A. KOZEK (Wrocław)

A NOTE ON AN EXTENSION OF A THEOREM OF MOROZENSKII

1. Introduction. Morozenskii proved the following theorem:

THEOREM (Morozenskii [4]). Let $X_1, X_2, ..., X_n$ $(n \ge 3)$ be independent and identically distributed random variables with a continuous distribution function $F(x-\theta)$ satisfying the condition

$$\int x^2 dF(x) < \infty.$$

If, for any given $\alpha \in (0, 1)$, there exists a uniformly most powerful (UMP) test of size α for testing H_0 : $\theta = 0$ against H_1 : $\theta > 0$ with a critical region of the form $\{(x_1, x_2, \ldots, x_n) : \overline{x} > c(\alpha)\}$, then F is a distribution function of a normal law.

In this paper we deduce this theorem from some well-known theorems of Bahadur [1] and Halmos and Savage [2]. Moreover, we obtain other characterizations of the normal and gamma distributions.

2. Preliminaries. In this section we recall known results which we use further.

Let \mathfrak{X} be an arbitrary set and let \mathscr{A} be a σ -algebra of subsets of \mathscr{A} . Let $\mathscr{P} = \{P_{\theta} : \theta \in \Omega\}$ be a family of distributions on \mathscr{A} . Finally, let the problem of testing a simple hypotesis $H_0 : \theta = \theta_0, \ \theta_0 \in \Omega$, against a simple alternative $H_1 : \theta = \theta_1, \ \theta_1 \in \Omega \setminus \{\theta_0\}$, be denoted by $T(\theta_0, \theta_1)$.

THEOREM 1 (Bahadur [1]). If a family $R(\theta_0, \theta_1)$ of randomized (non-randomized) tests based on a statistic T(X) forms an essentially complete class for the problem $T(\theta_0, \theta_1)$ in the set of randomized (non-randomized) tests, then T(X) is a sufficient statistic for $\{P_{\theta_0}, P_{\theta_1}\}$.

Remark. Theorem 1 is a particular case of a theorem proved in [1].

THEOREM 2 (Halmos and Savage [2]). A necessary and sufficient condition that T(X) be sufficient for a dominated set $\mathscr P$ of distributions on $\mathscr A$ is that T(X) be sufficient for every $\{P_{\theta_0}, P_{\theta_1}\}$, where $\theta_0, \theta_1 \in \Omega$.

THEOREM 3 (Kelker and Matthes [3]). (a) Let $X_1, X_2, ..., X_n$ $(n \ge 2)$ be independent non-degenerate random variables with distribution functions

508 A. Kozek

 $F_1(x-\theta), \ldots, F_n(x-\theta), -\infty < \theta < \infty, \text{ respectively. If } \sum_{i=1}^n b_i X_i, \text{ where } b_i \neq 0, \text{ is a sufficient statistic for } \theta, \text{ then every } X_i \text{ is a normal variable.}$

- (b) Let X_1, X_2, \ldots, X_n $(n \ge 2)$ be independent non-degenerate and positive random variables with distribution functions $F_1(x/\sigma), F_2(x/\sigma), \ldots, F_n(x/\sigma), \sigma > 0$, respectively. If $\sum_{i=1}^n b_i X_i$, where $b_i > 0$, is a sufficient statistic, then every X_i has a gamma distribution.
- (c) Let X_1, X_2, \ldots, X_n $(n \ge 2)$ be independent random variables with distribution functions $F_1(x/\sigma), F_2(x/\sigma), \ldots, F_n(x/\sigma), \sigma > 0$, respectively, and let each F_i be absolutely continuous with respect to Lebesgue measures in a neighbourhood of the origin. Further, let at x = 0 the functions F_i be non-zero and continuous. If the statistic $\sum_{i=1}^n X_i^2$ is sufficient for σ , then every X_i is a normal variable.

Remark. Part (b) of Theorem 3 is not explicitly stated in [3], but it can be easily proved by using the Kelker-Matthes method.

THEOREM 4 (Neyman). The following conditions are equivalent:

- (a) for every $\theta_0 \in \Omega$ and every $\alpha \in (0, 1)$ in the class of non-randomized tests for testing H_0 : $\theta = \theta_0$ against H_1 : $\theta \in K(\theta_0)$, $\theta_0 \notin K(\theta_0)$, there exists a UMP-test of size α based on a statistic T(X);
- (b) for every $a \in (0, 1)$, there exists a family of confidence sets $S_a(T(X))$ at the confidence level 1-a based on the statistic T(X) which minimizes the probability $P_{\theta}(\theta_0 \in \tilde{S}_a(X))$ for all $\theta \in K(\theta_0)$ among all level 1-a families of) confidence sets $\tilde{S}_a(X)$.
- 3. Results. Now, we deduce some corollaries to the theorems stated in the preceding section. The first among them extends the Morozenskii theorem [4].

COROLLARY 1. Let X_1, X_2, \ldots, X_n $(n \ge 2)$ be independent non-degenerate random variables with distribution functions $F_1(x-\theta), F_2(x-\theta), \ldots, F_n(x-\theta)$ $(-\infty < \theta < +\infty)$, respectively, and let the family of distributions of (X_1, X_2, \ldots, X_n) be dominated. If, for every pair (θ_0, θ_1) , there exists a family of tests $R(\theta_0, \theta_1)$ based on the statistic $\sum_{i=1}^n b_i X_i$ $(b_i \ne 0)$ which forms an essentially complete class for the problem $T(\theta_0, \theta_1)$, then each X_i is a normal variable.

Proof. From Theorem 1 we conclude that $\sum b_i X_i$ is sufficient for every pair $\{P_{\theta_0}, P_{\theta_1}\}$. Therefore, and from Theorem 2, the statistic $\sum_{i=1}^n b_i X_i$ is sufficient. Finally, applying Theorem 3a, we see that each X_i is a normal variable.

COROLLARY 2. Let X_1, X_2, \ldots, X_n $(n \ge 2)$ be independent non-degenerate random variables with distribution functions $F_1(x-\theta), F_2(x-\theta), \ldots, F_n(x-\theta), -\infty < \theta < \infty$, respectively, and let the family of distributions of (X_1, \ldots, X_n) be dominated. Further, let $S_a(\sum_{i=1}^n b_i X_i)$, where $b_i \ne 0$, be a family of confidence sets at the confidence level 1-a. If, for all $\theta > \theta_0$ and every a, the family S_a minimizes the probability $P_0(\theta_0 \in S_a(X_1, \ldots, X_n))$ among all level 1-a families of confidence sets $S_a(X_1, X_2, \ldots, X_n)$, then each X_i is a normal variable.

Proof. According to Theorem 4, an optimal family of confidence sets at every confidence level 1-a exists if and only if there exists, for every $a \in (0,1)$ and every $\theta_0 \in \Omega$, a UMP-test in the class of non-randomized tests at the level a for testing H_0 : $\theta = \theta_0$ against H_1 : $\theta > \theta_0$. Because the optimal families of confidence sets depend only on $\sum b_i X_i$, the UMP-tests also depend only on $\sum b_i X_i$. Hence, for every problem $T(\theta_0, \theta_1)$, there exists a family $R(\theta_0, \theta_1)$ of tests dependent on $\sum b_i X_i$ which forms an essentially complete class in the set of non-randomized tests. Now, it follows from Theorem 1 that $\sum b_i X_i$ is pairwise sufficient. Since the family of distributions of (X_1, X_2, \ldots, X_n) is dominated, Theorem 2 implies that $\sum b_i X_i$ is sufficient. Thus, in view of Theorem 3a, each X_i is a normal variable.

The following corollaries can easily be proved in an analogous way:

COROLLARY 3. Let X_1, X_2, \ldots, X_n $(n \ge 2)$ be independent non-degenerate positive random variables with distribution functions $F_1(x/\sigma), F_2(x/\sigma), \ldots, F_n(x/\sigma), \sigma > 0$, respectively, and let the family of distributions of (X_1, X_2, \ldots, X_n) be dominated. If, for every pair (σ_0, σ_1) , there exists a family of tests $R(\sigma_0, \sigma_1)$ based on the statistic $\sum_{i=1}^n b_i X_i$ $(b_i > 0)$ which forms an essentially complete class for $T(\sigma_0, \sigma_1)$, then each X_i has a gamma distribution.

COROLLARY 4. Let X_1, X_2, \ldots, X_n $(n \geqslant 2)$ be independent non-degenerate positive random variables with distribution functions $F_1(x/\sigma), \ldots, F_n(x/\sigma), \sigma > 0$, respectively, and let the family of distributions of (X_1, \ldots, X_n) be dominated. Further, let $S_a(\sum b_i X_i)$ $(b_i > 0)$ be a family of confidence sets at the confidence level 1-a. If, for every $a \in (0,1)$ and all $\sigma > \sigma_0$, the family S_a minimizes the probability $P_{\sigma}(\sigma_0 \in S_a(X_1, \ldots, X_n))$ among all level 1-a families of confidence sets $S_a(X_1, \ldots, X_n)$, then X_i $(i = 1, \ldots, n)$ have gamma distributions.

COROLLARY 5. Let X_1, \ldots, X_n $(n \ge 2)$ be independent random variables with distribution functions $F_1(x/\sigma), \ldots, F_n(x/\sigma), \sigma > 0$, respectively, satisfying the assumptions of Theorem 3c. Further, let the family of distribu-

510 A. Kozek

tions of (X_1, \ldots, X_n) be dominated. If, for every pair (σ_0, σ_1) , there exists a family of tests $R(\sigma_0, \sigma_1)$ based on statistic $\sum X_i^2$ which forms an essentially complete class for the problem $T(\sigma_0, \sigma_1)$, then each X_i is a normal variable.

COROLLARY 6. Let X_1, \ldots, X_n $(n \ge 2)$ be independent random variables with distributions functions $F_1(x/\sigma), \ldots, F_n(x/\sigma), \sigma > 0$, respectively, satisfying the assumptions of Theorem 3c and let the family of distributions of (X_1, \ldots, X_n) be dominated. Further, let $S_a(\sum_{i=1}^n X_i^2)$ be a family of confidence sets at the confidence level 1-a. If, for every $a \in (0,1)$ and all $\sigma > \sigma_0$, the family $S_a(\sum X_i^2)$ minimizes the probability $P_\sigma(\sigma_0 \in S_a(X_1, \ldots, X_n))$ among all level 1-a families of confidence sets $S_a(X_1, \ldots, X_n)$, then each X_i is a normal variable.

References

- [1] R. R. Bahadur, A characterization of sufficiency, Ann. Math. Statist. 26 (1955), p. 286-293.
- [2] P. Halmos and L. Savage, Application of the Random-Nikodym theorem to the theory of sufficient statistics, ibidem 20 (1949), p. 225-241.
- [3] D. Kelker and T. K. Matthes, A sufficient statistics characterization of the normal distribution, ibidem 41 (1970), p. 1086-1090.
- [4] L. Yu. Morozenskii (Л. Ю. Морозенский), Характеризация нормального закона свойством оптимальности критерия основанного на выборочном среднем, Вестник Ленингр. ун-та 13 (1971), р. 61-63.

INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WROCŁAW

Received on 30. 11. 1972

A. KOZEK (Wrocław)

O PEWNYM UOGÓLNIENIU TWIERDZENIA MOROZIENSKIEGO

STRESZCZENIE

W pracy [4] Morozienskij udowodnił, że pewne optymalne własności testów charakteryzują rozkład normalny. W obecnej pracy udowodniono twierdzenie Morozienskiego dla słabszych założeń. Poza tym otrzymano inne twierdzenia, charakteryzujące rozkłady normalny i gamma przez optymalne własności testów oraz rodzin zbiorów ufności.