,inf{w: e X})u(sup {w: v € X},b] for i ="k+1,...,m—1,

::r(il let @, be a point such that ¢g(B, #,,) # g(4, x,,). Moreover, let y,, lie

Ctly between g(B, z,,) and g(4, @,) and let y; = g(B, z,) fori =1, ...
;;i’;n-—l. By Definition 2, for y,, sufficiently close to ¢(B, ®,) there
this 8 a8 O eP such that ¢g(C,x;) =y, for i =1,..., m. Obviously, by

8 construction, assumption (4) and Lemma 7.1 from [11], p. 4, we have
[f(®)—g(4, x)]1[g(C,z)—g(4,x)] >0 for all zeD.

Hence the proof of the lemma is completed.

8
Zastosow. Matem. 16.3
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From Lemma 1 and Theorems 3 and 4 we obtain immediately the
following

THEOREM 6. Let ®: K — O(X) be a continuous operator. Let G be an
arbitrary Haar subspace or a varisolvent family on [a,b]. In the second
case, we additionally assume thait either a ¢ X or b ¢ X. Let M = Kn@G be
a non-empty relatively open subset of Q. Finally, assume that D is pointwise
strictly monotone and pointwise fized at f € K\M. Then & necessary and
sufficient condition for g e M to be an optimal starting approxvimation 10
D(f) is that there exists no element h € G\{g} such that

[f(@)—g@)][h(x)—g®)]=>0 for all #cD(g).

Now, let P and @ be spaces of algebraic polynomials defined on [a, b]
of degrees not greater than n and m, respectively. Denote by R the family
of functions r = p/q, where p € P, ¢ €Q and ¢(z) > 0 for every = € [a, b]-
Let r = p/q be a fixed irreducible element of R and let P +rQ be the sub-
space of C[a,b] such that

P+rQ = {p+rq: peP and qe@}.

Then from [1], p. 162, and [12] we have

THEOREM 7. Under the assumptions of Theorem 6 about the operator @
a necessary amd sufficient condition for re M = KnR to be an optimal
starting approvimation to ®(f) € C(X) is that there exists no element h € P +r¢»
h = r, such that

[f(@) —#(@)][h(@) —r@)]> 0 for all @ e D(g).

Note that the weak inequality > in Theorems 6 and 7 may be Té"
placed by the sharp inequality >.

4. Alternation theorems. In this section we suppose that X contains
at least »--1 points. Now we shall prove a lemma which enables us 0
obtain alternation theorems from Theorems 6 and 7.

LEMMA 2. Let fe C(X), g €@, and let D = X be a given closed set such
that f(x) # g(x) for all x € D. Assume that G is either an n—dimensio’n“'l
Haar subspace or a varisolvent family on [a, b]. In the second case we addv
ttonally assume that either a ¢ X or b ¢ X and that n denotes the degreé of
varisolvency of the family G at g. Then there exists mo fumction h e @G N9
such that

[f(2)—g(®)][h(x)—g(@)] =0 for each xcD

if and only if the set D contains at least n+1 alternation points »; of the
Junction f—g, i.c. such that a < 2y < 0, < ... < 2, < b and

f@)—g(@) = (=1 [f(@)—g(@)], i=0,...,n.
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Proof. At first, let G be an n-dimensional Haar subspace on [a, b].
Since a non-trivial function k() —g(x) €@ can have at most n —1 varia-
tions in sign, the sufficiency of the lemma, is obvious.

For the necessity let us suppose on the contrary that f —g has exactly
k (k < n) alternation points @, for ¢ = 0, ..., k—1 and that the function f,
i8 a continuous extension of f on [a, b]. This function f, exists by the well-
known Tietze theorem. If k¥ = 1, then the proof is completed, since in
évery Haar subspace there exists a positive function p and we may sef
h=pitg. Otherwise, let 2; denote arbitrary fixed zeroes of f; in (2;_;, @;)
f:;lr i=1,...,k—1. Moreover, let O(z) be closed sets containing z; such

at
sup {|f1(«)|: # € O(%)} < int{|f,(«)|: » € D}.

Obviously, we have DnO(z;) = @. In G we choose a function r de-
fined by the following interpolation conditions: »(x,) = f,(2,) and r changes
158 sign at n—1 distinet points u;, where w, € O(z,) for ¢ =1, ..., k—1,
% €0(2,) fori =k,...,n—2 and %,_, = b when n—k is an odd number
(otherwise, we assume that %,_1 € 0(2,)). We have f,(x)r(z) >0 for all
% € D. Hence we may set b = r+g. Now, assume that @ is a varisolvent
family such as in the thesis of this lemma. The necessity in this case follows
from the fact that G has property Z. For the sufficiency, let #;, 2; and
O(2;) be defined as above. Let %, (i =1, ..., n) be distinet points of [a, b]
Such that

u;€0(2;) foret=1,...,k-1,
%; €[a,inf{w: v e X})u(sup{w: v X},b] fori==Fk+1,...,m—1
and
u, = &,.

th Moreover, let v; = g(u;) for ¢ = 1,...,n—1 and let v, be chosen so
ab

J1(@o) [0, — g ()] > 0.

. By Definition 2, for v, sufficiently close to g (x,) there exists a function b
0 G such that h(w,) = v, for i = 1, ..., n. Obviously, by this construction
and Lemma 7.1 in [11], p. 4, we have

[f(@)—g(@)][h(®)—g(#)]>0 for all zeD.

This completes the proof.

By Lemma 2 and Theorem 6 we obtain the following generalization
f Theorem 2 from [8].

THEOREM 8. Under the assumptions of Theorem 6 a& mecessary and
Sufficient condition for g € M to be an optlimal starting approximation to D(f)
V8 that the set D (g) contains at least n - 1 alternation poinis of the function f—g.



494 R. Smarzewski

Here n denotes either the dimension of & Haar subspace G or the degree fo
varisolvency of the family G at g.

By Lemma 2, Theorem 7 and [1], p. 162, we have the following the-
orem [5]:

THEOREM 9. Under the assumptions of Theorem T a necessary and
sufficient condition for an irreducible function r = p|q € M to be an optimal
starting approximation to D(f) is that the set D(r) contains at least 2+
+max{n-+u, m+v} alternation points of the function f—r. Here u and v
denote the degrees of q and p, respectively.
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R.SMARZE WS KI (Lublin)

NIELINIOWA OPTYMALNA APROKSYMACJA STARTOWA

STRESZCZENIE

W niniejszej pracy oméwilimy pewna nieliniows rodzine aproksymujacych
tankeji oraz sformulowali§my kilka twierdzen charakteryzujacych optymalng startowa
aproksymacje przez jej elementy. Ponadto udowodniliémy, ze rodzina ta zawiera
Todzing funkeji asymptotycznie wypuklych ([7], [8]), rodzine zdefiniowana przez
Punhama, ([2], [3]) oraz, przy dodatkowych zalozeniach, rodzine funkeji lokalnie
Interpolujacych ([10], [11]). Z tego wagledu niniejsza praca jest takze préba pola-
¢zenia trzech réznych teorii nieliniowej aproksymacji, rozwinigtych przez J. R. Rice’a,
G. Meinardusa oraz C. B. Dunhama.



