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A MIXED GAME OF TIMING: INVESTIGATION OF STRATEGIES

0. Introduction. The general model of the game of timing can be
described in the following way. Each of two opponents, denoted by A and
B, has a fixed number of actions to be taken in the time interval <0, 1>.
In consequence of taking the actions the player may achieve a success.
If the player takes one of his actions at moment t, t €0, 1>, then he
achieves success with a certain probability. The probability is defined
by the function P(t) for player A and by the function Q(t) for player B.
The functions P () and @ (t) are called accuracy functions.

We assume that

(i) P(t) and Q(t) are continuous and increasing in {0, 1),

(ii) P(t) and Q(¢) have continuous derivatives in (0, 1),

(iii) P(0) =Q(0) = 0 and P(1) = Q(1) = 1.

Furthermore, we assume that each player obtains one unit when he
achieves success alone, loses one unit when his opponent succeeds alone,
and in all other cases he obtains zero. Also, each player tends to maximize
his payoff. The game is over at the moment when at least one of the players
Succeeded.

There are two types of actions, noisy and silent. If one of the players

takes his noisy action and does not succeed, then his opponent receives
this information. In the case of a silent action this information is not
Imparted. In this connexion we say that an action is of {ype w, where w = ¢
(silent) or w = g (noisy). The order in which the silent and noisy actions
are taken is fixed before the game. All the above assumptions are known
for both players.
_ Let us denote by Ly kg g0yt dg,... g0, Sh© above-described game
I which player A takes successively k, actions of type w,, k,_, actions
of type %, (w, denotes the reverse type to w,), k,_, actions of type w,, and
80 on. At the very end he takes k, actions of suitable type. Similarly,
taking the actions by player B is described by I,,1,, ..., l;|w;.

Among the more important games of timing with more than one
action taken by at least one player the following cases have been solved
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up to now:
(1) Leq,c Py Restrepo [3] in 1957,

(i1) 1%, 43,0 Py Fox and Kimeldorf [1] in 1969,

(iii) I jj¢)y by Smith [4] in 1967,

(V) Iejeg bY Styszynski [6] in 1974.

The problem of the general mixed game of timing, for instance of
Iijeie (K1 =1, 1 > 2), is still open.

The authors have found the solution of the game Iy . . i 1
However, considering its extensiveness, this paper contains only the
construction of the normal form of the game and the formulation of a the-
orem on optimal strategies. The proof of optimality is given in paper [2].

1. Notation and definitions.

k. \w = (k,, ..., k.|w), where 7, k,,..., k, are natural numbers and
w is the type of action, describes the order of taking silent and noisy actions
by player A who according to.k,(w) takes successively k, actions of type w,
k,_, actions of type w, k,_, actions of type w, and so on.

i gy oney bpyy b, —8|0) it 0<s <k,
ko slw = Ykyy .oy byy by + ... +k,—s]w0)
if bpot .. <8<k + ... 4k (0<i<r-2),

where
w if r—4¢ is odd,
w if r—17 is even.

The meaning of the symbol k, ,|w is as follows: if player A takes his
actions according to k,|w, then after taking his s first ones, he takes the
next actions according to k,  |w.

e wl)| = ky+ ... +k,.

|k,jw| — the sum of those components of the vector k,|w which
denote the numbers of noisy actions.

:($17"'7w’n)‘ .
s — the vector which is obtained from the vector z, by omitting
its s first components.

I}, — the game I 4 ), described in the introduction (player
B has only one noisy action).

X, ={%,10<2,<...<x, <1}

Y ={ylo<y<1l}

z; — the moment of taking by player A his i-th action in the game
Tg o (1< < I, |ol).

w, — the type of the last action taken by A in the game I7,uw»
where |k, |w| = n.

y — the moment of taking an action by player B in the game I% w-

x n
xn
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D, — the probability measure with total mass placed at the point z.

H ,,, — an arbitrary continuous probability measure with support
{a, b)>.

#(X) — the o-algebra of Borel sets of the space X.

To simplify the notation we use, if no confusion is possible, the fol-
lowing substitutions:

|
|

Flw =2, 1| W = 1,
krlg =T, r,llg = Ty
ke =mn, k. ;lc =m,.

To make the paper more legible we write the numbers of used formu-
(11)(20)
las above the symbols of relations. For instance, > means that we use

formulas (11) and (20) to conclude the inequality in question.

2. Spaces of player strategies. In this section we define the sets of
Strategies for players and give their interpretation.

Definition 1. Every probability measure defined on #(X,,) is called
3 strategy of player A in the game I.

The set of all these strategies is denoted by 4.

Definition 2. By a strategy of player B in the game I'; we mean
an expression of the form

el (LA (ot MPPPPE (- S S,

Where m = ||, the system »y,...,%, specifies the moments of taking
hoigy actions by player A, @™ is a fixed probability measure defined on
#(<0, 1)), and {@"7F 3, (i =1,...,m) is a fixed family of probabil-
Ity measures defined on % (<{»;,1>) for every system »,, ..., such that
0<V1<...<v,-<1.

The set of all these strategies S, is denoted by B,,.

We interpret the strategy F € A, in the following way. Player 4
hooses a vector Z, (n = ||A|]) according to the measure ¥ and takes his
actions successively at the moments #,, ..., ¢, under the condition =, < ¥,
1.e. if player B takes his action not later than at the moment of taking
by Player A his last action. Since we seek the optimal strategies, we assume
that if y < 4, and player A was not defeated at the moment y, then he
takes his last action at ¢t = 1 because the probability of his success equals 1.

Now we interpret the strategy 8,, € B);,. Using the strategy 8,, player
B chooses before the game a moment y according to the measure G" and
t“‘fkes his action at y if y <, (v, — the moment of taking by player A
his firgt noisy action), whereas if », < y, then player B does not take his
ction at y but he chooses a new moment y’' according to the measure
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G:';“l and he behaves as before, and so on. We assume additionally that if
player B takes no action until the moment », and w, = ¢ (the last action
of player A is of type g), then he takes it at the moment 1.

Let us introduce for every §,, € B,, the following strategies:

(1) sm(y) = [Dy? {GZZ—I}”17 c*? {Ggl""’vm}vl""’vﬂl],
(2) Sp_1(v1) = [Gm_l, {Gm_2 ceey {Ggl,..

vy ¥],¥9579 b . "'m}”2"" »"m] *

Obviously, from this definition it follows that if §,, € B,,, then
8, (y) € B, for any y € <0,1> and S,,_,(»,) € B,,_, for any », € (0, 1).

Remark. We introduce an additional simplification for the notation
of certain strategies for players A and B. Namely, by Z, we understand
either the vector of the moments of taking by A his actions or the strat-
egy from the set A4, being a measure with total mass placed at the
point 7,,. Similarly, by ¥ we understand either the moment at which player
B takes his action or such a strategy of player B in the game I, which
prescribes him in the cases w, = ¢ or (w, = ¢,y < x,) taking the action
at the moment y with probability 1 independently of the information
obtained about the noisy actions of player A during the game, and in
the case (w, = g,y > #,) — taking the action at the moment 1.

Let us take into account the strategy §,, of player B in the game
Iy (m = |A]) and the corresponding families of strategies {s, ()}, and
{;S’m_,(vl)}v1 given by (1) and (2). It is easy to see that every pair
(6™, {Sp_1(»1)},1y [G™, {su(y)},] determines uniquely the strategy &S,.
Therefore, we shall also adopt the notation

8 =[G, {8h (vl)}vl] = [G™; {8 (¥)}y]-

3. Payoff function and the normal form of the game. Assume that
K(z,; S, |4) be a function defined recursively on X, x B, (n = ||,
m = |A|) with the help of (1) and (2) in the following way:

(3) K (&3 8n12) = [ K (75 su(y)12)d6™ (),

Y

(4)  EK(Z,; s,(9)14)

P(x;)+[1 _P(wl)]K(En,l; sm(y)lzl) fr,<y,w=mc¢,
P(wl)"l_[l_P(ml)]K(in,l; Sm-—l(ml)lll) ife,<y,w=49g,
1-2Q(y) if y<a,

=1 {1-[1—-P@)]"} [1 -Q(2)]—[1—P(2,)]"Q ()

' e, =... =2, =y,
1—-Q(@) —[1—P(z,)]'Q ()
fo, =...=q,=y<w;,;, (@A<t<n),
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where

K(fn,n; SO (wn)! I-Er,nlw) = _17 K(En,n; so(y)] ]?7'-’" I’MJ) = _Q(y)'

The function K (z,; 8,,|4) determines the payoff for player A in the
cagse where he adopts the strategy 7, € 4, and player B uses the strategy
Sm € B Ml .

Definition 3. For every 1 (||| = n, |A] = m) a strategy S,, € B,
belongs to the class B (A) it K(Z,; S,,|2) is a measurable function of the
variable Z, with respect to #(X,). We say that B, (1) is the class of admis-
stble strategies for player B in the game I7.

In the paper we omit 4 in the symbol BY (1) when this does not lead
to misunderstanding.

By the construction of the payoff for player A it can be seen that the
function K(z,; S, |1) may not be measurable with respect to #(X,) (it is
eagy to give an example for » = 2) and the expression f K(z,; 8,|A)dF
need not exist. To avoid this we restrict the set of strategies of player

B to admissible strategies. We investigate this class later, in Lem-
mas 5-8.

Definition 4. A function defined on 4, x B, (2) (Al = n, |4] == m)
by the formula

(3) K(F; 8,13) = [ K(Z,; 8,12)dF ()
Xn
is called the payoff fumction in the game I7j.

Definition 5. The triplet <A,;, Bh, K>, where 4, , B}, and K are
given by Definitions 1, 3 and 4, respectively, is called the normal form
of the game I;.

4. Properties of the payoff function. In this section we construct some
auxiliary strategies for player B and investigate the payoff function
With respect to them. At first we give two simple lemmas.

LemmaA 1. For any A the following relation holds:

(6)  K(Z,; yi2)

P(x,)+[1 —P(m1)]K(97n,13 YA if 1, <Yy,

1-2Q(y) if y <y,
S\1-0—-P@)1-Q(@)] -1 —P@)]"Q(@) f 2.=... =2,=y,

1-Q(z)—[1—P(2,)TQ (1) f o, =.. =2, =y <y

A<i<mn),
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where
—1 "’f w, =46,
—Qy) if w, =c.
The lemma follows immediately from relations (3), (4) and from the
Remark given at the end of Section 2.

LEMMA 2. For any A (Al = n, |A] = m) and for any (F',8) e A,, X B, (1)
the payoff function satisfies

1< E(F; 8|14 <1

K(En,n; ?I| Z’r,nlw) =

This lemma is a simple conclusion of (3) and (4).
For an arbitrary probability measure T defined on %#(<0, 1)) we let

(7) 8L = [T AT Yy ey AT Foponmn]
be a strategy of player B from the set B,, such that
Tw) if ¢ =0,
17’:1;,—1'1-‘;_1(17‘) if 4 —i+1
® 1 v = T 6D ift ¢>1and T7777,.  (v,1> #0,
L(V)

it $>1 and T7M  (v,1) =0
1—v, b
forany V e #((»;, 1)),% = 0,1, ...,m, where L(V) is the Lebesgue measure
of the set V. We omit the symbols »,, ..., v, if & = 0.
LEMMA 3. For any A (A = n, [A] = m), Z, € X,,, and for an arbitrary
probability measure T on #(<{0,1)) we have

(9) K (Z,; 8R14) = [ K(%,; y|2)dT(y).

Proof. For the proof we use induction with respect to the number
n = |A].

Step 1. Let n = 1. In this case it is easy to prove the lemma.

Step 2. Fix » > 1 and assume that for any (k,|w) = A’ such that
Al = », for any %, € X, and for an arbitrary probability measure T on
% (L0, 1>) equality (9) holds for 2 = 4.

Step 3. Fix in an arbitrary way a vector (k,/w) = A such that
Al = n+1, let 8 (]A] = m) be given by (7), (8), and let Z,,, € Xp41-
We show, under the inductive hypothesis, that relation (9) holds for the

vector 1 fixed before.
Let us put

ST( ) = ['DU7 {Iﬂn_l}vl, ’{ Y]seo } "m]’
szn;— ( ) - 7{ 91,92 ve? * ’{ ”l'---"'m}'zr---»’m]'
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m—l
Because of (7) and (8), the strategy S 1, can be represented in the
form
Tm—l

- ' m—2 0
S ’ll [T,m 17 {T';n }1’2’ e {T’2"'°”m}”2""’7m]’
where, for every system 0 <7, <»,<...<7, <1, we have

"t =157, I, =T, =2,..,m).

’2,-

The comparison of the above to formula (7) for 7 = ’_.l',',’l“1 leads to
the equality

P Tm—l
(10) Sm l(vl) = Smll *
At first we consider the case w = ¢, ¢, = ... = ;< @y, (1< << n).

If we assume that T™(x,, 1> # 0, we can conclude, with the help of the
inductive hypothesis, the following:

K (%15 8517) T [ K (Zaras s5(y)17)4T™(y)

2 [ 1-20)1aT"%)+ [ {1-Q(@)—[L—P(z)TQ(2)}dT™(y) +

+ ;fz {P (@) +[1—P(2,)]K (:‘an,l; Sp—1 (@) | 7)} AT™ (y)

“i“”y J lK(an, YT W)+ [ K@ yI9a @)+
b [ P@IFA-PEIE Gy S ()} AT)
”IIIIC(@H; y|r)dT™(y) +
+ lf P@)+1-P@)] [ K@ 6lmaT5 " @340 @)
yI}(a‘an ; yl7)dT™(y) :> 1

+ [ [ {P@)+ L—P@)1K @psr,5 92170} T5 (3,) 4T™(y)

v>z 1>

[ E@uir; 910870+ [ [ E@uirs 9210)dTn " (3:) 4T ()

-~
o
~

Il

y<z) V> V1>%)
@ _ (yl) Tm
= [ E@u; y10aT" 0+ [ [ E@ass vl )———1—> ()
ysz) Y>2 ¥)> T ( 1)
[ E@uirs 910aT@)+ [ E(@uias 3:10)dT™(91)
Zl<$1 N>z

= [ E(Z415 910)dT"(y) £ [ K (@ny; y17)dT(y).
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In the case T™(z,,1> = 0, identical calculations as above imply

K (Znir; Smlt) = [ E(@na; 917)dT™(y)

y<zy

= [ E(@pi1; 917)AT™(Y) = [ K (Zns15 917)4T(Y).

Now we consider the case w =¢, &, =... =4, <o, A<i<n).
Then, analogously as in the first case, we calculate

K(Enﬂ; Sgl”)
= [ E(@ppy; yln)dT™(y)+

7<$1

+ [ {P@)+ [ —P @)K (Fpyr,; $59) 7)) 4T™(y)

”>1:1

= [ E@n; yimaT™y)+Pe) T (@, 1>+

”<$1

+1—P(@) | [ E(Fus115 sm(y) I7) 3T (y)—
— [ E(Fpn; sE@)m)dI™ (@)}

YTy

($)4)6) [ E(@,5 yl2)dT™(y)+P () T™ (2, 1) +

U<z1

+[1—P(w,)] {K(E:n+1,l; SZ;I’H)— f K(En-i-l,l; ?/l"‘:x)dTm(?/)}

Yz

= [ K@ y12)aT™(y)+P (@) T™ (@1, 1>+

+A=P@)] [ E(Zypa,5 ylm)dT™(y)
= [ E@u;910)dT™ @)+ [ {P(@)+[1—P@)1K (Zyp1059 |70} Td"(Y)
<z y>z)
2 [ E@pp; y1m)dI™@)+ [ K (G5 917)dT"(y)

A >

= [ K(Z,115 y17)dT(y).

In the remaining cases, i.e. , = ... = %,,,, w = ¢ and w = ¢, the
proof proceeds in a similar manner. Therefore, by the induction principle,
Lemma 3 is true.

The result of Lemma 3 can be interpreted as follows. Using the strat-
egy SZ by player B is equivalent to adopting by him the strategy ¥ (see
the Remark in Section 2) according to the measure 7.
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Before discussing further properties of the payoff function we intro-
duce the following notation.
For a number a € {0, 1) and for strategies

S;n = [Gm {G:': ! vy ) {Ggl_,...,vm}vl,...,vm]i
= ['Hm7 {H:"; ! vy ) {H?’l""f"m}"l"""m]’
where 8, S, € B,,, we let

(11) [aS;n+(1_a) S;n;] = [T™, {'T:qbl}vl *9 { Yo ,vm}vl,...,vm]
be a strategy of player B from the set B,, such that

(12) T (V)

aG"‘+(1 o)H™ if i =0,
a ” ar ke, DG (V) +(1—a) ]] B, e, DHPE (V)
_ ;ﬂo an e, D+ (1—a) n ey,
if {>1 and an e ki, D+ (1—a ” 2E Ok, 1D # 0,
f(jz otherwise

for any Vea(»,1)), i =0,1,...,m, where L(V) is the Lebesgue
measure of the set V. We omit the symbols »,, ..., if I = 0.

LeEMMA 4. If %, € X, Sy, S €By, and a € <0 15, then for the vector
2 satisfying ||| = n and |A| = m the relation
(13) K (Z,; [0S+ (1 —a)8113) = aK(F,; 8pld)+(1—a) K (Z,; 8y id)
8 valid.

Proof. To prove the assertion we apply induction with respect to
the number n = |jA|.

Step 1. For » = 1 the lemma is easily proved.

Step 2. Let a number n>1 be fixed. Assume that, for any
(k.|w) = 1’ such that |1’ = m, equality (13) holds for 1 = A’ if z, € X,,,
8y 82 e B, (|A] = m).

Step 3. Fix in an arbitrary way a vector (k,|w) = 4 such that
Il = n+1, let Z,,, € X,1, SmySmeB, (4] =m) and a; €<0,1).
We show, under the inductive hypothesis, that the equality
(14) K(xn+l; [a, 8%+ (1 —ay) S;,:]M)

, = K (Zpp15 Suld)+(1—a) K(Znsr; Smld)
18 valid.



418 T. Radzik and K. Orlowski

Let us put
S LA (¢ IS (2N, S P
Smor(@1) = [657 5 (G50 9 Gy oy g ]y
8y = [H™ {H} ", ., {H,,,, vm},1 ..... vl
Smo1(®) = [Hy ™ {HZ N, -0 {Hay e g wm ]y
Sm(¥) = [Dy, (@7} oo (G5 sdon iy
Sm(y) = [ Dy, {H ooy {HD Yo )

Then, by (11) and (12), we can write
(15)  [a, S;n +(1—a;)8,]
= [, G+ —a)H™, (T} s ooy {10 o v
where T7 (i =1,2,...,m) are defined by formula (12).

WV

Further, we introduce the notation
Sm,a, (y) = [—Dy? {T'vn_l}-'l’ RS {TO P } ,...,vm]’
Sm—l,al(wl) - T.'Z; 17{ 3 ”2}”2’ . 7{ Zy,¥9,. }v2,...,vm]7
a, @™ (2, 1) .
@, G (0;, 1) + (1 — o) H™ (@, 1)
It is easy to check with the help of (11) and (12) that

(16) Sm—l,al(wl) (@381 (#1) + (1 — @2) 8y (#1)]

if ¢,6™(2,, 1>+ (1—a,)) H"(,, 1> # 0.

Now we prove (14). First, consider the case w = ¢, 2, = ... = &; < &; 11
1<i<n) If o,6™(2,,1>+ (1 —a,) H™(#,, 1> # 0, then we can conclude
the following:

K( Tpt1s [aIS +(1—a,) ;,;]IT)

B [ R (Zy15 8100, (9) 7] A{an @™+ (1— ) H™}(9)

o [ [1-200)a6")+(1-a) [ [1-2Q@IAE™Y)+

+ta [ {1-Q(a)—[1—P(x)'Q(x,)} d6™(y) +
+(1-a) [ {1-Q(@)—[1—P@)Q(=)}dH™(y)+

+ [ AP @) + L =P @)K (Bayrn; St e (@) 171)} E{c0 @™+

ﬂ>$l

a2=

+(1—a,)) H™}(y)
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o, [ E(Banrs 6a)17)d6™@) +(1—a) [ E(Z,p15 sm(@)17)dH™(y) +

U<y y<z)
+a; [ P(@)d@™(y)+(1—a) [ P(a)dH™(y)+
y>r v>x;

T [1—P(m1)]K(5n+1,1; Sm—l,al(wl) |T1){‘11Gm(w17 1>+
+ (1 —a)) H™ (@, 1)}

But, in view of (16), the inductive hypothesis implies

K (Foi1,05 S,y (#1) [73)

= a2K(§n+l,l; S;n—l (w1)1‘51)+(1—a2)K(5n+1,15 S;r:—l(ml)lﬁ),

whence

[1’—P(-'1’1)]-K(5n+1,1§ Sm—l,al (21) lrl){ale(ml, 1>4+1—a)H™ (24, 1)}
=a, [ D—P@))EK(Zui1,5 S (@) i7:)d6™ (3) +

V>x

+(1—a,) f [1_P($1)]K(‘T’n+1,1; S;r:—l (ml)lfl)dﬂm(y)°

y> z)

Then

K (%15 (0,8, +(1—a,)8,]1I7)
=a, [ K(Z; su@)|7)d@" @)+ —a) [ K(Zi; suy)l7)dH™(y)+
ysTy y<z)
tay [ {P@)+ 1P @)K (Tui1,5 Spor (@) 71)} 6™ () +

> x)

+(1—a,) f {P (#)+[1 _'-P(wl)]K(ﬁn+l,l; 81 (1) l"l” dH™(y)
U>zl
@@3)

=" 0, K(Z,1; S;n|'¢')+(1—a1)K(5n+1§ 8n 7).
If a,™(xy, 1>+ (1 —a,)H™(2,, 1> = 0, then, concluding analogously
45 in the previous case, we obtain

K (%115 [018,+(1—ay)8p]17)
= q, fK(Ez:‘n+1; S;n(y)lr)dG"’(y)+(l_a1) fK(En_H; s;,',(y)lr)de(y)

y<o) y<a)

3 ’ — "
= alK(En+l; Smlt)+(1_a1)K(xn+l; S’Inl‘t)'

Therefore, equality (14) holds in the case w =g, #;, = ... = &; < Ty,
I<iga).
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Now we consider the case w =¢, &, =... = ;< @;,; (I1<i < n).
In a similar manner as before, we get

K(En+l; [‘118;,1‘}‘(1'—01)8’7’,:“”)
= [ KB $u®)7)d6™ () +(1—0)) [ E(Fny; 5n(y)1n)dH™ () +

[ P@)agm™(y)+(1—a)) [ P(z)dB™(y)+
>z y>xy
+1—P@)l| [ E(ZFriins $ma®)17)d{a@™+(1—a) H ()}

But the inductive hypothesis allows us to conclude further:

I K(57n+1,1 5 Sm,a, (y) 1”1) d{a,G" 4 (1 —a,) H™}(y)

>z

= [ K(Zpi1 e, (¥) |7:){@y 6™ + (1 — a,) H™} (y) —

- fK(§n+l,l; sm’al(y)|n1)d{a1Gm+(1——-a1)H’"}(y)
y<z;

K(xn+“, [a1S +(1—ay) ;n]lnl)_

— [ E(Zpi115 Sy () |701) d{ay 6 + (1 — ay) H™} (3)

y<zy

(3)

L 0 K (@15 Sl ) + (L= ) K (Fgy115 Sl ) —

1I<:z:1
—(1—a) f K(En—:—-l,l; 81’7:(?/)1”1)‘1 "(¥)
y<wy
@ a, fK(x,H“, |n1)dGm )+ (1 —a,) fK(xn+ll7 ,(y)|”1)de(y)'
V> V>
Therefore

K(En+l; [als;z+(1_a1)8;:]ln)
= [ K(Zpu; 5u@)7)d6" @) +(L—0r) [ K(Tni15 8(9)17)dH™(y) +

y<sz) y<z)
tay [ {P@)+[1—P@)]K (Zyira; 80 (y) 7)) 46™(y) +
y>x;
+(1—a,) f{P (@) +[1—P (=) ]K(xn+ll; s, (y)|”1)}dﬂm(y)
y>z)

L oy [ K(Zyyr; 80 (9)17) 6™ (Y) + (L — 1) [ K (Bopa5 spr(y) | 2)AH™ ()
2 0, K (15 Sl)+ (1 — ) K Bpir Spol ).
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Summarizing, equality (14) has been proved in the case where
) = ... = mi<mi+l (1<@<'n/).

The case #, = ... = x,,, is considered similarly.

Thus the proof of Lemma 4 is completed.

Now we give some lemmas characterizing the sets BJ (1) the proofs
of which can be easily obtained with the help of Lemmas 1, 3, 4 and rela-
tions (3) and (4).

LEMMA 5. For an arbitrary probability measure T on %£(<0,1)) the
strategy SZL given by (7) and (8) is admissible in the game I', if |A| = m.

LEMMA 6. If the strategies S,, and 8., for player B are admissible in the
game I';, then also the strategy [aS,,+(1—a)8, ] given by (11) and (12)
18 admissible in that game for any a € (0, 1).

LEMMA 7. A strategy S,, is admissible in the game I', if it is admissible
n the game I, .

In the following lemma, the manner of constructing elements of the
set B (1) is described.

LeyMMA 8. For fixzed A such that |[A| =m (m =1,2,...) let 8, €B,,
be represented in the form 8,, = [G™, {8,,_, (v1)}e, 1, where G™ is an arbitrary
Probability measure on B(<0, 1) and the family {S,_,(»)}, satisfies

(i) for any v, € <0, 1)

8p_1(v) € Byy_y(71) if w=yg,
8pn_1(v1) EBgz—l(’Er,k,.H le) if w=c¢;

(ii) ¢n <0, 1) there ewists a sequence of mutually disjoint Borel sets
{C} such that

U Oi = <0’1>

and S, (v,) = 8,,_,(») if v1, v, € C; for a certain 1.
Then the strategy 8,, is admissible in the game I';.

. Proof. Let us consider the case w = ¢, assuming [li| = n. Rela-
tions (3) and (4) imply the equality

A7) K(Zn; 8ult) = [ E(Z,; yiv)da™(y)+

y<z)

=+ {P(wl) + [1_P(w1)]K(§n,1; Sm—l(w1)|71)}Gm(m17 1.

Hence, from assumptions (i) and (ii) of the lemma we conclude that

K (5‘,,‘_1; Sp_1(#,)|7;) is & measurable function with respect to %(X,)-

he first component of the right-hand side of equality (17) is also a meas-
Urable function with respect to #(X,,).
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Therefore K (z,; S, |7) is a measurable function with respect tc
#(X,), which completes the proof of the lemma for w = g.

To prove the lemma in the case w = ¢ we reason similarly, taking
into account the equality

(18)  K(Zy; Splm) = [ K(Z,; yl=)da™(y)+
Y<Tg, 41
kpt+1 kp+1

+{- H[l ~Pa ]+n (1 —P (@) 1K (Zn 115 Smes (@ 1) | B €)] X
x @™ (-’”k,+1,1>

which follows from (3), (4) and (6).

LEMMA 9. Let 2 be a vector such that |[A]] =n, |A| =m=1. If Fe A,
and 8,, = [@™, {s,,(y)},] € By (%), then

19 [{[E(E; s(9)14)d6" )} dF (z,)

X, T

— [{ [ B snl®)12)aF (3,)}a6m(y).

¥ x,

Proof. According to the notation at the end of Section 2, the
strategy 8, can be written in the form 8, = [G™, {8, _,(»1)},].

At first we consider the case w = g. Since S, eB m(4); by (17) the
function

K,(z,) = P(z)+[1 _‘P(ml)]K(‘En,l; 8—1(21) 171)

is measurable with respect to #(X,)x #(Y).
On the other hand, by (4) and (6), we have
IK1(En) if 2, <y,
K(z,; ylv) i x>y,
whence it is easy to conclude that the function K (Z,; s,,(¥) lr) is measura-

ble with respect to #(X,)x #(Y).
In the case w = ¢, formulas (4) and (6) give

K(in; Sm(?j) IT) =

E(Z,; $m(@)|n) = i ylm) VS Sy
S K, (%,) if y > D419

where

K2(§n)
kp+1 kp+1

=1- [ 1-P ]+n[1 —P (@)1 (%, 4,415 S (@, 1) | B a1 €).-

=1
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Using relation (18) and the admissibility of 8,,, we infer that in this
case the function K (%,,; s,,()|x) is measurable with respect to the ¢-algebra
A(X,) x B(T).

Now, in view of the boundedness of the function K (see Lemma 2),
Wwe can apply Fubini’s theorem to complete the proof.

5. Construction of strategies F, and S;.

Definition 6. A point which is the infimum of a support of the
marginal measure with respect to x, corresponding to F e 4, is called
& characteristic point of the strategy F.

Now we define by induction with respect to the number n = |i|
some strategies F; € Ay, and S; (¢) € B (4) (¢ > 0) for players 4 and B,
respectively. The proof of optimality of these strategies is given in [2].

Step 1. Let » = 1. In this case we take as Fj, and S},(s) the
optimal strategies for players A and B in the game found in papers [1]
and [5] (w = g, ¢). Therefore, we have

Py = 'Dallg and  8f,(e) = [Da”gy {D1}y,]

for any &> 0, where P(a,,)+Q(a,,) =1 and 0 < a;, < 1.
In the case w = ¢, F}, is a continuous probability measure with sup-
Port {a,,, 1> whose derivative is of the form

_dFI*Ic(wl)
dx,
2¢' (1) exp - f WP |
P(%)Q(%)-I-P(wx)-l-(?(wl) —1° P(“)Q(’“) +P(u)+@Q(u)—1)’

%y € {ayey 1),

Where a,,, is determined uniquely by the relations

1
[dF}. (@) =1 and 0<a<1.
2Q\e
Before defining 8}, (¢) we introduce some notation.
Let T, be a continuous probability measure with support <a,., 1)
determined by its density

d-TlIc(y)
dy

2L,.P' (y) {f P’ (w)[1+Q(u)]dw }
T PMQW+PH)+QW) -1 P(w)Q(u)+P(u)+Q(u)—1

ye <a1|c7 1,
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where 1), = a5,.(1—a,,)"" and
P(allc)Q(a’llc)_l—P(a’llc)+Q(a1|c) _1
1_P(allc)

Now we can describe the strategy Sflc(s). From the analysis of the
optimal strategy for player B in the game I, (see [5]) it follows that
87 (€) can be written in the form

x|c( ) = [(A—ay) Tye+aye D] (e >0).

Aype =

Moreover, in papers [1] and [5] it was shown that
(20) K(Fllm llw Illw) =1-2Q(ay,) (¢>0).

Besides, it is easy to check that the strategy Sllw(s) is admissible
in the game I7,,, and the characteristic point a,,, of F”w satisfies the con-
dition 0 < a,,, <1 (w = g, ¢).

Step 2. Assume that for some n > 1 and for any ¢ > 0 all the strat-
egies F; e A,, and 83 (¢) € By (1) (A’ = k,|w) have been constructed
for which ||2’|| = » and the characteristic points a,. of F}, satisfy 0 < a,. < 1.

Step 3. Let us fix in an arbitrary way a vector k,|w = A such that
Al = n+1. We give the definitions of F; and 8; ().

In the case w = g we put

F(z Zpi1) = D, (wl) ( Tpi11)) 87 (e) = [H;(e), {8:1(8/2)}1'1] (e>0),

where

Q)
(21) Q) = 1=pray

H}(e) = H (amag+ogey 18 any arbitrarily fixed continuous probability
measure with support {a,, a 4 d,(¢)> and 68,(¢) is an arbitrary positive
function determined for ¢ > 0, which satisfies

lim é,(¢) = 0,
a0t
(22) ar+ 6:(8) < a‘tl (8 > 0)’

P(a,+0,(s)) < P(a,)+e/4 (¢>0).

Remark. In the definition of S}(s) we find the family of iden-
tical strategies {8} (& /2)},1 which, according to Definition 2 and to the
notation mtroduced in the Remark at the end of Section 2, has to be
determined for all », € {0, 1). However, it is impossible because of the
inequality a, <1, which follows from Step 2. Therefore, we shall under-
stand that the elements of the family {S (¢/2)},, for », €0,a,) are
equal to 87 (¢/2) and for », € (a,,1) are equml to the strategy y =
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Now we consider the case w = ¢. Based on (7) and (11) we put

Fo(@u) = U (xl)F:I(En+l,l)7
8r(e) = [(1—a,) 877+ a,8; (¢/2)] for any &> 0,
Wwhere
Qe (@)
P(2,)Q (@)

and U,, T, are absolutely continuous probability measures the deriva-
tives of which are expressed by the formulas

AU, (@) Qa9 (z

(23) =1,

)
(24) dwl - .P( )Q ( ) ’ ml € <an7 a’nl>7
aT,(y) L.P'(y)

(25 = 9 ny Yny/ 9

) &y QWP Y
Wwhere
(26) L = P(05)@(ar,) 7——
@ P(a,)Q(a,)

* = P(a,)Q(an) [1—P(ay)]

Now we show that F; € A,,, and S;(¢) € B (1) for any &> 0. Let
8 take into account the equality

(28) = Q(ay),

Where a., is the characteristic point of the strategy F:’l. Since the function
f(x) = Q(x)[L—P(»)]"' is continuous and increasing in the interval
<0, 1) and, moreover, since

Q(a,)
J0) = 0<Qe),  fla) =g > ¢,

there exists exactly one solution of equation (28), say a,, and we have
(29) 0<a,<a,.

This means that equality (21) gives the unique characteristic point
of the strategy F:.
Now consider the function

u 1

u)d
N(2) —f P(uQ2 g O

4 — Zastos. Mat. 17.3
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It is easy to show that N (z) is a decreasing function in the interval
(0, a,> and

lim N(2) = 4+, N(a,)= —Q '(a,)<0.

z—>0t

Since N (z) is a continuous function, we conclude that the equality
f"‘ Q()Q (wdu _
J  Pw@(w)

has exactly one solution in the interval (0, @), which will be denoted
by a,.
Hence, because of (23) and (24), we have

(30) 0<a,<a,
and
(31) [ av. () =1.
If we integrate equality (23) by parts, we get
1 1 B 1 B TP (y)dy
Qa)  P(a)Q(a)  Plag)@(ar) J QWP ()’
whence
(32) f y)dy _ 1-P(a;) 1 .
Q(y)P P(a,)Q(a,) Pla,)Q(as)

Since the left-hand side of equality (32) is a positive number, we
have

_ P(a)Q(a,)
"7 P(8,)Q(a,) [1—P(a,)]

Hence, by (30), we can write more precisely

a

(33) 0<a,<1.

Now we return to relation (32) which can be transformed, by (26)
and (27), to the form

M P@dy 1 l-aegl
CWPW) ~ Ple,)@(ay) a L
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Therefore we have I, > 0 and, in view of (25),

(34) J aT.) = 1.

Finally, from Lemmas 5-8 with the help of formulas (29)-(34) we
conclude that the constructed strategies F; and 8;(¢), for the vector A

fixed in Step 3, satisfy the following conditions:
(i) the characterlstlc point a, of F; fulfils 0 < a, < &5
(ii) for any & > 0 the strategy S;(e) is admissible in the game I7.
This completes the inductive definition of strategies F; and §; ().

At the end of this section we give the following lemma on the above-

defined strategies:
LEMMA 10. For any ¢ > 0 and for all 2 we have

(35) K(F}; 85(e)12) = 1—2Q(ay).
Proof. We prove this equality by induction with respect to the

humber » = ||A|.
Step 1. For » = 1 the lemma is true in view of (20).

Step 2. Assume the validity of (35) for any vector (k,|w) = A’

8uch that ||A'| = n > 1.
Step 3. Let us fix in an arbitrary way a vector (k,|w) = 4 such

that 4] = n-+1.
At first consider the case w = g. Using the definitions of strategies

F} and S*(s) we get, under the inductive assumption,
K (F?; 8%(e)|7) “29 P(a,)+[1—P(a,) 1K (F}; 8% (¢/2) | 7)
P(a,)+[1—P(a)][1—2Q(a,)] = 1—-2Q(a

Now let us examine the case w = ¢. By (16) we have

(36) afP(wl)dU,,(wl) = 1—%%, ye<anya’nl>.

From the definitions of F* and §%(¢) we conclude, using the inductive

hypothesis, the following:
E(Fr; 83(e)17) 2 [ K (%415 87(e) 17)dF 5 (1)
(1= 0,) [[ K (Fpi; 917 AT ()P F) +
+ 0y [ K (T S5 (e12)|7) A} ()
P2 (1w [ [ (P + [P0~ 2Q ()] ATA(9)+

‘II>(E1
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+ [ 0—2Q1AT.(y)] AF:(F,10) +

y<Ty

+anf‘P(w1)+[1_P(m1)]K(“'—'n+1,1; 8:1(5/2)[7‘1),‘1F:(En+1)

‘°’<1—a,,>{f1 N—20WAT.W)+ [ | 200)P@)AT. ()T, (o) +

”I
+a, f (P () + [1—P(2) 1K (Fi 5 8% (¢/2)|7y)} AT (wy)

_ {f‘ 20T+ [ [ 20@)P(@)aT.@)dTu)+

a
jd |

+a, [ {P(2y)+[1—P ()11 —2Q(a,)]} AT, (z,)

36)(31)(34)

(1—a,)[1—-2Q(a.)]+a,[1—2Q(a,)] = 1—2Q(a,).
This completes the proof of the lemma by induction.

6. A theorem on optimal strategies. In this scction we define, using
the strategies F; and S} (¢), determined in Section 5, two classes of strate-
gies for players A and B, respectively. Then, assuming the existence of
optimal strategies in these classes, we derive the necessary conditions.

Definition 7. The strategy F e A, (n = |A||) is an element of the
class M, it F is defined as follows:

(i) in the case w = g,

(37) F(z,) = D, () F; (Z,,)

for some a, such that 0 <a, < a.;
(ii) in the case w = ¢,

(38) F(z,) = Uy, (@) F7 (%)

2

for some a, such that 0 < a, < a, , where U, is a continuous probability
measure with support <a,, Q) -

Definition 8. The family of admissible strategies {S(e)}.., in the
game I'; is an element of the class N, if for any £ > 0 the strategy S(e) i8
defined as follows:

(i) in the case w = g,

(39) 8(e) = [H.(¢), {87 (e12)},],
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where H, = H, L+ ) b, is & number independent of £ such that 0 < b,
<a,, and d(e) is a fixed function determined for every ¢ > 0 such that

(40) lim §(e) =0, O0<d(e)<a,—b;, (¢>0);

s—>0t

(ii) in the case w = ¢,
(41) 8(e) = [(L—a) 8,2+ a2 (/2)] (¢ > 0),

where b, is a number independent of £ such that 0 < b, < @y 5 Tp, 18 & con-
tinuous probability measure with support <b,, @, >, and a is a number
independent of ¢ satisfying 0 < a < 1.

THEOREM 1. If in the classes M, and N, there exist an optimal sirategy
F for player A and a family {8(¢)}., of e-optimal strategies for player B in
the game I, respectively, then

(i) F = Fy;

(i) b, = a, for w = g; if, in addition, 6(c) = d,(c) and H, = H>
(6, (c) and H were determined together with S% (¢)), then 8(g) = 87 (e);

(iii) S(e) = Sh(e) in the case w = c;

(iv) the value of the game I'; equals v, = 1 —2Q (a;).

The proofs of this theorem and of the optimality of the strategies
F} and S} (¢) are presented in paper [2].
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T. RADZJK i K. ORLO WSKI ( Wroclaw)

MIESZANA GRA CZASOWA: BADANIE ZBIOROW STRATEGII GRACZY

STRESZCZENIE

W pracy bada si¢ model gry czasowej, w ktorej gracz A dysponuje dowolng
skonczong liczbg akeji cichych i glodnych, a gracz B — jedng akcja glosna. Funkejami
sukcesu graczy s3 niemalejace funkcje P(f) i Q(t), ¢t € (0, 1>. Konstruuje sie zbiory
strategii & i # odpowiednio dla graczy A i B oraz funkecje wyplaty K na zbiorze
A X B w sposéb uwzgledniajacy wykorzystanie wszelkiej informacji uzyskiwanej
w czasgie gry. Nast¢pnie w zbiorach & i # okresla si¢ pewne dzialania i bada si¢ zacho-
wanie funkeji K wzgledem nich.

Poza tym formuluje si¢ twierdzenie o jednoznacznofci, pozwalajace znalezé
optymalne strategie graczy. Dowodd tego twierdzenia i dowéd optymalnosci znalezio-
nych strategii sa podane w pracy [2].



