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FACTORIZATION OF THE DISTRIBUTION FUNCTION
OF WAITING TIME

N 1-_ Introduction. The main result of this paper is to show that in
o Sufficiently wide class of queueing systems the limiting distribution

~ he Waiting time is the same as the distribution of the supremum of the
OCegg

(1) a
§)) =D&, >0,
i=1
:ﬁl ;re {6, k> 1} is a stationary sequence of random variables (r.v.’s),
Sum ‘] d.enotes the entier function. For convenience we pl:lt zero for the
by § having an empty set of indices. To simplify our notation, we denote
theiiak} any sequence for which k> 1. If we need other sequences, then
a Set of indices is indicated within the sequence brackets, e.g.
ky — % < k < oo}. By our assumptions we show that the process & can
ena'ny_ hm%t of a subsequence of the sequence {§,} in the sense of conver-
(ch 0 distribution in (D, d) (see [3]), where a random element §, of
? 13 defined by

8i(t) = 2, XJ’? t=0,

£ j=lk—t+]+1
or gq

Tight, "€ Sequence {X,} of r. v.’s. Here the symbol [k—t,+] denotes the
Dape~ha*nd limit of [%k—t] at the point #, < k and zero for #,> k. In the
tl%l.ffll;3 We apply this result to the theory of queueing systems in heavy

Let {Xk} be any sequence of r. v.’s and let
)

h 0<<i<k

Whepe

. 8, = .. .re
timg Ofoth 0,8, =8,_,+X,,k>1, and w, is interpreted as the waiting

€ (k+1)-st customer.
2

S
z
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It has been shown in [4] that if {X,, —oo < k < oo} is a stationary
and ergodic sequence of r. v.’s and EX, < 0, then

'wk"l')"'w’ P{w< oo} =1,
and

(3) w2 sup S;,

0<j<oo
where 8, = 0, 8, = 8;_, +X_;, k> 1. Let us note that (3) can be writtel
a8
w2 sup 8~ (t),

<i<oo
where 8~ is a random element of (D, d) defined by

it]
8 (t) = ZX—“ t>0.
j=1
In [2] and [6] one considers the class of queueing systems described
by sequences {X,} defined in the following way:
Let ; = {X;;, k> 1}, i > 1, where X, are r. v.’s. Let the processes
¢y, Cay ... be independent and identically distributed. Write the sequenc®
of r. v.’s

r, =min{j: X;,+X,,+... +X;;,<0},. i>1,
R, =0, RB,=R, ,+tr, k>1,
n = max{j: B; <k}, y,=k—R,, k=1,
(4) Xy = Xpiryy k=1
It is proved in [3] that if Er; < oo and the distribution of r, is DO
periodic, then

oo

lim P{fwkgw}=—(1+ P{min §, ;> 0, Sl'kgw}),
k—>o0 7y et 1<i<k

where 8,; =8, ,+X,;, k> 1.

We show in the next section that in some class of queueing 8YS
including those described by (4), the limiting distribution of waiting
is the same as the distribution of the supremum of a process & descr! ®
above.

2. Factorization. Let % be the mapping of D= D[0, oc) in E 4%
fined by

te1ms,
time

h(x) = sup z(t), w»eD.

<o
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LEMMA 1. If 2, €D, n>1, 2,(0) = (0) = 0, and

lima(t) = — oo, w“—i‘> veD,

100
then h(a,) h(z).
Proof. Since
2, > @,
there exists a sequence {1,}, 4, € 4 (see [3]), such that, for any a > 0,

Sup |#,(A,(1))—@ (@) -0 as n— oo
I<i<a

angd
sup |4,(8)—t|—->0 as n—> oo.
0<t<oo
Since
limz () = — oo,
t—o00

t .
Bere exists 5 positive number b, such that @(f) < 0 for ¢> b,. Hence,

a,
Bllllghfl’om the fact that z, > , it follows that there exists a positive number b
that «, (1) < 0 and #(¢) < 0 for ¢ > b.
% us note that

b (@,) — h(2)| = |h(z,04,)—h(z)|
< Sup [2,(4, (1) — ()] = | sup (2,(2,(0) — 2 ()|
[E<24) 0<i<h

< sup |#,(4, (1)) —#(#)| >0 as n— oo.

<<

CoroLrary 1. The mapping h is continuous on the set
A ={xeD: 20) =0,lim z() = — oc}.
t—>00
LeMua 2. Za

ZX]"—> — 00 a.e.
j=1
If w, B

8 k= W and if there exist a subsequence {k,,n > 1} and a process &
Uch thag

8, > & in (D,d),

on ( 11; 1‘09 of. Let P, be the distribution of 8, (P, is the probability measure
» @), where 9 is the o-field of Borel sets in (D, d)). Since P, =P
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(P is the distribution of ¢ on (D, 2)) and

Zn'Xj—> —oo a.e.,

J=1
we have P {4} = 1, where 4 is as in Corollary 1. The equality w, = h(8)
k>1 (see [5]), and the convergence w, — w imply that P,h7t = u(uis
the distribution of w). From the continuity of the mapping h on the set 4
and from the fact P{A} =1 we obtain the convergence P, h™' = P~
(see Theorem 5.1 in [1]). Ph‘ is the probabﬂlty measure on (R Z). Conse-
quently, we obtain P,h~' = Ph~! and Ph~!

TaEOREM 1. Let

n
2X,—> — o0 a.e.

j=1

If {8} is tight in (D, d) and w, > w, then w 2 h(£) and the process &(f)
¢8 given by (1). The process & is any limit of a subsequence of the sequence {Si}:

Proof. If the conditions of Theorem 1 are fulfilled, then so are thoseé
of Lemma 2. Hence w = h(&). The trajectories of 8, are step functions
and the set of points of discontinuity of S, is equal to the set of all non-
negative integer numbers which do not exceed %. Therefore, & is discon-
tinuous on the set of all non-negative integer numbers. Hence the process
&(t) is given by (1). Now we show that {£,} is a stationary sequence of
r. v.’s. Since the sequence {S,} is tight in the metric space (D, d), Prokho-
rov’s theorem (see [1]) implies that the sequence of probability measures
P,, k> 1, which are the distributions of S,, respectively, is relatively
compact. Therefore, there exists a subsequence {k;,! > 1} such that

(B)  (8k,(81) — By (t1)y 8y () — By (B2) 5 -+ 5 By, (Bm) — 8y (E)

2 (E@)— £(R), E@)—£(ha), -y E(Bn) — £(Fn))s
where f, = t,—e, 5, = 8;,+¢, 0 < e <1, and t,, 8, for 1 <k < m are non-
negative integers with

0< <8, <, <8, <... <, <8y,

Let us note that the random vector on the left-hand side of (5) has
the same distribution function as the following random vector:

k-4 kl—tm
(6) () z, 2 Xy Y X
J=Fk;—38; i=kp—8y i=kyj—s8;y,

Let n; = k;—1t,. Then the random vector in (6) has the same distri-
bution function as

(1) (8ay (Br—t1), By (Ba—t1) — 8y (b =), vy 8y (B — 1) — Byt —1)) -
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Since {P,} is relatively compact, there exists a subsequence {ny,,r=>1}
of {n;, 1> 1} such that

8, B&ein (D,d) asr—> oo.
r
Therefore, (7) converges in distribution to

(5(31 —t1), §(83—1,)— E(tz_il); ceey 'E(Em_tl) - E(tm—il))
Which has the same distribution function as

(‘5(31_t1)7 E(s2—1)—&(ta—1y), ..., §(sm_t1)—‘f(tm—t1))~
Hence we obtain the assertion of the theorem.

CoroLLARY 2. If the conditions of Theorem 1 are fulfilled and if X,
> 1, are independent, then &,, k > 1, are independent and identically distri-

buteq,
3. Tightness criterion of {8}
. THEOREM 2 (see [1] and [3]). The sequence {P,} of probability measures
Y tight in (D, 9) if and only if
(i) for amy ¢, n > 0 there ewists & > 0 such that, for every n > 1,
P, {x: sup |o(t)] > a} < n;

o<i<e

. (i) for any positive real numbers ¢ and n there ewists a real number
Uch that, for every n>1,
P, {w: w,(8)>e}<n and P,{w: w,[0,5]>e<n;

(iti) for any positive real numbers b, e, and n there ewists a real number 3

8
Uch that, for every n > 1,

-Pn{w: wa:[b_ 67 b]> 6} < n,

Wheye
w;’(a) = sup min {Jz(t) —#(t,)|, l@(t) —2(3)(},
h<t<ly, tg—t;<d
w,[u,v] = sup |@(t)—2(s)l.
u<s<I<Y

ang SEHEOREM 3. {8} ts tight in (D, d) if and only if for any positive number n
thieger m there exists a positive number a such that, for every k> 1,

k

P{ sup ‘2’X,‘> a}g 7.

k-m<ji<k ' j1=j

TheoP T0of. Tt is obvious that condition (i) is fulfilled if the conditions of
T 3 are gatisfied. Therefore, we show only that (ii) and (iii) are
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fulfilled. But this follows from the definitions of w. (8), w, [, v] and 8-
Indeed, let us note that for 8 < 1/2 we have
sup min {|8; (8) — 8 (3], |85 (32) — 8 (2)1}
t1<f<t2, t2—11<1/2
[e—t1+] [k—t+]

. N AT R

§<i<ty, t3—1<1/2 J=[k—t+]+1 F=lk—tg+1+1
In a similar way one can show that
sup |8,(8)—8(8)) =0 and sup 8, (f) —8(8)] = 0.

0<<s<i<1/2 b—1/2<8<i<d

CorOLLARY 3. If {X,} 8 such that for every m > 1 the sequwwf’
{1 X sl + 1 Zppal + oo+ Xy, B> 1} of 7. 0.5 is tight, then {8} és tight
in (D, d).

Proof. This fact follows from

sup | X +X, .+ ... +X<

k—-m<j<k ]

| X1

ihge

Let us write

’

X(n) = Xipn-1y =1}, n>1
n=1,

4, = max{k < n: w, = 0},
where w,, is defined in (2) by {X,}, and let
VYo =0—%, n=1.
THEOREM 4. Let {X,} be such that for k < n
P{X(n)eB|y, =k} =P{X(k) e B},
where B i3 a Borel set in R™. If w, 2 w and P{w < oo =1}, then {94}
8 tight in (D, d).
Proof. It follows from Theorem 3 that it is enough to show the V¥
lidity of (i). Suppose that (i) does not hold. Then there exist numbers "

and 7 such that for every positive integer n there exists a positive integer ko
such that

8 su X, |> n
( ) { —m£f<k | 2 ! |
Since w, B w and P{w < oo} = 1, inequality (8) can be replaced by

(9) p{ inf (8, —8)) < —n} = 1.

kp—m<i<k,
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¢ By the formula for the total probability and by the conditions of the
heorem, the left-hand side of (9) can be written as

kn—m

W) VP it (8, —8)< =11y p =8Py =8}
s=1  kp—m<i<ky " "
e '
= M P{ inf (8p—8)< —n}P{y _m =8}
8=1 8<j<8+m

Let us note that for each s > 1
P{ inf (8,4s—8;)< —n}—>0 as n-—> oco.

s<i<m+8
- Hence (10) tends to zero as » — oo which contradicts inequality (8).
U8 (8) does not hold.

wi 4. Heavy traffic. Let us consider the family of processes {wg, k > 1}
aeth Parameter a < 0, such that {w§, ¥ > 1} is defined for every a by some
Quence {X,} in (2). If

w? 3w, Pwt< oo} =1, w*Zh(&Y,
[t]
e =D&, t>0,
j=1
15
hen e accept the interpretation a = E £,
Let us define the sequence of processes £2 by

[nf]

- 1
&(1) =V Y (& —a), t>0.
=1

a theTBEOREM 5. Let the conditions of Theorem 1 be satisfied. If for every
7,

¢ exists a o, such that o, o > 0 as a — 0, and

1 _
L 2 B2y in(D,d as n-> oo,

a

Wh, . .
TEW isa Wiener process in D, then the distribution of (1/o,) |a|w® converges

the negative exponential distribution.
Proot, By Theorem 1 we have

Where &) = () +alt], =0,

(]
) = ) (& —a), t=0.
j=1
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Let us define the families of processes & and £2, ¢ > 0, by

1
c(t) =— te), =0,
0 = -, >
s:(t>=—;—5- (), 10,

and the family of mappings »,: D-»D by

e
t) =2|—1 t=20 D.
w(@)t) =s(t), 120,06
The mappings x, are Z-measurable and x, (,) % 2 as 2, > M
2 € C[0, o) (x is continuous on [0, oc)) and ¢, - oo (see [5]).
Let
E = {zeD: %, (v,)+ = for some , % z}.

Note that

_ _ /e
12 5 (E%) =8/ — .
(12) () B
But EnC[0, ) =@ (see [5]), thus by (11), (12) and Theorem 5.8

in [1] we obtain

1 1
;—5‘1l/a2 5 W—I; in (D,d) a8 a—0.

a

Hence, using Theorem 5.1 in [1] and Lemma 3.4 in [5], we have

1 l
— |a]w® e sup (“//f(t)— —) as a—>0.
Oq o<t<oo ]

But the r. v. sup (¥ ({)—t/o) has the negative exponential dist™”
bution. 0i<oo

COROLLARY 4. Let for each parameter a the sequence {Xg, k > 1} descr ibe
a sequence {wy, k > 1} such that the conditions of Theorem 1 are fulﬁmd'
Furthermore, let for each a the r. v.’s X3, k > 1, be independent and let

oy =Var(&)>o>0 as a—>0.

Then the limiting distribution of (1/0,)|a|w® as a—>0 s a negah®®
exponential distribution. ) ‘

Similar results can be obtained for the virtual waiting time. TH®
fact follows from the equality (see (3.1.5) in [5])

W) =h(Z), =0,
N@)
Z,(s) = L(t)—L(t—s+), 8>0, L(t) = D v—t, 1>0,

i=1
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Where the symbol L(¢—s,+) denotes the right-hand limit of L(f—s)

at the point 8, < t for any fixed elementary random event and zero for
8> 1.
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FAKTORYZACJA ROZKLADU CZASU CZEKANIA

STRESZCZENIE

8yst GléWnym rezultatem pracy jest pokazanie, 2e w dostatecznie szerokiej klasie
- méw kolejkowych graniczny rozklad czasu czekania jest taki sam jak rozklad
Premum procesu
[£]
)= D&, t>0,
i=1

8dzie {&,

®htigy, p k > 1} jest stacjonarnym ciggiem zmiennych losowyech, a [-] oznacza funkcje

Izyjmujemy réwniez, ze suma po pustym zbiorze wekaZnik6w jest réwna zeru.
ks T2y naszych zatozeniach proces £ jest granica dowolnego podeiagu ciagu {S,
gdzie} elementow losowych z (D, d) w sensie zbieznofci wedlug rozkladu w (D, d),

k
Sk (t) = 2 Xj9 t> 0’
. j=[k=T+]+1
8 X, & = 1} jest ciagiem zmiennych losowych, generujagcym system kolejkowy.

N 201 (¥ —2y+] oznacza prawostronng granice [k —t] w punkcie 4, < k i zero dla



