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PHASE-TYPE DISTRIBUTIONS AND PERTURBATION MODEL

1. INTRODUCTION

In recent papers [4]-[7], Neuts considered a finite Markov chain
with one absorbing state, which is “re-started” whenever it enters the
absorbing state. He termed the associated absolute distributions of time
to absorption the phase-type (PH) distributions, and showed that their
Special properties make them useful in many applications (especially
in queueing theory).

The purpose of this paper is to show that Neuts’ construction can
be interpreted in terms of the compensation method introduced earlier
by Keilson (see [1] and [2]). The connection between these two develop-
ments is best explained with the help of the perturbation method, discussed
by the present author in [8] and [9]. It turns out that Neuts’ model is in
fact a special form of the perturbation model.

It must be stressed that the comment above refers to the first stage
of Neuts’ work. Dealing with a specific perturbation model, he is able to
Obtain more detailed results concerning the class of PH distributions.
N evertheless, it is of interest to see the connection between the Neuts
and Keilson approaches (applications of PH distributions discussed by
Neuts are not considered here; see however [3] and [5]).

Section 2 describes the Neuts model (generalized to infinite chains
With a single closed subset of states), and puts it in the framework of
Perturbation models. Section 3 describes the role of the compensation
Iethod in the study of this model. It is shown that the special structure
of the Neuts model exhibits interesting features (Lemma 1 and Theorem 1)
and that PH distributions are characterized by the special form of the
replacement matrix whose elements are given by the initial distribution
(Theorem 5). Theorems 2 and 4 summarize the role of the compensation
ethod in the Neuts model, and the explicit expression for the compensa-
tion measure is given in Corollary 1. Section 4 contains proofs of these
assertions.

Section 5 returns to the original Neuts model, and Section 6 presents
illustrative examples.



378 R. Syski
2. THE MODEL

The aim of this section is to show that the model described by Neuts
in [4]-[7] fits into the framework of perturbation models discussed in [8].
It is more convenient, however, to consider Markov chains with infinite
state space. In the following, notation and terminology of [8] will be
used.

2.1. Consider a continuous paramcter Markov chain (M.C.) {X,, t > 0}
with a discrete state space I, standard transition matrix P(t) = (p;(t)),
infinitesimal generator @ = (q;) and resolvent U" = (uj). Denoting by
1 the column vector of 1’s, we have P(¢)-1 = 1 and @-1 = 0. It is assumed
that both the backward and the forward equations for P (¢) hold. See [8]
for details.

Select a set 8§ = I of states, and write 8¢ for its complement. It is
assumed that S° is a closed set in the sense that no transitions from 8¢ to
S are allowed (i.e., the M.C. cannot leave 8° although transitions within
8¢ are permitted). On the other hand, the M.C. on § may stay in § or may
leave S to get absorbed by 8° It will be assumed that all states in § com-
municate. For convenience, it will be agssumed that all states in 8° form
a single communicating class, but this is not essential (all states in S° being
absorbing is a most notable exception).

Thus, the infinitesimal generator matrix ¢ and the transition matrix
P(t) take the partitioned forms

s 8 S S
8°(Qu 0 8¢ (Pyu(t) 0
Q = ( ) and P(t) = ( )
S QZI Q22 S 'P21 (t) P22(t)

In Neuts’ original model, S is a finite set and S° consists of a single
absorbing state.

2.2. The following perturbation mechanism is now introduced in
[4]-[7] resulting in a modified M.C. {X;, > 0}. Each time the original
M.C. enters the closed set 8° it is immediately “re-started” by returning
to the set §. The returns are governed by the replacement matrix R = (7;)

of the form
0 R
R =( ),
0 I

Here, r,; is the probability that a state ¢ is to be replaced by a state J-
Clearly, r;; = 0 for all j € §° (because returns are only to states in ) and
r; = 0 fori e §, j e 8. Thus, proper returns are only from §° to 8 described
by the rectangular matrix R,, = (r;), ¢ € 8°, j € 8, of conditional proba-
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bilities representing replacement distributions over 8, for each i € 8°, and
Zrﬁ =1, teA8°.
jeS
(In Neuts’ version, R,, reduces to a single row of one “re-starting” distri-
bution.)

Of primary interest is the modified M.C. restricted to S. It comprises
transitions of two kinds — those of the original M.C. governed by @,
and the returns from S°governed by @,, R,,. Thus, the infinitesimal genera-
tor @), on S for the modified M.C. is of the form @), = Q,,+ Q. Rys.
For convenience, one can consider the modified M.C. on the whole state

space I by simply adjoining the isolated transitions on the closed set S°.
Thus, for the modified M.C. {X;, > 0} we write

. (9 O e (Ph() O
¢ _(0 Q;';) wmd B '(0 P;"z(t))'

It is clear that Pj(t) = Py (2).

It is the submatrix Pj,(t) which is of primary interest. Note that S is
the closed set for the modified M.C. Furthermore, @*-1 = 0 and P*(¢)-1
= 1. Write also U™ = (u}) for the resolvent

U* — (Urla 0 )
0 U,y
2.3. In conformity with Neuts” model, the following assumptions
will be imposed: ,
Al. The original M.C. on the closed set §° is ergodic.
A2. The modified M.C. on the closed set S is ergodic.
A3. @,, does not vanish identically.

Clearly, by construction, the original M.C. on 8§ is necessarily tran-
Sient,
Let E = (e;) and E* = (¢j;) be the limit matrices defined by

E = limP() = limeU® and E* = limP*({) = limaU*.

t—o00 a—>0 t—>00 a—0

In the present case, under assumptions A1-A3, we have

E, O E, 0
E=|" and E* =" .
E, 0 0 E,,

Wwith B\, = B}, and B-1<1, E*1 = 1.
The rows of F,, are identical, giving the ergodic distribution e = (¢;)
on 8° Similarly, the rows of Ej, are identical, giving the ergodic distri-
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bution ¢* = (e}’) on § for the modified chain:

Zej=1, 26”<1(i68), 26;=1,
jeSC jesSC jeS

where

limp;(t) = ¢;, i€, jele.
t—o00

24. In Neuts’ presentation the principal role is played by the distri-
bution of the first entrance time 7' to the closed set 8° for the original
M.C., defined by

T =inf{t: t >0, X, € 8.

For any initial state ¢ € I, write for the conditional distribution
of T:

Di(t) =P(T<t| X, =1)

with D,(t) =1 for ¢ € 8° (by definition). As 8° is a closed set and the
sample paths are right-continuous, it is clear that

Indeed, this is the taboo probability of transition from ¢ to j at ¢
avoiding the taboo set S°. Hence the complementary d.f. is given by

Dyt = ) py(1), eS8,

jeS
and the conditional expectation E(7,7T < oo | X, = %) = w; assumed
tinite is clearly

w, = [ [D{(t)—D§lde, ieS.
0

For the probability of the first entrance to 8° we write
D;,=P(I'< ©|Xy,=1) and D;=1-—D,.

Hence, for i € 8§,

D¢ =1lim ) p,(t) and D, = D ¢;<1.

t—o0 jes. jesC

Let # be the initial distribution on I for the original chain. The abso-
lute distribution of 7' is then

F(t) = ) mDi(t) = ) mDy(t)+ D my 120,

€S ieS°C
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with
F(0) = Y w, F(o)=F0)+ ) nD;<1

ieS°C [N
and the mean
W = Y mw, = B(T, T < ).

eS

The distribution F is the generalization of Neuts’ PH distributions
(see [4]-[7]).

The main problem of perturbation method is to express properties
of the modified chain P),(f) on § in terms of properties of the original
chain P (t) on I. In particular, it is required to find the ergodic distribution
e* for the modified chain on § in terms of the characteristics of P(t) on S.

In Neuts’ analysis, the main problem is to express properties of the
distribution F in terms of properties of the original chain P(¢) on I. In
Particular, it is required to relate the ergodic distribution e* on § to the
initial distribution 7 and the mean W of the PH distribution.

It is shown in the sequel that both problems are in fact two aspects
of the same problem.

3. MAIN RESULTS

The purpose of this section is to show how the compensation method
enters into the description of Neuts’ model and relates to the PH distri-
butions.

The general idea is the same as in [8] and it leads to the same second
resolvent equation. However, in [8] it was assumed that all states in I
communicate for the original chain; adaptation to the present situation
Where 8° is a closed set is immediate. The passage to the limit (as a — 0)
is now different. Nevertheless, the final result expressing the ergodic
distribution for the modified chain as the Green potential of the compen-
Sation measure holds, and is the same as in [8]. Furthermore, it turns
out that Neuts’ method consists in fact in selecting the special form of the
replacement matrix R.

For readers’ convenience, this section contains only statements of
the main results, and proofs and further comments are postponed to
the next section.

3.1. Compensation method. Proceeding as in [8], define the time depen-
dent compensation kernel C(t) = (e;(t)) by

o) =P*(1)(Q*—Q), t=0,
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with C(f)-1 = 0. In the present case we have

0 0
O(t) = ( )7
C21(3)  Cas(?)

Ozl(t) = —Pz*z(t)Qzu sz(t) = P:z(t)Qlem-

where

Write

ce =f e t0W)dt, a>0.

0
Then, under assumptions of Theorem 1.5 in [8], the second resolvent
equation holds:
U* = U*+0°0°.
This equation characterizes any perturbation model.
Define the limit compensation kernel C = (¢;) by

¢ = lim0 () = limaC".

t—00 a—0

Under conditions of Theorem 1.8 in [8], C exists and
C=EQ —Q) = —EQ

with C-1 = 0. In the present case we have

( )
O ==

021 = —E2*2Q217 022 = -E;;QZIRIZ = _E;zsz-

1t is evident that rows of C do not depend on i, say ¢; = ¢; for every
1 €8, j € I. The row vector ¢ = (¢;) will be called the compensation measure.
The direct passage to the limit (as a — 0) in the second resolvent
equation is not applicable, because by ergodicity the limit
IimU*=U
a—>0
is infinite for all j € 8°. It is therefore necessary to use the ergodic a-poten-
tial Z° = (j;) defined by

with

E
Zz"=0U"—-—, a>0.
a
Arguments analogous to those in Theorem 1.14 in [8] (see also [9]
and [10]) show the existence of the limit (called the ergodic potential)
Z = limZ*®

a-»0
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which in the present case is of the form

Zy; O
Z — ( 11 )
Zzl U22
Wit!h Z22 = Uzg, alnd Z'l = Oo
As the M.C. is transient on S, U,, is finite. The matrix Z has only
auxiliary character, and its properties are discussed in the next section.

The following lemma replaces Lemma 1.12 in [8] which is not applica-
ble in the present situation.

LEvMA 1. We have

imC°E = E*E—E.
a—0
Using Lemma 1, the passage to the limit in the second resolvent equa-
tion yields
E* = B*E40Z.

For the proof, see the next section. Hence, necessarily E-1 = 1.

This is the fundamental equation for the Neuts model, and it should
be compared with equations (1.22) and (1.31) in [8]. It expresses the
ergodic distribution on S for the modified chain in terms of the properties
of the original chain. In fact, for transitions within §, the fundamental
equation reduces to

%
22 — 022 Uzz-

Note that this expression has identical rows (independent of ¢).
The matrix Z does not enter here, but it only refers to transitions from
8 to 8¢ through the submatrix Z,, . Furthermore, note that U,, = (—@,,)7".

Expressed in the component form, the discussion above can be sum-
marized in the forthcoming theorem which is the main result of the compen-
sation technique for the Neuts model. It should be compared with Theo-
Trems 1.10 and 1.14 in [8].

THEOREM 1. For P(t) transient on S and for P*(t) ergodic on 8, the
ergodic distribution e+ = (e;) on 8 (for the modified chain) is given explicitly by

%* .
6] =chuk]" jES,

keS

Where ¢ = (¢,) 18 the compensation measure (row vector of 0), and (u;;) = Use
s the Green potential for transient P,,(t) on S.

. It is worthwhile to record properties of the compensation measure
In the Neuts model.
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THEOREM 2. The compensation measure ¢ has tolal mass zero, and
its terms are positive on S and negative on S°:

D6 =0, ¢=0forje8, <0 for jeg.
J

It should be remarked that assumption A2 of the ergodic ¢* on 8
mmposes constraints on the original M.C. Theorem 1 implies the following

THEOREM 3. The time T s finite and
D= De;=1 forallieS.
jeS¢
3.2. PH distributions. It is convenient to rewrite the definition of the
distribution F in the form

() =1— ) mDi(1), t>0,
teS
to stress that it depends essentially on the set S, with F(0) > 0, F() = 1,
and the mean W = E(T,T < o0). By Theorem 3,

B(T | X, =i) = B(T,T < oo | Xy = i) = w,

wi =Z’M/ij= —Zz”', ’iGS.

jes jesSCt

Note the interesting connection between the compensation measure
and the conditional means:
THEOREM 4. The conditional means w; and the compensation measure

¢; =0 on 8 satisfy
Z Otw‘ == 1.

€S

and

As already noted, the first entrance distribution ¥ depends essentially
on the initial distribution = and on the perturbation mechanism through
the replacement matrix R,,. The characterization of the Neuts PH distri-
bution lies in the suitable choice of R,,.

Let r = (r;) be a distribution on § obtained by truncation of the
initial distribution = on I to S,

T

J .
7, = , Je8.
427

2
keS
Suppose now that the replacement matrix R,, has all rows identical

and given by r: r; = r;, i € 8°, j € 8. The PH distributions are defined
to be the first entrance distribution F with such a choice of the replacement
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matrix. This in turn establishes the connection between ergodic distribu-
tions and compensation measures on one hand and between the initial
distribution and PH distributions on the other hand.

The following theorem gives the important characterization of the
Neuts model:

THEOREM 5. Let & be the initial distribution on I and let r be its trunca-
tion to S. Suppose that the replacement matriz R,, has all rows equal to r.
Then the compensation measure ¢ is given on S by

where W is the mean of the PH distribution F, and the ergodic distribution
e* on S is given by

4. PROOFS

Matrix notation is used for convenience, but all limit operations
are taken pointwise. For any measure x on I and any function f on I,
write for their partition along S° and §:

o= (B1yp2)y f =(2),

and for their inner product:
pf =pfitpf = Zﬂifi'

In particular, n = (n,, #,) and ¢ = (¢, ¢,) are the initial distribution
and the compensation measure, respectively. In the same manner, ¢; = (¢)
is the ergodic distribution on 8§, and w, = (w;) is the mean vector on §.
Define also the function D(-) by

D, (1)

b = (D (t)

) = (Ds(t)) with D,(t) = 1;

Similarly for D = (D;).

4.1. Proof of Lemma 1. Write the forward equation for P*(t) in the
transformed form, as in [8]:

aU*—1 = U™Q+C°.
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Post-multiplying by E and noting that always QF = 0, we have
aU"E—FE = C°E.

The passage to the limit as a — 0 (justified by the Helly-Bray theorem)
yields the required result. Note that in the partitioned form all subma-
trices vanish, except for ¢ € 8, j € 8% so Lemma 1 reduces to

B+ 0By — E;szn —Fy,
where €3, and Cj, both diverge as a — 0.

4.2. Proof of the fundamental equation. Usirg the expression for Z*,
rewrite the second resolvent equation in the form

aU* = qU*+C%aU* = aU°+aC°Z°+ C°E.
As in Theorem 1.14 in [8] (see also [9]),
limaC*Z* = CZ.

a—>0

By Lemma 1, the passage to the limit yields
E* =E'E+0Z.
4.3. Ergodic potential. In the present case

Ze 0
7° = ( i‘ a),
ZZI Z22

E E
a ” 11 « o 21 a __ 77a
Zu = Uu— a ’ Z2l = U2l__a ’ Z22 = Uag-

where

Indeed, E,, = 0 and Z§ is precisely the ergodic a-potential discussed
in [9]. On the other hand, Z3, is 2 new quantity which appears in the
present situation.

By definition, Z},-1 = 0, but F,,-1 < 1 implies

1 1
Zy 14231 =———FEy;1>0,
a a
so Z°:1>0.

4.4. Proof of Theorem 1. Note that

0 X 1 0
0Z = , E'E=|_, :
021211 + 022Z21 022 U22 E22E21 0
Hence the fundamental equation E* = E*E 4 (Z yields
E;E21+021Z11+022Z21 =0, Ez*z = 0y, Uy,
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Observe that both these equations have rows independent of 7. When
written in the component form, the formulae in Theorem 1 are obtained.

4.5. Proof of Theorem 2. By the definition of C, clearly ¢-1 = 0.
The positivity on S follows from

0= e;Q; = 3;0224‘9;@21312 and @, R,,>0,

N 02 - —6;Q22 > 0- Simjlarl‘ly, 011 = ""E;‘Z 21 < 0’ SO cl < 0.

4.6. Proof of Theorem 3. By assumption, E*-1 = 1 and Z-1 = 0.
Hence, from the fundamental equation we get

E*1 =E'E-1+0Z-1 = E*(E-1).

As E-1 < 1, we obtain necessarily ¥-1 = 1 and, in particular, ¥,,-1
= 1. But E,,-1 = D,, so D, = 1. Consequently, F'(o0) = 1.

4.7. As concerns the first entrance distributions in Section 2.4 we can
write

Dz(t) = le(t)'ly Dg(t) = Pzz(t)'ly Fc(t) = 7‘2'D§(t)-

Furthermore, the mean vector on 8 is w, = U,,-1 and the mean W of
the distribution F is clearly the inner product W = n,-w,. The definition
of F' can be written as

F(t) = 1—m,Pyy(t) 1
with
F(0) = 1—(my-1), F(o0)—F(0) = m,-D,.

4.8. The vector (df) of the Laplace-Sticltjes transforms of .D,(f)
is defined by
d: = [ edD;(t), a>0,i¢e8.
0
It is easy to see that
dy = alUs1 =1—aUsy-1.
Hence

1
Z3 1 =— (d;—D,)
a
because E, -1 = D,. Hence, passing to the limit (a —0) we get Z-1

= —w,. But Z,,:1 = Uyl = w,, 80 Zy-1+2Z,,-1 = 0. Obviously,
Z;y-1 = 0.
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4.9. Proof of Theorem 4. By Theorems 1 and 2,
1=¢"1=¢U,1l=c-Up'1=c,w,.
(Note that selecting n, = ¢, would give W = 1.)

4.10. Proof of Theorem 5. By Theorem 1, ¢, = €, ¢, R,,, but now
Ry, is a matrix of identical rows 7,, so

Cy == (6;Q21'1)T2-
On the other hand,
B,w, = (ry-w,)-1,
so0 by Theorem 4 we have
1 =c¢,w, = 62*0211312’“’2 = (G;Qn'l)(rz'wz)
or
7y Tty

02 =3 =1
7o W, T "Wy

because r, = m,[(m,-1). The expression for e, follows then from Theorem 1.

4.11. Remarks. 1. Consider now the variant of the Neuts model in
which all states in 8° are assumed to be absorbing (thus assumption Al
is dropped).

Hence @,;, = 0 and, clearly, P,,(t) = E,; = P},(t) = B}, = I. The
expressions for ¢ and C do not change, however. On the other hand,
Z%, = Z,; = 0. Lemma 1 does not change, and the fundamental equation
holds. Theorem 1 yields as before E;, = O, U,,, but the second equation
reduces to Ey,E, + 02, = 0.

2. Define the first entrance distribution by
Dy;(t) =P(Xp =35, T<t|X,=1), 1€8,jehl.
Then
D;(t) = Z-Dij(t)-
jese

Observe, however, that D, (t) # p;(t) for ¢ € 8, j € 8°, because p,; ()
involves both the first entry to 8° from 8 and the subsequent transitions

within 8°. Nevertheless
D D) = D py(1),
jes® jes®

since 8° is a closed set (Q,,-1 = 0).

If it were assumed that all states of 8° are absorbing, then necessarily
D;;(t) = py;(t) for all j e S°.
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5. NEUTS’ MODEL

It is of interest to specialize the results from Seections 2-4 to the
model treated by Neuts in [4]-[7].

As already noted, Neuts considered a finite chain with m +1 states,
where 8 = (1, ..., m), and 8° consisting of a single state, necessarily
absorbing. Neuts denoted the absorbing state by m 41, but it is more
convenient here to denote it by 0, so 8° = (0).

Consequently, the replacement matrix R,, reduces to a single row of
the re-starting distribution 7:

r; = j=1,...,m
j 1—ry’ J yeeey M,

where = is the initial distribution. Thus, the situation of Theorem 5 prevails.
In Neuts’ notation: n = (a, a,,,,) With @, ., = 7=, taken as 0 for most
of the discussion.

As the chain is finite, we have the representation

Pyy(t) = exp(@i,t) with U,, = (—Qs)".

(Q,, is T in Neuts’ notation.)
On the other hand, P,,(t) — E,, are column vectors such that

Di(t) > =1, ¢=1,...,m,

S0 D; = 1 identically. Indeed, the absorption into a state 0 from any
initial state ¢ € § is certain in a finite chain.

The matrix @), has elements ¢j; = ¢;+ " (¢, =1,...,m) and
the ergodic potential is found to be

m
Zoo =0, 2 = —Zuijy"::lr"-’m’ Zy = Wy ¥,) = 1,...,m,
i=1
with

m
D2; =0 for each i.

i=1

The definition of the PH distribution used by Neuts takes the form
F(t) = 1—m,exp(Qs,t)-1

(where =, is the restriction of = to §) with F(0) = m,, F(o0) = 1 and
the mean

W =7, Upl = “2(—922)_1'1°
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Theorems 1 and 5 combined yield immediately
COROLLARY 1. The ergodic distribution is given by

m 1 m

*

€ = § CrUy; = W v: My ) =1,...,m,
k=1 k=1

6. EXAMPLES

The examples in this section have been selected for their simplicity
in order to produce the explicit expressions for the compensation measure,
ergodic distribution and PH distributions.

Example 1 refers to a finite chain, and all others to infinite chains.
All examples except Example 4 have 8° consisting of a single absorbing
state. In Example 4 the closed set S° contains two states.

Except perhaps for Example 4, the other examples are standard and
well known. Example 1 was used by Neuts. Examples 2 and 4 show inter-
esting similarities, confirming that the set 8° has not much influence on
Neuts’ formulation. Example 3 is the interesting modification of the
classical case.

Example 1. Erlang distribution.

Let 8 = (1,...,m) and let 0 be the absorbing state. Suppose that
transitions on 8 follow the (truncated) Poisson process with a parameter
A, but the last state m leads to the absorbing state 0. The matrix @ is now
of the form

0 1 2 m—1 m

0 0 0 0 0 0

1 0 —12 A 0 0

Q= 2 0 0 —2 0 0
m—1 0 0 0 —2 A

m A 0 0 o -1

It is easy to see that solutions for the transition probabilities and
their transforms are

Ayt AV
((' ) e-u’ ua — ( )
J /

Pal®) = G ita) Ata
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fori =1,...,m,j=1,...,m and j >4 (and 0 otherwise), and

At

_ oA {1 ()“t)k — 1 fa;m——ie—:cdx
! (m—i)! !

for i =1,...,m.

Clearly, D;(t) = p,,(t) is the Erlang distribution with D; = 1, and
the mean w; = (m—i+1)/A. Furthermore, 2, = —w;, w; = 1/1 for
i>i.

Take the initial distribution » with z, = 0, and let y be the mean of x.
Then the PH distribution

F(t) = D) mpult)

has a density which is a linear combination of Erlang densities, and the
mean is

w =2“a‘wi = (m—y-+1)/A.

i=1

Taking = as the replacement distribution (as in Section 5), we obtain
the matrix @;, in the form

1 2 m-—1 m
1 —A A 0 0
2 0 —1 0 0

m lnl 19‘52 see Mm_l _l(l_ﬂm)

The ergodic distribution e¢* on 8 can be found directly from e*@;, = 0.
However, it is easy to see that

]
9= W
and therefore

o — Tyt ... +7;
4 m+1—y

y J=1,...,m.

Note that if returns are always made to a fixed state, say k, then
F(t) = p,,(t) and e* is the uniform distribution 1/(m+1—k).
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Example 2. Death process.
Let 8 = (1,2, ...) be the set of positive integers, and let 0 be the
absorbing state. Suppose that transitions on 8 follow the death process

with ¢; ;_, = p, 50 absorption occurs only through the state 1. The matrix
Q is now of the form

coxioo

It is easy to see that the transition probabilities are defined by

£y~
((';u )j)' et forix>1, 0<j<i,

Dij (t) =
with

3
I
= |~

for i1 >3
and vanish for 7 < j.
The absorption probabilities for 4+ > 1 are
i—1 ut

- (wt)* 1 i1

— _ ¢ . i—1 x

Pi(t) =1—¢7* E WG 1)!f e %dy.
k=0 0

Clearly, D;(t) = p4(t), and

D; = limp,(t) = € = 1

t—o0

and the mean is w; = i/u.
Furthermore, the ergodic potential is

Zoo =0, 2= —ilp, u;=1/u fori=j (1=1).

The replacement matrix R,, reduces to the single row vector r = (7).
Hence

1 2 3
. 1/—pd—mr) Ury  prs
=2 wu  —u 0
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The solution of ¢*Q), = 0 is easily found to be

1\ ,
0;‘=—Zrk, J=1’2’-oo,
Y &

where y is the mean of distribution 7.
On the other hand, Theorem 1 gives

1 :
p o

80 necessarily

* * [
—6 G0 = —6 4 = — )

14

M .
GG =—"15,31=1,2,..., ¢
and, consequently,

¢, = 0.

J

g

Il
°

7

The same result may be obtained by Neuts’ argument (as in Sec-
tion 5). Take r for the initial distribution concentrated on S (7; = r; for
j >1). Then the PH distribution

F(t) = D ()

i=1
has a density which is a weighted sum of Erlang densities, and the mean is
W = Z 71',- Wi = ‘?i.
i=1 K

Hence, by Theorem 5,

7; 1
cj=7ﬁ7'7.7=1727 ) co='—W’
and
1 © .
6:=Wi= w, J=1,2,...,
as before.

Example 3. Busy period for M |M/1.

Consider the usual M /M /1 queue, and let 0 be the absorbing state.
Here § = (1,2, ...), 8¢ = (0), and 4 and u are the usual birth and death
Coefficients. For 4,j = 1,2, ..., p;(t) are the taboo probabilities with 0

2 — Zastos. Mat. 17.3
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as the taboo state. On the other hand, p, () = D;(t), ¢ = 1,2, ..., is the
distribution of the busy period (initiated by the state ¢). As is well known:

A
(7) it > pu,

1 if A<pu.

Py (t) >~ D; =

The replacement matrix R,, reduces to the single row vector r = (r;).
Hence

1 2 3 4
. 1 [—A—pu(l—ry)) Atpur, Urs Uy
Q@ = 2 I —(A+p) A 0
3 0 w —(A+u) 2

In order to solve e*@,, = 0 for the ergodic distribution, introduce
the generating functions

p(2) = Z.o ez and  B(2) =§ 7.

j=1 i=1

Then one findes by routine calculations that the ergodic distribution
exists provided

e =—<1
u
and that

2 1—p 1—8(2)
w(z)_;l—gz 1—z '

where y is the mean of distribution 7.
Note that y(2) involves the geometric distribution and the tail of
distribution r. Hence, by inversion,

o ime
14
and
) j-1
e?=3L1—f—- 1—¢™ i =2,3,...
j y e 7o ( S | PR 19,
n=1

It is of interest to note that in the special case where the M.C. is
always re-started at ¢ = 1 (r, = 1) the ergodic distribution is geometric:
* .
¢ = (1—pg)g"".
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Although the explicit expressions for p,,(f) are cumbersome, it is
known that its mean is
v 1,2
w, = ———— = -
You—g)’ T
(for o < 1).
Take now the initial distribution to coincide with r (as in Section 5).
Then the PH distribution

F(t) = D) 7:pu(t)

i=1

has the mean

= y
W = rw; = ———.
gg p(1—o)

Hence, by Theorem 5, the compensation measure is
r; 1

¢ =—,9)=1,2,..., with ¢, = ~

By Theorem 5,

1 .
ej*=’W— r,"u.i], J =1’2’...
i=1
It is now necessary to find the quantities %,;. They can be obtained
from the relation U,,Q,, = —1I.

Rather cumbersome calculations give, for ¢,j =1,2,...,

1—¢ . .
‘—9—7 i=1L2,..,1,
v — p(1—o0)
i = N
1—¢)¢ .
—_— = 1,...
wi—g 0 T e

for o < 1.
It can be verified that

[ -]
w’i =Zu1j= _z,io, /&=1’2, cee

The substitution of u,; into the formula above for ¢; results in the
Same expressions found directly earlier.
Example 4. Two-state closed set.

This example is the extension of Example 2 to the case where the
closed set 8° consists of two states.
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Let 8¢ = (0,1) and S8 = (2, 3, ...) and assume that on 8 the chain
follows the death process (with parameter u) as in Example 2, whereas
on S8° we have the familiar two-state model with parameters A and pu.

The matrix ¢ is of the form

0 1 2 3 4

0 —A A 0 0 0

1 b —u 0 0 0

Q= 2 0 i —up 0 0
3 0 0 u —u 0

The matrix U = (u;) of the Laplace transforms is found to be

s, = pta Uy, = A

T a(A+puta)’ o a(}.+p—l—a)’
o b « Ata

Uyp = =

eltpta)’ T a(Gruta)’

and for ¢+ =2,3,..., j =2,3,...

-7 1
( i ) for i >3,

a

Uij =\\p+a u+a
0 for ¢+ < j,
u9=1( p )"‘1 Iz o =1( [ )"“ ita
0 al\a+pu Z—I—,u—|—a’ i a\a+tpu Atp+a

Let d; be the Laplace-Stieltjes transform of the distribution D;(?)-
Then (see Section 4.8)

1—1
d§=(i) , i=2,3,...,
u+a

so D, =1 for all 7. Indeed, for 7 > 2,

a © a .
AUy > €9 = — ——y QU > €; = — .

Atu

The mean is clearly

i—1
w; = for 1> 2
u

and it can be verified that z,,+2, = —w;

i°
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In connection with Remark 2 in Section 4.11 it is of interest to note
that D, (t) = 0, but D, (f) = D;(t), confirming that

Dij(t)<_'pij(t)7 .7 = 071-

Suppose now that the initial distribution = is concentrated on S, and
let y be its mean and IT its generating function,

II(z) = j n2t
ice

Then the PH distribution

= <]

F(t) = ) D)

t=2
has the Laplace-Stieltjes transform

_ +a 1
ot G (§) = =t
fe @ Zn’ ' b (u+a)

1] =2
With the mean

W = 2 W = ﬂ
i=2 M
In the present case the replacement matrix R,, has two rows. In
dgreement with Theorem 5, suppose that these rows are the same and
€qual to n. Then, by Theorem 5, the compensation measure is

7T, .
cj:#’ J=2’3’oo~’
and, consequently, the ergodic distribution is
o] 1 o0
6 =k2=70kulc1 =W;”k’ j=2,3,

Note that it is of the same form as in Example 2, the difference being
that 5 jg replaced by y—1.
Finally, note that

50

2001 ¢ = 0.
3=0
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Added in proof. Perturbation technique as a random time transfor-
mation has been described in the paper: P. D. Feigin and E. Rubinstein,
Equivalent descriptions of perturbed Markov processes, Stochastic Processes
Appl. 9 (1979), p. 261-272.
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ROZKLADY TYPU FAZOWEGO I MODEL PERTURBAC]I

STRESZCZENIE

W ostatnich latach Neuts wprowadzil tzw. rozklady typu fazowego, otrzyman®
jako rozklady czasu do absorpcji w skokowym procesie Markowa (z czasem ciaglym,
skoniczong liczbg stanéw i jednym stanem absorpcyjnym) przy dodatkowym zaloze-
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niu, ze proces zostaje zaczety od nowa, gdy ulegnie absorpecji. Wezeéniej juz Keilson
wprowadzil metode kompensacji celem wyrazenia charakterystyk proceséw Markowa
przy uzyciu funkeji pomocniczych.

Syski zastosowal metode kompensacji do analizy lancuchéw Markowa (czas
ciagly, przeliczalna liczba standéw i wszystkie stany istotne), w ktérych wystepuja
zaklocenia. Mechanizm perturbacji polega na tym, Zze gdy lancuch znajduje sie w grupie
stanéw ,,dozwolonych’’, wtedy przebiega bez zaklécen, lecz gdy znajdzie si¢ w grupie
stanow ,,zabronionych’’, zostaje natychmiast przeniesiony (wedlug rozkladu rozmiesz-
czenia) do grupy stanéw dozwolonych. Otrzymuje sie¢ w ten sposéb dwa lancuchy
i problem polega na powiazaniu ich wlasnodci.

W pracy wykazuje sie, iz konstrukeja Neutsa jest w zasadzie specjalnym przy-
padkiem metody perturbacji, scharakteryzowanej przez pewna postaé rozkladu
rozmieszcezenia okreflonego przez rozklad poczatkowy. Powiazanie to jest wyjadnione
za pomocg metody kompensacji. Rozdzial 2 zawiera krotkie, lecz wyczerpujace wpro-
wadzenie do metody perturbacji i do rozkladéw typu fazowego. Gléwne rezultaty
zawarte sg w rozdziale 3, ktéry omawia role metody kompensacji w analizie tych
rozkladéw oraz podaje ich wlasnodci. Rozklady typu fazowego omawiane tutaj sg
uogélnieniem rozkladéw Neutsa do przeliczalnej liczby stanéw i do dowolnego odizo-
lowanego zbioru stan6w zabronionych. Rozdziat 4 podaje dowody twierdzeri. Rozdziat 5
zaciednia rozwazania do pierwotnego modelu Neutsa, a rozdzial 6 zawiera przyklady.



