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¢-BRANCHING PROCESSES IN A RANDOM ENVIRONMENT

1. Introduction. Consider a population of identical particles with
initial generation size Z,. At unit moments, each particle splits inde-
DPendently of others according to the offspring distribution {p,,
k =0,1,...} into particles of the same type. Descendants of the initial
generation create the 1-st generation of size Z, and, in general, the size
of the n-th generation is the number of progenies of the Z,_, particles of
the (n—1)-st generation.

Consider a sequence of random variables {Z,,n = 0,1, ...} on the
Probability space (2, #,P) having non-negative integers as their state-
Space and suppose that they satisfy the condition

E(szn+l | Zyy Zyy ooey Zy) = [f(S)]Z", n=0,ls<1,

Where f(s) is the probability generating function of the offspring distri-
bution {pr, ¥ =0,1,...}. The sequence of random variables {Z,,
" =0,1,...}is called the Galton-Watson process. In [1] the following class
of p-branching processes has been defined.

Let ¢ be a function from the set of non-negative integers into itself
for which ®(0) = 0. Consider a sequence of random variables {Z,,
" = 0,1, ...} having non-negative integers as their state space and suppose
that the process satisfies the condition

E (s%n+1 | Zyy Zyy oy Zy) = [f(s)]q’(z"')’ nz=0,[s|<1,

‘N.fhere S(s) is the probability generating function of the offspring distribu-
tion {p,, &k = 0,1,...}. The process {Z,,n =0,1,...} is called a
‘P‘branching process, and ¢ is called a controlling function.

It ¢(k) < k for some k> 1, then k—g(k) particles in the generation
of size & do not take part in evolution of the process. The condition ¢ (k) >k
Means that we add ¢(k)—k particles to the population and ¢ (k) particles
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take part in further evolution of the process. For ¢ (k) =k (k = 0,1,...)
we are concerned with the Galton-Watson process. In [1] the conditions
sufficient for extinction or non-extinction of the ¢-branching process
were given.

More general processes were also considered, namely g-branching
processes with the random function ¢ (see [3]) and branching processes
with the sequence of controlling functions (see [4]).

Now we define a branching process in a random environment. Let II
be a probability distribution on non-negative integers:

IT = {ﬁ = {ph": =0,1, ---}’Zipi< °°70<po+.'p1<1}'
=1
Let {&,i = 0,1,...} be a sequence of random variables such that
£&:(2,%,P)~>(II, B), where # is the Borel o-algebra in I7 generated
by the usual topology. The stationary and ergodic process & = (&, &,y --.)
is called an environmental sequence and the random variable &, is called
an environment of the n-th gemeration. The function

fol8) = D) pi(&)s*
k=0

is called a probability generating fumction associated with the environment
&y, and by m(&,) = fe'o(l) we denote the mean of the probability distribu-
tion associated with &,.

Consider a sequence of random variables {Z,,n = 0,1, ...} having
non-negative integers as their state space and suppose that

E(s?n+1| #,(8) = [f, (9, n>0, s|<1,

o

where #, (&) is the o-algebra generated by the random variables Z,, Z,, ...
...y 4, and the environmental sequence & The process {Z,,n = 0,1, ...}
is called a branching process in a random environment.

Now we define the class of ¢-branching processes in a random environ-
ment and we give the conditions sufficient for extinetion or non-extinction
of the process.

2. g=branching processes in a random environment. Let ¢ be a function
mapping the set of non-negative integers into itself such that ¢(0) = 0.
Consider a sequence of random variables {Z,,n = 0,1, ...} with non-nega-
tive integers as their state space and suppose that they satisfy the condi-
tion

E(s#n+1| F,(8) = [fe (51", n>0,[s1<1,
where £ = (&, &,...) is an environmental process, and #,(£) is the

o-algebra generated by Z,, Z,, ..., Z, and £ The process {Z,,n = 0,1, ...}
is called a g@-branching process in a random environment.
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If p(k) = kfor k = 0,1, ..., we have an ordinary branching process
in a random environment. It is easy to see that a ¢-branching process has
not independent lines of descendants.

Let g, (%) be the conditional extinction probability of a ¢-branching
process in a random environment, i.e.

In(&) = P(limZn =012, =m, f(.f)),

where #(f) is the o-algebra generated by £. The process is extinct if

P(gn(&) = 1) = 1 for m > 1. If there exists m > 1 such that P (g, (&) < 1)
= 1, then the process is non-extinct.

Now we give the conditions sufficient for extinction of ¢-branching
Processes in & random environment.

THEOREM 1. Let {Z,,n = 0,1, ...} be a p-branching process in a random
environment and suppose that the controlling function satisfies the condi-
tion @(k)<ak for k>0, where a is a non-negative real number. If
v = Elogam(&,) ewvists and y < 0, then the process {Z,,n = 0,1, ...} is
extinet.

Proof. It suffices to show that
(1) LmE(Z, |Z, = m, F () = 0 a.e.

because then, by Fatou’s Lemma, we have the sequence of inequalities
0<E(limZ, |Z, = m, #(§) <LmE(Z,|Z, = m, F(F) = 0 a.e.
and because, by the assumption that ¢(0) = 0, zero is an absorbing state
of the process {Z,,n =0,1,...}, and
{imZ, = 0} {liinZn = 0}.
Hence "

P(limZ, = 0|2, = m, #(§) =1 a.e,

Which is equivalent to P(g, (&) = 1) = 1 for every m > 1.
Now we prove equality (1) showing that it follows from the inequality

@) E(Z,1Z, = m, #(§) <'rnl:[ am(&;) ae. for n>1.

=0

it is easy to see that the right-hand side of (2) may be written in the
orm

n—1

m exp{ 2 logam(é‘,-)}.

1==0
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Since the random variables logam(§;),¢ = 0,1,..., form a stationary
and ergodic sequence, y exists and y < 0, we have
n—1

lim » logam (&) = — oo a.e.
m D, Jogam/(&) )
which together with (2) implies (1).
We prove (2) by induction. For n = 1 we have
E(Z, | Zy =m, F (&) = p(m)m(&) < am-m(&).

Assume that (2) is true for n = k. Using the properties of a controlling
function ¢ we have

B(Zyyy | Zy = m, F () = E{E[Z;,, | F(B)] | Zy = m, 97(‘5)}
= m(&)B{p(Zy) | Zy = m, F (&)} <m(&)E{Z, | Z, = m, &)}a,

which implies (2).
Now we give the conditions sufficient for non-extinction of a
@-branching process in a random environment.

THEOREM 2. Let {Z,,n = 0,1, ...} be a p-branching process in a ran-
dom environment and suppose that the controlling function satisfies the con-
dition
(3) o(k) = ak for k = 0,1, @(0) =0,
where a is a positive real number. If

y = Blogam(&) >0 and EB(—log(1—7,(0))) < oo,

then P(g,(8) <1) =1 for every m > 1.
The following lemmas are needed in the proof of Theorem 2.

LEMMA 1. If the controlling function of a @-branching process in a ran-
dom environment satisfies (3), then the following inequality holds:

(4) E(s%n|Z, =m, F ()< (fgo f51 e _(8) ... )))m a.e. for n>1.
Proof. We prove this inequality by induction. For » = 1 we have
E(s7 [ Zy = m, F(§)) = fe, ("™ < (F5, ()™
Assume that inequality (4) is true for n > 1. Then
E(snt+1|Z, = m, F(&)) = B{E(s"+1 |F,(8) | Z, = m, F (&)}
< E{f;, (8)"% | Zy = m, F (&)}

The last inequality follows from (3). This and the induction assumption
imply (4) for every = > 1.
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LEMMA 2. If a g-branching process {Z,,n = 0,1, ...} in a random en-
vironment satisfies the conditions of Theorem 2, then

E(—log(1—f2 (0))) < .

Proof. We consider two cases: a>1 and a < 1.
If a>1, then 1—f; (0) >1—f (0). Consequently, we have

E(—log(1—7£(0)) < B(—log (1 —:,(0)) < co.

The last inequality follows from the assumptions of Lemma 2.
If a <1, then 1—fZ (0) > a(l—f, (0)). Thus

E(—log(1 —f2(0)) < —loga+E(—log(L—f; (0)) < oo,

which completes the proof of Lemma 2.

LEMMA 3. If a @-branching process {Z,,n = 0,1, ...} in a random
environment satisfies the assumptions of Theorem 2, then

1—12 (Y-t (TE)
Vo = E(—log 1_‘4[ (T )) < o

Jor every n > 1, where ¥, (&) = fi, (fgl( - fE (0) ... )) and T is a shift operator,
T(&y &1y --2) = (1) Eay --0)-

Proof. Since (1 —fz (s))/(1 —s) is an increasing function in s (0, 1),
we have

1 _f?o ( Yn—l (-TE))

am (&) = 1- Y, (T =1—f¢(0).
Thus
1—fe (Xna(TE)
(5) —logam(&,) < —log( 1—6; (ITE) ))< —log(1—fz,(0)).
n—1

By (5) and Lemma 2 we have Lemma 3.

Proof of Theorem 2. Assume that P(g,(&) = 1) >0 for some
M =1. By Lemma 1 we have

(6) P(Z, =012y =m, F(8) <(f(f2 (- 75,0 .. )"

It is easy to see that the sequence Y. (8 = f;‘o(fgl( .. f2.(0) ))"' is a.e.
Increasing and bounded by 1, and so its limit exists a.e. Denote this limit
by Y(&). By (6) and

qn (&) = limP(Zn =0[2, = m,.?'(f))
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we get P(Y (&) = 1) > 0. Now, from the equality
(7) Yo(8) = f2(Y,a(T8)

we obtain ¥ (§) = fz (¥ (Z&)). It is easy to see that the event {£, ¥ (&) = 1}
is shift invariant, and 7 is measure preserving and ergodic. Thus
P(Y (&) = 1) =0 or 1, and because P(Y (&) = 1) >0, wehave P(¥ (&) = 1)
= 1.

From the definition of the set II it is clear that

P(Y,_,(§) <1 for every n>1) = 1.
Thus 0 < —log(l— Y, (&) < o a.e. for every n > 0. Let us put
#n = B(—log(L — ¥, (&)

We show that u, < o for every n > 0. By Lemma 2, y, < co. Now
from (7) we get the equality

1—fe (Y noi(TE)
(8) —log(l— Y,(§) = —log( 1_60; s )) —log(l— ¥,_,(TE)).

Integrating (8) we have

9) o= D vitm, n>1,
j=1
which together with Lemma 3 implies u, < oo for every » > 0.

On the other hand, Y,_,(T&)}1 a.e. Thus, by the Lebesgue monotone
convergence theorem,

(10) pnloo  and  y,ly = E(—logam(&)) <0

and, consequently,

n
lim 27)]- = — o0,

n j=1
which contradicts (9) and (10).

CoBROLLARY 1. If the controlling function of a ¢-branching process
{Z,,m =0,1,...} in a random environment satisfies the condition p(k) = k
fork =0,1,..., then from Theorems 1 and 2 we get well-known results
for an ordinary branching process in a random environment (see [2]).

Now we give an example in which we apply the properties of @
¢-branching process in a random environment.

3. Example. Consider a ¢-branching process {Z,,n = 0,1,...} in
which the controlment by the function ¢ takes place only at random
moments such that v, = 0 and random variables 7, _, = 7,—7,_,, n=>1s
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form a stationary and ergodic sequence independent of the process {Z,,
n =0,1,...}. Assume that P(T, = 0) = 0, E(T,) < oo, and the gener-
ating function f(8) of the offspring distribution {p,, ¥ = 0,1, ...} satisfies
the conditions

ffA=)=m< oo, 0<f(0)+f(0)<1.

Let & be the o-algebra generated by the sequence of {T,,, n = 0,1, ...}.
Between the moments 7, and 7,,, the process {Z,,n = 0,1, ...} evolves
as an ordinary Galton-Watson process. We, give the conditions sufficient
for extinction of such a process.

THEOREM 3. Assume that the controlling function ¢ of the process satisfies
the condition (k) < ak for k = 0, where a 8 a non-negative real number. If

y = loga+E(Ty)logm <0 and f(0)>0,
then
P(limZ, =0|Z,=1,8) =1 a.e. for every 1 >1.

n

Proof. Consider the process Z, conditioned on the event Z, =7
and the c-algebra &. It is easy to see that

Z:, Z,. .
E(s™41| Zgy Zyy ..y Iy 8) = [fr ()77, 20, |s]<1.

Hence {Z.,i = 0,1, ...} is a g-branching process in & random environ-
ment. From the equality

m(Ty) = fr,(1—) = m
it follows that the assumption

(11) Elogam(Ty) < 0

i8 equivalent to the condition loga+E(T,)logm < 0. Now, by (11) and
Theorem 1, we have

PlimZ, =0|Z,=1,6) =1 ae.
n
Since 7;—>oc a.e. and zero is an absorbing state of the process {Z,,
n =0,1,...}, we obtain
1=PQIlmZ, =0|Z,=1,8)<P(limZ, =0|2, =1, 8),
1 n

Wwhich completes the proof.

. In a similar way we can obtain the conditions sufficient for non-extine-
tion of the process {Z,,n = 0,1,...}.
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THEOREM 4. Assume that the controlling function ¢ of the process {Z,,
n = 0,1,...} satisfies the condition @(k) > ok for k =1,2,...,¢(0) = 0,
where a is a positive real number. If

y =loga+E(To)logm >0 and B(—log(l—fr(0) < oo,
then
P(limZ, =0|Z,=1,8)<1 a.e. for every 1>1.

Proof. Since the hypothesis y = loga+E(T,)logm > 0 is equivalent
to Elogam(T,) >0, from Theorem 2 we have

P(limz, =0]2Z, =1,6) <1 a.e.

Theorem 4 follows now from the inequality
P(limZ, =0|Z, =1, §) <P(limZ, =0 |Z, =1, 8).
n T
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