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SOME REMARKS ON BAIRSTOW’S METHOD (1)

1. To calculate the zeros of a real polynomial by certain procedures
using Bairstow’s method ([2], [4]), it is necessary to give numerical values
to certain parameters which determine the stopping moment of the cal-
culations. These parameters may, for instance, give the maximum number
of iterations, or may determine the required accuracy of the solution.
Efforts in the direction of giving numerical values to those parameters
lead to numerous doubts. If the accuracy requirements are too weak
(or the number of iterations too small) one obtains a bad solution, if,
on the other hand, the accuracy requirements are too strong the solu-
tion procedure may last very long or even never end (because of rounding
errors).

This paper contains in section 3 a description of an ,,controlled”
algorithm of Bairstow’s method, the purpose of which is to determine
quadratic divisors of a real polynomial with maximum accuracy obtainable
in the given floating-point arithmetics. In section 2 some considerations
on the character of convergence of the generalized Bairstow method for
the case of multiple zeros are given. The author has not found analogous
considerations in the available literature.

2. Let us begin with an explanation of the character of convergence
of Bairstow’s method in the case when the polynomial has multiple zeros.
Congsider a real polynomial of degree n

(1) w(z) = a,5"+a, 2" '+...+a, 0+ a,.

Assume that we have to determine the divisor m,(x) of degree » of the
Polynomial (1)
me(@) = o’ —pP 2t — . —pPz—pl”  (1<r< ).

—_—

(') This research has been performed under contract for the Department of
Numerical Calculations, University of Warsaw, in 1967.

Editor’s note: This is a modified, English version of the author’s paper which
has been awarded the first prize in the 1968 Polish Mathematical Society Contest

for the Best Student Paper in the Theory of Probability and Applications of Mathe-
matics.



Let the functions

A; = A(Dr 1y Progsy--yPo) (1 =0,1,...,7—1)
denote the coefficients of the remainder while dividing the polynomial
w(x) by
m(@) =& —p,_y & —...— Dy,
i. e. let

(2) w@) =m@) Q@)+ A, &+ A4, a7 ..+ 4.

Having an approximate divisor

my(w) =a"—pM @ —...—pPo—p,

we determine the next approximation

r—1__

my(x) = a"—pP @ —pPa—pi?,

where
Piz) pg:l)_}‘APgl) (1=0,1,...,7—1).

The quantities 4p{" are defined as the solution of the following system
of linear equations (see [9])

aAo(Pﬁl—)au coey PS) ApD 4 ...+ 0(pral7 coney DY) ApY,
Do DPr—1

= — APy, ..y 1),

04, (P, ..., P) 04, (P2, ..., D§Y)
r A (1) L. r r , ) 0 A (]2
apo po + + apr_l pr 1
= —Ar—1(P1(-1—)17 . pgl))-
This system gives the corrections while solving the system of equations

Ai(Pr_1y Progy--3P) =0 (¢ =0,1,...,r—1)
by Newton’s method.
It is known from the theory of Newton’s method that if the sequence
{p®, pP,, ..., P} converges to {p?,, pVy,..., p} with %k — oo
and if

GAO 04, 04,
apo 0p, T 0P,y
0A, 04, 04,

Jo = 0P, ’ apl T 0p,_,

aAr——l aAr-—l aAr—l
0171 ’“.’o_pr—l p: = p(O) (i=071""’r—1)
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is different from zero, then the convergence is a quadratic one, i. e. there
exists such a constant L that for sufficiently large k holds

V(P —p* )24 (p0 — p¥ V)24 .+ (0@, — pERY)?
< LU(pY" — p)2 4 (01 — )2+ ..+ (0121 — p12))?].

If J, = 0 then the convergence is weaker, usually linear (i.e. comparable
with the convergence of a geometric progression).
Let us differentiate (2) with respect to p; (+ =0,1,...,7r—1)

o 0Q(x) . 0A,_, 1 0A,
O e S T T T T
Hence, we have
: 04, 04, .
z'Q () =m(w)RL(m)+-5—lw + .. +—‘— (¢=0,1,...,7—1),
D apz

where R, (zr) = 0Q(x)/0p; is a polynomial of the variable z of degree
n—2r+14, as may easily be seen.

The (¢+1)-th column of J, is thus composed of the coefficients of
the remainder of the division of the polynomial #'Q,(x) by m,(x), where
Qo (x) is the quotient of dividing w(x) by m,(x).

Now, write the equations

(3) lQo(m) = my(2) T;(x) + 2 A”w’ (¢t=0,1,...,7—1),

where T,(x) is the quotient and A, the coefficients of the remainder
of the division.
It follows that

(4) J0=|A]-,;| (j,2=0,1,...,7r—1).

Denote the zeros of the divisor my(x) by 2y, 25, ..., 2,. We shall prove
the following

THEOREM. The determinant J, is equal to zero if and only if at least
one zero of the divisor my(x) is a zero of the quotient Q,(x).

Proof. Assume that J, = 0, i.e. that a certain linear combination
of the columns is a zero vector. Thus, there exist the numbers C,, C,,...,C,_,
such that at least one of them is different from zero and that they satisfy
(from (4)) the equality

(5) ZCtAﬂ:O (j=0,1,...,7"—1).
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Let us multiply the ¢-th equation of (3) by C; and let us sum them
for + =0,1,...,r—1, having (5) in mind. We obtain

Qo(2)[Co+ Cyo+ ...+ C,_ 12" ']
= my(2) [CoTo(2)+ C,Ty(x)+...+C,_,T,_,(x)].

At least one of the numbers C; is different from zero, thus m,(x) is a divi-
sor the polynomial
Qo () [Co+ Cr ...+ C,_ 3" '].

r—1

But the degree of the polynomial 3} C;2* does not exceed r—1, hence
i=0

at tleas one of the zeros of m,(x) must be a zero of ¢,(x). The necessity
of the condition mentioned in the theorem is thus proved.

Let us prove now the sufficiency of this condition.

Assume that Q,(2;) = 0 for a given ¢, thus also that

2 Qu(z) =0 (1 =0,1,...,7r—1).

Multiply the k-th row of J, by =¥ (k¥ =1,2,...,r—1) and add all rows
to the first one. From (4) we obtain on place j (j =0,1,...,7—1) of
this row

-

r—
\' .k

2' zi 'Ak]'

k=0

Due to (3) this is equal to
zi Qo(zi)'—mo(zi)Tj(zi) = 0.

Thus the first row consists of zeros only, hence J, = 0. This ends the
proof of the theorem.

Of course, if z; is a zero of Q,(x), it is a multiple zero of w(x). It Is,
however, possible that z, is a k-fold (k < r) zero of w(x) and the divisor
is of the form

my(x) = (v — 20) my ().

Then Q,(z,) # 0 and the method remains quadratic convergent. From the
considerations given previously the following conclusion may be drawn:

If Bairstow’s method is convergent then il is quadratic convergent if
and only if every zero of both the divisor my(x) and the polynom w(x) has
the same multiplicity.

3. Consider now the numerical realization of Bairstow’s method
for the case of quadratic divisors.

Let
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be an approximation of the divisor
My (%) = 2—Pex—7y

of the polynomial w(x).
Divide w(z) by m,(x):

w(r) = m(2)Q () + A2+ 4,
and let be

Ql(m) = Qna’m_z—i_ q'n—lmn—s—{_ oot Q3m+ qs.
The algorithm

Q= Qy,
(6) Qn =an+an—11
G =Pl 1ot (B=n—2,n—-3,...,0)

allows us to calculate the coefficients of the polynomial @,(x), and the
coefficients A,, A, of the remainder may be obtained from

A, =¢q, Ao=¢—Dp%.

The maximum accuracy obtainable while determining zeros of a function
([5], pp. 96-97) is limited mainly by the accuracy of the calculation of
the function values near those zeros. It may also depend upon the accu-
racy of calculation of other quantities, as e.g. the derivative of the func-
tion. This phenomenon occurs often in the case of multiple zeros. A control
system based on the error of the function values only may then appear
to be unreliable.

In our case the accuracy of the calculation of 4, 4,, or of the equi-
valent ¢,, q,, is decidive. For numerical reasons we shall consider instead
of the system (q;) given by (6) the equivalent system (g;) given by

qn - f l(
(7) f p qn+ 1)’ .
kaﬂ PYhir1t Qe+ @) (BE=n—2,n—-3,...,0).
The symbol fi denotes here the floating-point ¢-digit binary realization
of the calculations (see [5], p. 11).
Introduce the quantities v, and E, defined by
JUW) = Wit v, @ = @+ By,
where W, is a given algebraic expression.
The quantity v, denotes the rounding error obtained in the floating-

Point calculation of W,, and E, denotes the rounding error which ,,burdens”
the calculated value g,.



Introducing this notation into (7), we obtain
T
1= POt O 1+ =G+ B, _,,
G= PGt 7Tkt G+ %=+ B, (k=n—2,n-3,...,0).
Hence
E,=9v,=0,
B, _=v,_1,
E,=pE, +rE ,+v (k=n—2,n-3,...,0).
It may be shown (e.g. by induction) that the quantities F; are equal
(see [3]) to

(-1 Qeri=i__ k-
2 U - (21 # 23),
k=3 1 P .
(8) H;= (1 =0,1,...,n—1),
n—1
D wk+1—i)k "t (2 = 2),
k=i

where 2,, 2,-denote now the zeros of m,(x).

We are interested in the errors F,, E, which burden the quantities
Qos ¢, The maximum limiting accuracy is obtained if both |g,| is of order
|B,| and |g,] is of order |E,|. We cannot indicate any practical method
of determining |E,| and |E,|. We may, however, determine realistic a poste-
riori estimations of those quantities (see [5], pp. 37-38).

It is easy to show that v; fulfill the inequalities

(9) o | <27, (i =0,1,...,7—1),

where ¢ is the number of digits of the mantissa in the floating-point binary
representation of numbers, and

bn1 = |PQul + |1PGn+ @y 1l
6 = |PQusrl + 17 Tpesol + 1D Tpcsol + 12Tu 1+ 7Ty 2+ i
(k =n—2,n—-3,...,0).
Let I = max(|z,], |2s]). The quantities E; may be estimated from (8)
and (9) in the following way:

n—1

IZ 2 I eklk+lai (zl :/__ z2)
1T <2l 7= !
(10) |B| < D; = = (=0,1,..., n—1).

n—1
27 2 a1t (e = 2)
k=i ~

[ 9.9-¢




The quantities D; may be calculated by Horner’s algorithm.

A calculation of the system (g;) (+ =n,n—1,...,0) allows a simul-
taneous calculation of e; and thus also of D,.

Instead of the condition 2, # 2z, which is inadequate in numerical
calculations the condition

|2,—25] > 1/5m

is verified in the procedures [6]. That assures that the calculated value
18 at most 100/, greater than the true one.

Next, we verify whether g,, g, are absolutely smaller than D,, D,.
If so, this indicates that we are near the maximum limiting accuracy.

The next approximations of the quadratic divisor m,(x) are calcu-
lated as long as both the quantities g3+ ¢* are diminishing and the coeffici-
ents g,, ¢, do not exceed the estimations D,, D,.

Such a procedure allows to attain the best possible accuracy in the
given arithmetics. A realization of this algorithm in the Gier Algol III
system resulted in that about 36°/, of the realization time of the whole
algorithm of Bairstow’s method was spent for calculating the approxi-
mations of the errors. In the Gier Algol-double system, however, the cost
of calculating errors was very small as compared with the cost of the
whole algorithm (see [1], [8]).

The algorithm described in this paper is presented in the Algol lan-
guage in the algorithm section of this number of the journal [7], and
further details may be found in [6]. At the department of Numerical
Calculations, University of Warsaw, Algol procedures of Bairstow’s
method including a fuller control system which consists not only in cal-
culating the estimation of the errors of ¢,, ¢, but also in calculating the
errors of the coefficients of the remainder of the division of Q,(z) by
m,(x) and the corrections Ap, Ar have been developed.
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H., WOZNIAKO WSKI (Warszawa)

UWAGI 0 METODZIE BAIRSTOWA

STRESZCZENIE

W pracy proponuje sie algorytm metody Bairstowa dla obliczania dzielnika
kwadratowego danego wielomianu rzeczywistego z maksymalng graniczng doklad-
noscia (w arytmetyce zmienno-przecinkowej). Podane jest takze twierdzenie podajace
warunek konieczny i dostateczny na to, by uogé6lniona metoda Bairstowa byla zbiezna
w sposéb kwadratowy.

X. BO3bHAKOBCKH (Bapiuasa)

3AMEYAHMSA K METOAY BIPCTOY

PE3IOME

B paGore mpennaraercd aaroputT™M MeToda B3pcTOy BEMMCIIEHHS KBAOPATHYHOTO C/THTENS
JAHHOTO BEILECTBEHHOIO IOJIMHOMA ¢ MaKCHMAJILHOW MNpedeNbHOH TOYHOCTHIO (B apudmeTuke
¢ IUIaBaroleil 3amsAToif). JlaeTca Takxke HEOOXOOHMOE M IOCTATOYHOE YCJIOBHE IS TOTO, YTOOBI
CXOAUMOCTh 0600LIeHHOro MeToma BapcToy 6bina KBaApaTHYHOIN.



