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OPTIMAL CONTROL IN LINEAR SYSTEMS
WITHOUT THE CONDITION OF REGULAR CONTROLLABILITY

1. Introduction. In this paper we consider a linear dynamical system
described by the set of n first-order linear differential equations

(1) #(t) = Az(t)+Bo(t), o(t)e W for telt, T],

Where A: R — R™ and B : R™ — R" are matrices with constant elements.
The counterdomain W of the control functions (i.e. the m-dimensional
convex polyhedron in the space E™) contains the origin. The functions
v(?) are assumed to be piecewise continuous functions defined for ¢, <t < T
and to satisfy the condition v(¢-+) = v(¢). These functions form the set
of admissible controls.

We may formulate the problem of time-optimal controllability in the
following manner: from the whole set of the admissible controls driving
the object (1) from #, to the origin we have to find such a one for which
the driving time is the shortest one.

In considerations connected with that problem, the regular control
condition is usually assumed, i.e.: for each vector ¢, parallel to a certain
edge of the polyhedron W, the vector Bq is not an element of any proper
Subspace invariant with respect to the operator 4. This assumption gives
the sufficiency condition of the Pontryagin maximum principle for the
Processes controlled to the origin, and allows us to prove the theorem on
the uniqueness of the optimal control, the theorem on full controllability
and other important properties of the optimal processes (see [1]).

The purpose of the present paper consists in developing an appropriate
theory without the condition of regular controllability. We intend to give
@ general characterization of the optimal control driving the system from
%o = x(t,) to the origin.

2. Formalism. Let us introduce the function ¥(-) as an arbitrary
hon-zero solution of the homogeneous differential equation

(2) P(t) = —ATP(@), teR.
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For every t € R the function
M o(-) = max (¥(-), Bw)
welWw
is defined in a unique way.

Let B(R™) be a family of all closed, bounded, non-empty subsets
of the space R™. It is obvious (cf., e.g., [2]) that on B(R™) one can intro-
duce the Hausdorff metric. The multivalued funetion V(-), V: R — B(R™),
which satisfies the equation

(3) My(t) = (P(), BV (), teR,

is called an extremal function corresponding to ¥(-). Note that under
the above assumptions the relation (3) determines V (f) in a unique way
for every t e [t,, T']. Moreover, V(-) is a piecewise constant function and
the counterdomain of this function is contained in the set of faces of the
polyhedron W. These properties are a consequence of the following lem-
mas:

LEMMA 1. The function M y(t) is continuous for t e R.

For the proof of Lemma 1 see [5].

LeMMA 2. The extremal function V (-) corresponding to ¥(-) is contin-
uous on the interval [ty, T] with exception of at most a few isolated points.

Proof. We suppose that for an infinite number of points ¢, € [t,, T},
n € N, the function V(-), determined by (3), is not continuous. From
general properties of continuous functions in metric spaces (cf. [4]) it
follows that for every ¢, there exists a sequence {t,;} which satisfies the
conditions

1

tm‘ - tn’ V(tni) 'l) wn #* V(tn)'

Since we deal with a finite number of polyhedron faces, we can choose
from the sequence {t,} the subsequence {t,} and appropriate faces W and
W* which have the following property for n e N:

(4) Lt V() =W, V@) =W, W=W.
By Lemma 1, for every #. we obtain
(P(tn), BW*) = (¥(tn), BV (tn)) = My(ty) = imMy(t7))
= lim(¥(4,), BV () = (P (tn), ERW).

Since the function ¥(-) is analytic, for every ¢ € R we get (¥(t), B w*)
= (¥(t), BW). Then, from the uniqueness of the function V() determined
by formula (3) it follows that W = W* because

max (¥(t,), Bw) = (¥(t,), BW").

welV
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On the other hand, the equation
max (¥(ty;), Bw) = (¥(t,;), BW)
weW

is fulfilled, which implies, in an analogical way as above, that W* < W.
Hence W* = W, which contradicts condition (4) and completes
our proof.

The above-mentioned isolated points divide the time interval [t,, T']
into a finite number of intervals (z;_;, 7;),% = 1,2, ..., k, 19 = ty, 7, = T.
In each subinterval the function V() is constant: V() = W' for
te(v;_1, 7;), where W' is a face of the polyhedron W.

We emphasize that in the obtained sequence of faces W', W=, ..., W*
any two neighbouring faces are disjoint, i.e. we have W' NnW? = @ for
t=2,3,...,k

An arbitrary one-valued function »(-), being a selection of the function
V(-), is called an extremal control corresponding to ¥(-) or, in other words,
it is the control which satisfies the Pontryagin maximum principle. Note
that only piecewise continuous controls have been considered.

3. Results. In this section we discuss our result via a few theorems.
In the first theorem we show that the Pontryagin maximum principle
is a sufficient condition of the optimality of the extremal control corre-
sponding to ¥(-) which is a selection of such an extremal function V (-}
for which 0 ¢ BW*. We remind that E! (¥(-)) means the orthogonal
complement of the space E(¥(-)) generated by ¥(:).

THEOREM 1. Let ¥(-) be a non-zero solution of (2) and let V(-) be such
an extremal function corresponding to W(-) determined by (3) for which
0 ¢ BW*. If v(t), t € [ty, T, is the extremal control corresponding to ¥(t),
which drives the system from x, = x(t,) to x, = x(T) e B*-(¥(t)), then
v(t) is optimal.

Proof. By assumption, on the interval [t,, T'] we have

max (¥(t), Bw) = (¥(t), Bo(t)) >0,
weW

and (¥(t), Bo(t)) > 0 for ¢ e [r,_,, T] because 0 ¢ BW*. The control v(-)
determines a trajectory z(-) such that z(%)) = z, and z(T) = x,. We sup-
Pose now that our control o(-) is not optimal. Then, there exists an admissi-
ble control ©(-) which drives the system from z, at t = t,toxatt = T, < T
along the trajectory Z(-). By the maximum principle we have

®) (@), (1) > (F®),9(), telt, T,

and the following equations are also satisfied:

T
(P(T), 2(T))— (P (te), 2(t)) = f (¥(s), Bo(s))ds,
)
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Y4
(P(T0), #(T0))— (P (t), &(t)) = [ (¥(s), Bo(s))ds.
to
Hence
T Ui
f(‘F(s),Bv(s))ds— f (¥(s), Bo(s))ds = 0
ty t
and, since T;, < T, we obtain
™ X T
(6) [ (#(s), Bo(s)—Bo(s))ds+ [ (¥(s), Bv(s))ds=0.
to 3
This equation cannot be satisfied because of inequality (5) and the
assumption 0 ¢ BW”. Therefore, the control v(f) is optimal.

Let us consider now the optimality problem of the extremal control
being a selection of such a function V(-) for which 0 e BW¥,

THEOREM 2. Let ¥(-) be a non-zero solution of (2), let V() be such
an extremal function corresponding to ¥ (-) for which 0 € BW* and let v(3),
t € [ty, T'], be the extremal control corresponding to W (t), driving the system
from x, = z(ty) to @, = 2(T) e B*+(¥P(t)). If the control o(t), t e [ty, T:1],
driving the system from x, to x, is optimal, then t,_, < T, < T and v(t) is the
extremal control corresponding to Y(t).

Proof. We have to consider only the case where v(+) is not an optimal
control. Let us assume that 9(t), ¢ € [t,, T,], is the optimal control driving
the system from z, to z, in time 7', —t, < T —1,. Then, in the same manner
as in the proof of Theorem 1, one can be assured that equation (6) has
to be satisfied. It is clear that T, > 7,_,; otherwise we have (¥(t), Bv ()
>0, te[T,, 7,_,], which contradicts equation (6). For T, > v,_,, in view
of (6) and of the condition 0 € BW*, we obtain

(P(t), Bu(t)—Bo(t)) = 0, tel[ty, T,].

Hence v(t) is the extremal control corresponding to ¥().

From Theorem 2 it follows that in order to solve the optimality
problem formulated by (1) we can confine ourselves to the extremal
controls corresponding only to the function ¥(-).

It is clear that an arbitrary extremal control corresponding to ¥(-)
and driving the system from x, at ¢ = £, to the origin at ¢ = 7,_, is optimal.
Let us answer now the question which of the other extremal controls
corresponding to ¥(-) are also optimal.

Assuming BW* = 0, we infer that, for an arbitrary extremal control
driving the system from =z, to the origin along the trajectory z(-), the
equality x(r,_;) = 0 holds. Otherwise, the trajectory z(-), as a solution
of the homogeneous differential equation «(f) = Ax(t), e [rz-1) Tl
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with the condition #(z;,_;) # 0, would never attain the origin in finite time.
Therefore, in the case where BW* = 0, an arbitrary extremal control
corresponding to the function ¥(-) drives the system from z, to the origin
in time 7,_, —t, and is thereby an optimal one.

If BW* # 0, then under the assumption 0 e BW* we have

max (¥ (t), Bw) = (¥(t), BW¥) =0 for t e [7,_,, T,

weW

whence BW* = E'(¥(-)). Note that E+(¥(-)), as the orthogonal comple-
ment of B(¥(-)), is the subspace invariant with respect to the operator A.
By the properties of invariant spaces, all trajectories, driving the system
to the origin and determined by controls contained in W, lie in B+ (¥(-))
(cf. [3]). Therefore, the extremal control corresponding to ¥(-) drives the
System from w, to the origin along the trajectory x(-), #(f) € B (¥(-))
for ¢ e [7;,,_,, T]. Since this control, by Theorem 2, drives the system from
@y to x(7;_,) € B+ (¥(-)) in the shortest time 7,_, —%,, we can restrict the
problem (1) for ¢ € [7;_,, T'] to the space E+(¥(t)) and to the polyhedron
W, = W*, BW, « E-(¥(t)).

We note that 4, = A|
now by the equation

EL(¥()" The dynamical system is described

() = 4,9(5)+Bo(t), o) e W, for te [z y,T],

where A,: EL(¥(:)) - E-(¥() and B:R™—>E'(¥()) are matrices
Wwith constant elements.
Let ¥,(-) be a non-zero solution of the equation

W (1) = —ATW, (1), tekR,

and let V,(-) be the extremal function corresponding to ¥, () determined
by the equation

My, (1) = (P2(t), BV2(1), teR.

The obtained function V,(-) is a multivalued selection of V(-) and
Satisfies the following conditions: V,(t) = V(i) for ¢ e [ty, 74_;] and
Vi@t) c V(@) for ¢ € [v,_1, T].

Note that V,(-) is a piecewise constant function: V,(f) = W' for
te( Tio1y Tz)y i =1,2,...,k=1, and V,(@) = Wi for te(ri;, )
t=1,2,...,p, 10 = Ti_1, T = T, Where W is a face of the polyhedron
W, = W’

In an analogical way we consider also the set BW{. If 0 ¢ BW? or
Bwr — 0, then, as will be proved afterwards (cf. Theorem 3), an arbitrary
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extremal control corresponding to ¥, (-) and driving the system from z, to
the origin in time T —1t, is optimal.

If 0 e BW?, then the assumptions of Theorem 2 are fulfilled in the
space B (¥(-)) and we have to repeat the above considerations confining
ourselves to the subspace EL(EI’I(t)) for te[r,,_,, T] and to the poly-
hedron W, = WP, BW, = E+(¥,(")).

This procedure has to be finished after a finite number of steps (e.g., $),
which is clear in view of the finite dimension of the space appearing in the
problem determined by (1).

As a final effect we obtain the extremal function V,(-) corresponding
to ¥,(:) for which all one-valued piecewise selections, i.e. the extremal
controls driving the system from x, to the origin, are optimal. The function
V() is a selection of the extremal function V (-) obtained in the above-
described manner. Hence we have V (t) = V,_,(?) fort € [t,, 7;,_,] (here
we use the notation Vo(t) = V(¢), V,(t) = V,_,(¢) for ¢t € [z,,_,,T] and
Vi(t) = W, for t € (%oi1s i)y & = 1,2, .0yl Tgg = T4y, Ty = T, Where
Wi is a face of the polyhedron W, = W' _,.

Moreover, 0 ¢ BW. or BW. = 0, which is consistent with our procedure.

THEOREM 3. Let ¥(-) be a mon-zero solution of (2), let V(-) be the
extremal function corresponding to ¥(-) for which 0 € BW* and let (1),
t € [ty, T'], be the extremal control corresponding to ¥(t), driving the system
Jrom xy = x(t,) to the origin. If v(t) is the extremal control corresponding to
Y. (t) for te[t5;_1, T], i.e. a selection of the extremal function V(t) for
te[ty, T], then it is optimal.

Proof. We suppose that our control is not optimal. Then there exists
an admissible control 9(-) which drives the system from z, = %(¢,) to the
origin, (T,) = 0, T, < T, along the trajectory Z(-).

Equation (6) is satisfied, which can be shown in a similar way a8
in the proof of Theorem 1. On the other hand, this equation cannot be
satisfied under the assumption 0 ¢ BW. or BW. = 0 and by virtue of
Theorem 2. Therefore, the control v(t) is optimal, which completes the
proof.
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D. NIEWINOWSKA-JACAK (Wroclaw)

STEROWANIA OPTYMALNE W LINIOWYCH UKEADACH
NIE SPEENIAJACYCH WARUNKU REGULARNE]J STERO WALNOSCI

STRESZCZENIE

W pracy podano charakterystyke sterowan optymalnych w liniowych ukladach
nie speliajgcych warunku regularnej sterowalnodci dla proceséw przeprowadzaja-
cych obiekt z danego polozenia poczatkowego do polozenia réwnowagi. Rozwazajac
wazystkie przypadki sterowan ekstremalnych, pokazano, w ktérych z nich zasada
maksimum Pontriagina jest warunkiem dostatecznym optymalnodci bez zalozenia
regularnej sterowalnosci.



